uipc_socket2.c revision 1.28 1 1.28 lukem /* $NetBSD: uipc_socket2.c,v 1.28 1999/03/23 10:45:37 lukem Exp $ */
2 1.9 cgd
3 1.1 cgd /*
4 1.7 mycroft * Copyright (c) 1982, 1986, 1988, 1990, 1993
5 1.7 mycroft * The Regents of the University of California. All rights reserved.
6 1.1 cgd *
7 1.1 cgd * Redistribution and use in source and binary forms, with or without
8 1.1 cgd * modification, are permitted provided that the following conditions
9 1.1 cgd * are met:
10 1.1 cgd * 1. Redistributions of source code must retain the above copyright
11 1.1 cgd * notice, this list of conditions and the following disclaimer.
12 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 cgd * notice, this list of conditions and the following disclaimer in the
14 1.1 cgd * documentation and/or other materials provided with the distribution.
15 1.1 cgd * 3. All advertising materials mentioning features or use of this software
16 1.1 cgd * must display the following acknowledgement:
17 1.1 cgd * This product includes software developed by the University of
18 1.1 cgd * California, Berkeley and its contributors.
19 1.1 cgd * 4. Neither the name of the University nor the names of its contributors
20 1.1 cgd * may be used to endorse or promote products derived from this software
21 1.1 cgd * without specific prior written permission.
22 1.1 cgd *
23 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 1.1 cgd * SUCH DAMAGE.
34 1.1 cgd *
35 1.23 fvdl * @(#)uipc_socket2.c 8.2 (Berkeley) 2/14/95
36 1.1 cgd */
37 1.1 cgd
38 1.5 mycroft #include <sys/param.h>
39 1.5 mycroft #include <sys/systm.h>
40 1.5 mycroft #include <sys/proc.h>
41 1.5 mycroft #include <sys/file.h>
42 1.5 mycroft #include <sys/buf.h>
43 1.5 mycroft #include <sys/malloc.h>
44 1.5 mycroft #include <sys/mbuf.h>
45 1.5 mycroft #include <sys/protosw.h>
46 1.5 mycroft #include <sys/socket.h>
47 1.5 mycroft #include <sys/socketvar.h>
48 1.11 christos #include <sys/signalvar.h>
49 1.1 cgd
50 1.1 cgd /*
51 1.1 cgd * Primitive routines for operating on sockets and socket buffers
52 1.1 cgd */
53 1.1 cgd
54 1.1 cgd /* strings for sleep message: */
55 1.21 mycroft const char netio[] = "netio";
56 1.21 mycroft const char netcon[] = "netcon";
57 1.21 mycroft const char netcls[] = "netcls";
58 1.1 cgd
59 1.1 cgd u_long sb_max = SB_MAX; /* patchable */
60 1.1 cgd
61 1.1 cgd /*
62 1.1 cgd * Procedures to manipulate state flags of socket
63 1.1 cgd * and do appropriate wakeups. Normal sequence from the
64 1.1 cgd * active (originating) side is that soisconnecting() is
65 1.1 cgd * called during processing of connect() call,
66 1.1 cgd * resulting in an eventual call to soisconnected() if/when the
67 1.1 cgd * connection is established. When the connection is torn down
68 1.1 cgd * soisdisconnecting() is called during processing of disconnect() call,
69 1.1 cgd * and soisdisconnected() is called when the connection to the peer
70 1.1 cgd * is totally severed. The semantics of these routines are such that
71 1.1 cgd * connectionless protocols can call soisconnected() and soisdisconnected()
72 1.1 cgd * only, bypassing the in-progress calls when setting up a ``connection''
73 1.1 cgd * takes no time.
74 1.1 cgd *
75 1.1 cgd * From the passive side, a socket is created with
76 1.1 cgd * two queues of sockets: so_q0 for connections in progress
77 1.1 cgd * and so_q for connections already made and awaiting user acceptance.
78 1.1 cgd * As a protocol is preparing incoming connections, it creates a socket
79 1.1 cgd * structure queued on so_q0 by calling sonewconn(). When the connection
80 1.1 cgd * is established, soisconnected() is called, and transfers the
81 1.1 cgd * socket structure to so_q, making it available to accept().
82 1.1 cgd *
83 1.1 cgd * If a socket is closed with sockets on either
84 1.1 cgd * so_q0 or so_q, these sockets are dropped.
85 1.1 cgd *
86 1.1 cgd * If higher level protocols are implemented in
87 1.1 cgd * the kernel, the wakeups done here will sometimes
88 1.1 cgd * cause software-interrupt process scheduling.
