uipc_socket2.c revision 1.33.2.2 1 1.33.2.2 bouyer /* $NetBSD: uipc_socket2.c,v 1.33.2.2 2001/03/12 13:31:38 bouyer Exp $ */
2 1.9 cgd
3 1.1 cgd /*
4 1.7 mycroft * Copyright (c) 1982, 1986, 1988, 1990, 1993
5 1.7 mycroft * The Regents of the University of California. All rights reserved.
6 1.1 cgd *
7 1.1 cgd * Redistribution and use in source and binary forms, with or without
8 1.1 cgd * modification, are permitted provided that the following conditions
9 1.1 cgd * are met:
10 1.1 cgd * 1. Redistributions of source code must retain the above copyright
11 1.1 cgd * notice, this list of conditions and the following disclaimer.
12 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 cgd * notice, this list of conditions and the following disclaimer in the
14 1.1 cgd * documentation and/or other materials provided with the distribution.
15 1.1 cgd * 3. All advertising materials mentioning features or use of this software
16 1.1 cgd * must display the following acknowledgement:
17 1.1 cgd * This product includes software developed by the University of
18 1.1 cgd * California, Berkeley and its contributors.
19 1.1 cgd * 4. Neither the name of the University nor the names of its contributors
20 1.1 cgd * may be used to endorse or promote products derived from this software
21 1.1 cgd * without specific prior written permission.
22 1.1 cgd *
23 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 1.1 cgd * SUCH DAMAGE.
34 1.1 cgd *
35 1.23 fvdl * @(#)uipc_socket2.c 8.2 (Berkeley) 2/14/95
36 1.1 cgd */
37 1.1 cgd
38 1.5 mycroft #include <sys/param.h>
39 1.5 mycroft #include <sys/systm.h>
40 1.5 mycroft #include <sys/proc.h>
41 1.5 mycroft #include <sys/file.h>
42 1.5 mycroft #include <sys/buf.h>
43 1.5 mycroft #include <sys/malloc.h>
44 1.5 mycroft #include <sys/mbuf.h>
45 1.5 mycroft #include <sys/protosw.h>
46 1.5 mycroft #include <sys/socket.h>
47 1.5 mycroft #include <sys/socketvar.h>
48 1.11 christos #include <sys/signalvar.h>
49 1.1 cgd
50 1.1 cgd /*
51 1.1 cgd * Primitive routines for operating on sockets and socket buffers
52 1.1 cgd */
53 1.1 cgd
54 1.1 cgd /* strings for sleep message: */
55 1.21 mycroft const char netio[] = "netio";
56 1.21 mycroft const char netcon[] = "netcon";
57 1.21 mycroft const char netcls[] = "netcls";
58 1.1 cgd
59 1.1 cgd /*
60 1.1 cgd * Procedures to manipulate state flags of socket
61 1.1 cgd * and do appropriate