89 1.1 cgd */
90 1.1 cgd
91 1.7 mycroft void
92 1.1 cgd soisconnecting(so)
93 1.1 cgd register struct socket *so;
94 1.1 cgd {
95 1.1 cgd
96 1.1 cgd so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
97 1.1 cgd so->so_state |= SS_ISCONNECTING;
98 1.1 cgd }
99 1.1 cgd
100 1.7 mycroft void
101 1.1 cgd soisconnected(so)
102 1.1 cgd register struct socket *so;
103 1.1 cgd {
104 1.1 cgd register struct socket *head = so->so_head;
105 1.1 cgd
106 1.1 cgd so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
107 1.1 cgd so->so_state |= SS_ISCONNECTED;
108 1.1 cgd if (head && soqremque(so, 0)) {
109 1.1 cgd soqinsque(head, so, 1);
110 1.1 cgd sorwakeup(head);
111 1.1 cgd wakeup((caddr_t)&head->so_timeo);
112 1.1 cgd } else {
113 1.1 cgd wakeup((caddr_t)&so->so_timeo);
114 1.1 cgd sorwakeup(so);
115 1.1 cgd sowwakeup(so);
116 1.1 cgd }
117 1.1 cgd }
118 1.1 cgd
119 1.7 mycroft void
120 1.1 cgd soisdisconnecting(so)
121 1.1 cgd register struct socket *so;
122 1.1 cgd {
123 1.1 cgd
124 1.1 cgd so->so_state &= ~SS_ISCONNECTING;
125 1.1 cgd so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
126 1.1 cgd wakeup((caddr_t)&so->so_timeo);
127 1.1 cgd sowwakeup(so);
128 1.1 cgd sorwakeup(so);
129 1.1 cgd }
130 1.1 cgd
131 1.7 mycroft void
132 1.1 cgd soisdisconnected(so)
133 1.1 cgd register struct socket *so;
134 1.1 cgd {
135 1.1 cgd
136 1.1 cgd so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
137 1.27 mycroft so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
138 1.1 cgd wakeup((caddr_t)&so->so_timeo);
139 1.1 cgd sowwakeup(so);
140 1.1 cgd sorwakeup(so);
141 1.1 cgd }
142 1.1 cgd
143 1.1 cgd /*
144 1.1 cgd * When an attempt at a new connection is noted on a socket
145 1.1 cgd * which accepts connections, sonewconn is called. If the
146 1.1 cgd * connection is possible (subject to space constraints, etc.)
147 1.1 cgd * then we allocate a new structure, propoerly linked into the
148 1.1 cgd * data structure of the original socket, and return this.
149 1.1 cgd * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
150 1.1 cgd *
151 1.1 cgd * Currently, sonewconn() is defined as sonewconn1() in socketvar.h
152 1.1 cgd * to catch calls that are missing the (new) second parameter.
153 1.1 cgd */
154 1.1 cgd struct socket *
155 1.1 cgd sonewconn1(head, connstatus)
156 1.1 cgd register struct socket *head;
157 1.1 cgd int connstatus;
158 1.1 cgd {
159 1.1 cgd register struct socket *so;
160 1.1 cgd int soqueue = connstatus ? 1 : 0;
161 1.1 cgd
162 1.1 cgd if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
163 1.1 cgd return ((struct socket *)0);
164 1.25 thorpej so = pool_get(&socket_pool, PR_NOWAIT);
165 1.1 cgd if (so == NULL)
166 1.25 thorpej return (NULL);
167 1.26 perry memset((caddr_t)so, 0, sizeof(*so));
168 1.1 cgd so->so_type = head->so_type;
169 1.1 cgd so->so_options = head->so_options &~ SO_ACCEPTCONN;
170 1.1 cgd so->so_linger = head->so_linger;
171 1.1 cgd so->so_state = head->so_state | SS_NOFDREF;
172 1.1 cgd so->so_proto = head->so_proto;
173 1.1 cgd so->so_timeo = head->so_timeo;
174 1.1 cgd so->so_pgid = head->so_pgid;
175 1.24 matt so->so_send = head->so_send;
176 1.24 matt so->so_receive = head->so_receive;
177 1.28 lukem so->so_uid = head->so_uid;
178 1.1 cgd (void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
179 1.1 cgd soqinsque(head, so, soqueue);
180 1.1 cgd if ((*so->so_proto->pr_usrreq)(so, PRU_ATTACH,
181 1.12 mycroft (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
182 1.12 mycroft (struct proc *)0)) {
183 1.1 cgd (void) soqremque(so, soqueue);
184 1.25 thorpej pool_put(&socket_pool, so);
185 1.25 thorpej return (NULL);
186 1.1 cgd }
187 1.1 cgd if (connstatus) {
188 1.1 cgd sorwakeup(head);
189 1.1 cgd wakeup((caddr_t)&head->so_timeo);
190 1.1 cgd so->so_state |= connstatus;
191 1.1 cgd }
192 1.1 cgd return (so);
193 1.1 cgd }
194 1.1 cgd
195 1.7 mycroft void
196 1.1 cgd soqinsque(head, so, q)
197 1.1 cgd register struct socket *head, *so;
198 1.1 cgd int q;
199 1.1 cgd {
200 1.1 cgd
201 1.22 thorpej #ifdef DIAGNOSTIC
202 1.22 thorpej if (so->so_onq != NULL)
203 1.22 thorpej panic("soqinsque");
204 1.22 thorpej #endif
205 1.22 thorpej
206 1.1 cgd so->so_head = head;
207 1.1 cgd if (q == 0) {
208 1.1 cgd head->so_q0len++;
209 1.22 thorpej so->so_onq = &head->so_q0;
210 1.1 cgd } else {
211 1.1 cgd head->so_qlen++;
212 1.22 thorpej so->so_onq = &head->so_q;
213 1.1 cgd }
214 1.22 thorpej TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
215 1.1 cgd }
216 1.1 cgd
217 1.7 mycroft int
218 1.1 cgd soqremque(so, q)
219 1.1 cgd register struct socket *so;
220 1.1 cgd int q;
221 1.1 cgd {
222 1.22 thorpej struct socket *head = so->so_head;
223 1.1 cgd
224 1.22 thorpej if (q == 0) {
225 1.22 thorpej if (so->so_onq != &head->so_q0)
226 1.17 thorpej return (0);
227 1.1 cgd head->so_q0len--;
228 1.1 cgd } else {
229 1.22 thorpej if (so->so_onq != &head->so_q)
230 1.22 thorpej return (0);
231 1.1 cgd head->so_qlen--;
232 1.1 cgd }
233 1.22 thorpej TAILQ_REMOVE(so->so_onq, so, so_qe);
234 1.22 thorpej so->so_onq = NULL;
235 1.22 thorpej so->so_head = NULL;
236 1.1 cgd return (1);
237 1.1 cgd }
238 1.1 cgd
239 1.1 cgd /*
240 1.1 cgd * Socantsendmore indicates that no more data will be sent on the
241 1.1 cgd * socket; it would normally be applied to a socket when the user
242 1.1 cgd * informs the system that no more data is to be sent, by the protocol
243 1.1 cgd * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data
244 1.1 cgd * will be received, and will normally be applied to the socket by a
245 1.1 cgd * protocol when it detects that the peer will send no more data.
246 1.1 cgd * Data queued for reading in the socket may yet be read.
247 1.1 cgd */
248 1.1 cgd
249 1.4 andrew void
250 1.1 cgd socantsendmore(so)
251 1.1 cgd struct socket *so;
252 1.1 cgd {
253 1.1 cgd
254 1.1 cgd so->so_state |= SS_CANTSENDMORE;
255 1.1 cgd sowwakeup(so);
256 1.1 cgd }
257 1.1 cgd
258 1.4 andrew void
259 1.1 cgd socantrcvmore(so)
260 1.1 cgd struct socket *so;
261 1.1 cgd {
262 1.1 cgd
263 1.1 cgd so->so_state |= SS_CANTRCVMORE;
264 1.1 cgd sorwakeup(so);
265 1.1 cgd }
266 1.1 cgd
267 1.1 cgd /*
268 1.1 cgd * Wait for data to arrive at/drain from a socket buffer.
269 1.1 cgd */
270 1.7 mycroft int
271 1.1 cgd sbwait(sb)
272 1.1 cgd struct sockbuf *sb;
273 1.1 cgd {
274 1.1 cgd
275 1.1 cgd sb->sb_flags |= SB_WAIT;
276 1.1 cgd return (tsleep((caddr_t)&sb->sb_cc,
277 1.1 cgd (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, netio,
278 1.1 cgd sb->sb_timeo));
279 1.1 cgd }
280 1.1 cgd
281 1.1 cgd /*
282 1.1 cgd * Lock a sockbuf already known to be locked;
283 1.1 cgd * return any error returned from sleep (EINTR).
284 1.1 cgd */
285 1.7 mycroft int
286 1.1 cgd sb_lock(sb)
287 1.1 cgd register struct sockbuf *sb;
288 1.1 cgd {
289 1.1 cgd int error;
290 1.1 cgd
291 1.1 cgd while (sb->sb_flags & SB_LOCK) {
292 1.1 cgd sb->sb_flags |= SB_WANT;
293 1.11 christos error = tsleep((caddr_t)&sb->sb_flags,
294 1.11 christos (sb->sb_flags & SB_NOINTR) ?
295 1.11 christos PSOCK : PSOCK|PCATCH, netio, 0);
296 1.11 christos if (error)
297 1.1 cgd return (error);
298 1.1 cgd }
299 1.1 cgd sb->sb_flags |= SB_LOCK;
300 1.1 cgd return (0);
301 1.1 cgd }
302 1.1 cgd
303 1.1 cgd /*
304 1.1 cgd * Wakeup processes waiting on a socket buffer.
305 1.1 cgd * Do asynchronous notification via SIGIO
306 1.1 cgd * if the socket has the SS_ASYNC flag set.
307 1.1 cgd */
308 1.7 mycroft void
309 1.1 cgd sowakeup(so, sb)
310 1.1 cgd register struct socket *so;
311 1.1 cgd register struct sockbuf *sb;
312 1.1 cgd {
313 1.1 cgd struct proc *p;
314 1.1 cgd
315 1.3 cgd selwakeup(&sb->sb_sel);
316 1.7 mycroft sb->sb_flags &= ~SB_SEL;
317 1.1 cgd if (sb->sb_flags & SB_WAIT) {
318 1.1 cgd sb->sb_flags &= ~SB_WAIT;
319 1.1 cgd wakeup((caddr_t)&sb->sb_cc);
320 1.1 cgd }
321 1.1 cgd if (so->so_state & SS_ASYNC) {
322 1.1 cgd if (so->so_pgid < 0)
323 1.1 cgd gsignal(-so->so_pgid, SIGIO);
324 1.1 cgd else if (so->so_pgid > 0 && (p = pfind(so->so_pgid)) != 0)
325 1.1 cgd psignal(p, SIGIO);
326 1.1 cgd }
327 1.24 matt if (sb->sb_flags & SB_UPCALL)
328 1.24 matt (*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT);
329 1.1 cgd }
330 1.1 cgd
331 1.1 cgd /*
332 1.1 cgd * Socket buffer (struct sockbuf) utility routines.
333 1.1 cgd *
334 1.1 cgd * Each socket contains two socket buffers: one for sending data and
335 1.1 cgd * one for receiving data. Each buffer contains a queue of mbufs,
336 1.1 cgd * information about the number of mbufs and amount of data in the
337 1.13 mycroft * queue, and other fields allowing poll() statements and notification
338 1.1 cgd * on data availability to be implemented.
339 1.1 cgd *
340 1.1 cgd * Data stored in a socket buffer is maintained as a list of records.
341 1.1 cgd * Each record is a list of mbufs chained together with the m_next
342 1.1 cgd * field. Records are chained together with the m_nextpkt field. The upper
343 1.1 cgd * level routine soreceive() expects the following conventions to be
344 1.1 cgd * observed when placing information in the receive buffer:
345 1.1 cgd *
346 1.1 cgd * 1. If the protocol requires each message be preceded by the sender's
347 1.1 cgd * name, then a record containing that name must be present before
348 1.1 cgd * any associated data (mbuf's must be of type MT_SONAME).
349 1.1 cgd * 2. If the protocol supports the exchange of ``access rights'' (really
350 1.1 cgd * just additional data associated with the message), and there are
351 1.1 cgd * ``rights'' to be received, then a record containing this data
352 1.10 mycroft * should be present (mbuf's must be of type MT_CONTROL).
353 1.1 cgd * 3. If a name or rights record exists, then it must be followed by
354 1.1 cgd * a data record, perhaps of zero length.
355 1.1 cgd *
356 1.1 cgd * Before using a new socket structure it is first necessary to reserve
357 1.1 cgd * buffer space to the socket, by calling sbreserve(). This should commit
358 1.1 cgd * some of the available buffer space in the system buffer pool for the
359 1.1 cgd * socket (currently, it does nothing but enforce limits). The space
360 1.1 cgd * should be released by calling sbrelease() when the socket is destroyed.
361 1.1 cgd */
362 1.1 cgd
363 1.7 mycroft int
364 1.1 cgd soreserve(so, sndcc, rcvcc)
365 1.1 cgd register struct socket *so;
366 1.1 cgd u_long sndcc, rcvcc;
367 1.1 cgd {
368 1.1 cgd
369 1.1 cgd if (sbreserve(&so->so_snd, sndcc) == 0)
370 1.1 cgd goto bad;
371 1.1 cgd if (sbreserve(&so->so_rcv, rcvcc) == 0)
372 1.1 cgd goto bad2;
373 1.1 cgd if (so->so_rcv.sb_lowat == 0)
374 1.1 cgd so->so_rcv.sb_lowat = 1;
375 1.1 cgd if (so->so_snd.sb_lowat == 0)
376 1.1 cgd so->so_snd.sb_lowat = MCLBYTES;
377 1.1 cgd if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
378 1.1 cgd so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
379 1.1 cgd return (0);
380 1.1 cgd bad2:
381 1.1 cgd sbrelease(&so->so_snd);
382 1.1 cgd bad:
383 1.1 cgd return (ENOBUFS);
384 1.1 cgd }
385 1.1 cgd
386 1.1 cgd /*
387 1.1 cgd * Allot mbufs to a sockbuf.
388 1.1 cgd * Attempt to scale mbmax so that mbcnt doesn't become limiting
389 1.1 cgd * if buffering efficiency is near the normal case.
390 1.1 cgd */
391 1.7 mycroft int
392 1.1 cgd sbreserve(sb, cc)
393 1.1 cgd struct sockbuf *sb;
394 1.1 cgd u_long cc;
395 1.1 cgd {
396 1.1 cgd
397 1.18 thorpej if (cc == 0 || cc > sb_max * MCLBYTES / (MSIZE + MCLBYTES))
398 1.1 cgd return (0);
399 1.1 cgd sb->sb_hiwat = cc;
400 1.1 cgd sb->sb_mbmax = min(cc * 2, sb_max);
401 1.1 cgd if (sb->sb_lowat > sb->sb_hiwat)
402 1.1 cgd sb->sb_lowat = sb->sb_hiwat;
403 1.1 cgd return (1);
404 1.1 cgd }
405 1.1 cgd
406 1.1 cgd /*
407 1.1 cgd * Free mbufs held by a socket, and reserved mbuf space.
408 1.1 cgd */
409 1.7 mycroft void
410 1.1 cgd sbrelease(sb)
411 1.1 cgd struct sockbuf *sb;
412 1.1 cgd {
413 1.1 cgd
414 1.1 cgd sbflush(sb);
415 1.1 cgd sb->sb_hiwat = sb->sb_mbmax = 0;
416 1.1 cgd }
417 1.1 cgd
418 1.1 cgd /*
419 1.1 cgd * Routines to add and remove
420 1.1 cgd * data from an mbuf queue.
421 1.1 cgd *
422 1.1 cgd * The routines sbappend() or sbappendrecord() are normally called to
423 1.1 cgd * append new mbufs to a socket buffer, after checking that adequate
424 1.1 cgd * space is available, comparing the function sbspace() with the amount
425 1.1 cgd * of data to be added. sbappendrecord() differs from sbappend() in
426 1.1 cgd * that data supplied is treated as the beginning of a new record.
427 1.1 cgd * To place a sender's address, optional access rights, and data in a
428 1.1 cgd * socket receive buffer, sbappendaddr() should be used. To place
429 1.1 cgd * access rights and data in a socket receive buffer, sbappendrights()
430 1.1 cgd * should be used. In either case, the new data begins a new record.
431 1.1 cgd * Note that unlike sbappend() and sbappendrecord(), these routines check
432 1.1 cgd * for the caller that there will be enough space to store the data.
433 1.1 cgd * Each fails if there is not enough space, or if it cannot find mbufs
434 1.1 cgd * to store additional information in.
435 1.1 cgd *
436 1.1 cgd * Reliable protocols may use the socket send buffer to hold data
437 1.1 cgd * awaiting acknowledgement. Data is normally copied from a socket
438 1.1 cgd * send buffer in a protocol with m_copy for output to a peer,
439 1.1 cgd * and then removing the data from the socket buffer with sbdrop()
440 1.1 cgd * or sbdroprecord() when the data is acknowledged by the peer.
441 1.1 cgd */
442 1.1 cgd
443 1.1 cgd /*
444 1.1 cgd * Append mbuf chain m to the last record in the
445 1.1 cgd * socket buffer sb. The additional space associated
446 1.1 cgd * the mbuf chain is recorded in sb. Empty mbufs are
447 1.1 cgd * discarded and mbufs are compacted where possible.
448 1.1 cgd */
449 1.7 mycroft void
450 1.1 cgd sbappend(sb, m)
451 1.1 cgd struct sockbuf *sb;
452 1.1 cgd struct mbuf *m;
453 1.1 cgd {
454 1.1 cgd register struct mbuf *n;
455 1.1 cgd
456 1.1 cgd if (m == 0)
457 1.1 cgd return;
458 1.11 christos if ((n = sb->sb_mb) != NULL) {
459 1.1 cgd while (n->m_nextpkt)
460 1.1 cgd n = n->m_nextpkt;
461 1.1 cgd do {
462 1.1 cgd if (n->m_flags & M_EOR) {
463 1.1 cgd sbappendrecord(sb, m); /* XXXXXX!!!! */
464 1.1 cgd return;
465 1.1 cgd }
466 1.1 cgd } while (n->m_next && (n = n->m_next));
467 1.1 cgd }
468 1.1 cgd sbcompress(sb, m, n);
469 1.1 cgd }
470 1.1 cgd
471 1.1 cgd #ifdef SOCKBUF_DEBUG
472 1.7 mycroft void
473 1.1 cgd sbcheck(sb)
474 1.1 cgd register struct sockbuf *sb;
475 1.1 cgd {
476 1.1 cgd register struct mbuf *m;
477 1.1 cgd register int len = 0, mbcnt = 0;
478 1.1 cgd
479 1.1 cgd for (m = sb->sb_mb; m; m = m->m_next) {
480 1.1 cgd len += m->m_len;
481 1.1 cgd mbcnt += MSIZE;
482 1.1 cgd if (m->m_flags & M_EXT)
483 1.1 cgd mbcnt += m->m_ext.ext_size;
484 1.1 cgd if (m->m_nextpkt)
485 1.1 cgd panic("sbcheck nextpkt");
486 1.1 cgd }
487 1.1 cgd if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
488 1.15 christos printf("cc %d != %d || mbcnt %d != %d\n", len, sb->sb_cc,
489 1.1 cgd mbcnt, sb->sb_mbcnt);
490 1.1 cgd panic("sbcheck");
491 1.1 cgd }
492 1.1 cgd }
493 1.1 cgd #endif
494 1.1 cgd
495 1.1 cgd /*
496 1.1 cgd * As above, except the mbuf chain
497 1.1 cgd * begins a new record.
498 1.1 cgd */
499 1.7 mycroft void
500 1.1 cgd sbappendrecord(sb, m0)
501 1.1 cgd register struct sockbuf *sb;
502 1.1 cgd register struct mbuf *m0;
503 1.1 cgd {
504 1.1 cgd register struct mbuf *m;
505 1.1 cgd
506 1.1 cgd if (m0 == 0)
507 1.1 cgd return;
508 1.11 christos if ((m = sb->sb_mb) != NULL)
509 1.1 cgd while (m->m_nextpkt)
510 1.1 cgd m = m->m_nextpkt;
511 1.1 cgd /*
512 1.1 cgd * Put the first mbuf on the queue.
513 1.1 cgd * Note this permits zero length records.
514 1.1 cgd */
515 1.1 cgd sballoc(sb, m0);
516 1.1 cgd if (m)
517 1.1 cgd m->m_nextpkt = m0;
518 1.1 cgd else
519 1.1 cgd sb->sb_mb = m0;
520 1.1 cgd m = m0->m_next;
521 1.1 cgd m0->m_next = 0;
522 1.1 cgd if (m && (m0->m_flags & M_EOR)) {
523 1.1 cgd m0->m_flags &= ~M_EOR;
524 1.1 cgd m->m_flags |= M_EOR;
525 1.1 cgd }
526 1.1 cgd sbcompress(sb, m, m0);
527 1.1 cgd }
528 1.1 cgd
529 1.1 cgd /*
530 1.1 cgd * As above except that OOB data
531 1.1 cgd * is inserted at the beginning of the sockbuf,
532 1.1 cgd * but after any other OOB data.
533 1.1 cgd */
534 1.7 mycroft void
535 1.1 cgd sbinsertoob(sb, m0)
536 1.1 cgd register struct sockbuf *sb;
537 1.1 cgd register struct mbuf *m0;
538 1.1 cgd {
539 1.1 cgd register struct mbuf *m;
540 1.1 cgd register struct mbuf **mp;
541 1.1 cgd
542 1.1 cgd if (m0 == 0)
543 1.1 cgd return;
544 1.11 christos for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
545 1.1 cgd again:
546 1.1 cgd switch (m->m_type) {
547 1.1 cgd
548 1.1 cgd case MT_OOBDATA:
549 1.1 cgd continue; /* WANT next train */
550 1.1 cgd
551 1.1 cgd case MT_CONTROL:
552 1.11 christos if ((m = m->m_next) != NULL)
553 1.1 cgd goto again; /* inspect THIS train further */
554 1.1 cgd }
555 1.1 cgd break;
556 1.1 cgd }
557 1.1 cgd /*
558 1.1 cgd * Put the first mbuf on the queue.
559 1.1 cgd * Note this permits zero length records.
560 1.1 cgd */
561 1.1 cgd sballoc(sb, m0);
562 1.1 cgd m0->m_nextpkt = *mp;
563 1.1 cgd *mp = m0;
564 1.1 cgd m = m0->m_next;
565 1.1 cgd m0->m_next = 0;
566 1.1 cgd if (m && (m0->m_flags & M_EOR)) {
567 1.1 cgd m0->m_flags &= ~M_EOR;
568 1.1 cgd m->m_flags |= M_EOR;
569 1.1 cgd }
570 1.1 cgd sbcompress(sb, m, m0);
571 1.1 cgd }
572 1.1 cgd
573 1.1 cgd /*
574 1.1 cgd * Append address and data, and optionally, control (ancillary) data
575 1.1 cgd * to the receive queue of a socket. If present,
576 1.1 cgd * m0 must include a packet header with total length.
577 1.1 cgd * Returns 0 if no space in sockbuf or insufficient mbufs.
578 1.1 cgd */
579 1.7 mycroft int
580 1.1 cgd sbappendaddr(sb, asa, m0, control)
581 1.1 cgd register struct sockbuf *sb;
582 1.1 cgd struct sockaddr *asa;
583 1.1 cgd struct mbuf *m0, *control;
584 1.1 cgd {
585 1.1 cgd register struct mbuf *m, *n;
586 1.1 cgd int space = asa->sa_len;
587 1.1 cgd
588 1.1 cgd if (m0 && (m0->m_flags & M_PKTHDR) == 0)
589 1.1 cgd panic("sbappendaddr");
590 1.1 cgd if (m0)
591 1.1 cgd space += m0->m_pkthdr.len;
592 1.1 cgd for (n = control; n; n = n->m_next) {
593 1.1 cgd space += n->m_len;
594 1.1 cgd if (n->m_next == 0) /* keep pointer to last control buf */
595 1.1 cgd break;
596 1.1 cgd }
597 1.1 cgd if (space > sbspace(sb))
598 1.1 cgd return (0);
599 1.1 cgd MGET(m, M_DONTWAIT, MT_SONAME);
600 1.1 cgd if (m == 0)
601 1.1 cgd return (0);
602 1.20 thorpej if (asa->sa_len > MLEN) {
603 1.20 thorpej MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
604 1.20 thorpej if ((m->m_flags & M_EXT) == 0) {
605 1.20 thorpej m_free(m);
606 1.20 thorpej return (0);
607 1.20 thorpej }
608 1.20 thorpej }
609 1.1 cgd m->m_len = asa->sa_len;
610 1.26 perry memcpy(mtod(m, caddr_t), (caddr_t)asa, asa->sa_len);
611 1.1 cgd if (n)
612 1.1 cgd n->m_next = m0; /* concatenate data to control */
613 1.1 cgd else
614 1.1 cgd control = m0;
615 1.1 cgd m->m_next = control;
616 1.1 cgd for (n = m; n; n = n->m_next)
617 1.1 cgd sballoc(sb, n);
618 1.11 christos if ((n = sb->sb_mb) != NULL) {
619 1.1 cgd while (n->m_nextpkt)
620 1.1 cgd n = n->m_nextpkt;
621 1.1 cgd n->m_nextpkt = m;
622 1.1 cgd } else
623 1.1 cgd sb->sb_mb = m;
624 1.1 cgd return (1);
625 1.1 cgd }
626 1.1 cgd
627 1.7 mycroft int
628 1.1 cgd sbappendcontrol(sb, m0, control)
629 1.1 cgd struct sockbuf *sb;
630 1.7 mycroft struct mbuf *m0, *control;
631 1.1 cgd {
632 1.1 cgd register struct mbuf *m, *n;
633 1.1 cgd int space = 0;
634 1.1 cgd
635 1.1 cgd if (control == 0)
636 1.1 cgd panic("sbappendcontrol");
637 1.1 cgd for (m = control; ; m = m->m_next) {
638 1.1 cgd space += m->m_len;
639 1.1 cgd if (m->m_next == 0)
640 1.1 cgd break;
641 1.1 cgd }
642 1.1 cgd n = m; /* save pointer to last control buffer */
643 1.1 cgd for (m = m0; m; m = m->m_next)
644 1.1 cgd space += m->m_len;
645 1.1 cgd if (space > sbspace(sb))
646 1.1 cgd return (0);
647 1.1 cgd n->m_next = m0; /* concatenate data to control */
648 1.1 cgd for (m = control; m; m = m->m_next)
649 1.1 cgd sballoc(sb, m);
650 1.11 christos if ((n = sb->sb_mb) != NULL) {
651 1.1 cgd while (n->m_nextpkt)
652 1.1 cgd n = n->m_nextpkt;
653 1.1 cgd n->m_nextpkt = control;
654 1.1 cgd } else
655 1.1 cgd sb->sb_mb = control;
656 1.1 cgd return (1);
657 1.1 cgd }
658 1.1 cgd
659 1.1 cgd /*
660 1.1 cgd * Compress mbuf chain m into the socket
661 1.1 cgd * buffer sb following mbuf n. If n
662 1.1 cgd * is null, the buffer is presumed empty.
663 1.1 cgd */
664 1.7 mycroft void
665 1.1 cgd sbcompress(sb, m, n)
666 1.1 cgd register struct sockbuf *sb;
667 1.1 cgd register struct mbuf *m, *n;
668 1.1 cgd {
669 1.1 cgd register int eor = 0;
670 1.1 cgd register struct mbuf *o;
671 1.1 cgd
672 1.1 cgd while (m) {
673 1.1 cgd eor |= m->m_flags & M_EOR;
674 1.1 cgd if (m->m_len == 0 &&
675 1.1 cgd (eor == 0 ||
676 1.1 cgd (((o = m->m_next) || (o = n)) &&
677 1.1 cgd o->m_type == m->m_type))) {
678 1.1 cgd m = m_free(m);
679 1.1 cgd continue;
680 1.1 cgd }
681 1.1 cgd if (n && (n->m_flags & (M_EXT | M_EOR)) == 0 &&
682 1.1 cgd (n->m_data + n->m_len + m->m_len) < &n->m_dat[MLEN] &&
683 1.1 cgd n->m_type == m->m_type) {
684 1.26 perry memcpy(mtod(n, caddr_t) + n->m_len, mtod(m, caddr_t),
685 1.1 cgd (unsigned)m->m_len);
686 1.1 cgd n->m_len += m->m_len;
687 1.1 cgd sb->sb_cc += m->m_len;
688 1.1 cgd m = m_free(m);
689 1.1 cgd continue;
690 1.1 cgd }
691 1.1 cgd if (n)
692 1.1 cgd n->m_next = m;
693 1.1 cgd else
694 1.1 cgd sb->sb_mb = m;
695 1.1 cgd sballoc(sb, m);
696 1.1 cgd n = m;
697 1.1 cgd m->m_flags &= ~M_EOR;
698 1.1 cgd m = m->m_next;
699 1.1 cgd n->m_next = 0;
700 1.1 cgd }
701 1.1 cgd if (eor) {
702 1.1 cgd if (n)
703 1.1 cgd n->m_flags |= eor;
704 1.1 cgd else
705 1.15 christos printf("semi-panic: sbcompress\n");
706 1.1 cgd }
707 1.1 cgd }
708 1.1 cgd
709 1.1 cgd /*
710 1.1 cgd * Free all mbufs in a sockbuf.
711 1.1 cgd * Check that all resources are reclaimed.
712 1.1 cgd */
713 1.7 mycroft void
714 1.1 cgd sbflush(sb)
715 1.1 cgd register struct sockbuf *sb;
716 1.1 cgd {
717 1.1 cgd
718 1.1 cgd if (sb->sb_flags & SB_LOCK)
719 1.1 cgd panic("sbflush");
720 1.1 cgd while (sb->sb_mbcnt)
721 1.1 cgd sbdrop(sb, (int)sb->sb_cc);
722 1.1 cgd if (sb->sb_cc || sb->sb_mb)
723 1.1 cgd panic("sbflush 2");
724 1.1 cgd }
725 1.1 cgd
726 1.1 cgd /*
727 1.1 cgd * Drop data from (the front of) a sockbuf.
728 1.1 cgd */
729 1.7 mycroft void
730 1.1 cgd sbdrop(sb, len)
731 1.1 cgd register struct sockbuf *sb;
732 1.1 cgd register int len;
733 1.1 cgd {
734 1.1 cgd register struct mbuf *m, *mn;
735 1.1 cgd struct mbuf *next;
736 1.1 cgd
737 1.1 cgd next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
738 1.1 cgd while (len > 0) {
739 1.1 cgd if (m == 0) {
740 1.1 cgd if (next == 0)
741 1.1 cgd panic("sbdrop");
742 1.1 cgd m = next;
743 1.1 cgd next = m->m_nextpkt;
744 1.1 cgd continue;
745 1.1 cgd }
746 1.1 cgd if (m->m_len > len) {
747 1.1 cgd m->m_len -= len;
748 1.1 cgd m->m_data += len;
749 1.1 cgd sb->sb_cc -= len;
750 1.1 cgd break;
751 1.1 cgd }
752 1.1 cgd len -= m->m_len;
753 1.1 cgd sbfree(sb, m);
754 1.1 cgd MFREE(m, mn);
755 1.1 cgd m = mn;
756 1.1 cgd }
757 1.1 cgd while (m && m->m_len == 0) {
758 1.1 cgd sbfree(sb, m);
759 1.1 cgd MFREE(m, mn);
760 1.1 cgd m = mn;
761 1.1 cgd }
762 1.1 cgd if (m) {
763 1.1 cgd sb->sb_mb = m;
764 1.1 cgd m->m_nextpkt = next;
765 1.1 cgd } else
766 1.1 cgd sb->sb_mb = next;
767 1.1 cgd }
768 1.1 cgd
769 1.1 cgd /*
770 1.1 cgd * Drop a record off the front of a sockbuf
771 1.1 cgd * and move the next record to the front.
772 1.1 cgd */
773 1.7 mycroft void
774 1.1 cgd sbdroprecord(sb)
775 1.1 cgd register struct sockbuf *sb;
776 1.1 cgd {
777 1.1 cgd register struct mbuf *m, *mn;
778 1.1 cgd
779 1.1 cgd m = sb->sb_mb;
780 1.1 cgd if (m) {
781 1.1 cgd sb->sb_mb = m->m_nextpkt;
782 1.1 cgd do {
783 1.1 cgd sbfree(sb, m);
784 1.1 cgd MFREE(m, mn);
785 1.11 christos } while ((m = mn) != NULL);
786 1.1 cgd }
787 1.19 thorpej }
788 1.19 thorpej
789 1.19 thorpej /*
790 1.19 thorpej * Create a "control" mbuf containing the specified data
791 1.19 thorpej * with the specified type for presentation on a socket buffer.
792 1.19 thorpej */
793 1.19 thorpej struct mbuf *
794 1.19 thorpej sbcreatecontrol(p, size, type, level)
795 1.19 thorpej caddr_t p;
796 1.19 thorpej register int size;
797 1.19 thorpej int type, level;
798 1.19 thorpej {
799 1.19 thorpej register struct cmsghdr *cp;
800 1.19 thorpej struct mbuf *m;
801 1.19 thorpej
802 1.19 thorpej if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
803 1.19 thorpej return ((struct mbuf *) NULL);
804 1.19 thorpej cp = mtod(m, struct cmsghdr *);
805 1.26 perry memcpy(CMSG_DATA(cp), p, size);
806 1.19 thorpej size += sizeof(*cp);
807 1.19 thorpej m->m_len = size;
808 1.19 thorpej cp->cmsg_len = size;
809 1.19 thorpej cp->cmsg_level = level;
810 1.19 thorpej cp->cmsg_type = type;
811 1.19 thorpej return (m);
812 1.1 cgd }
813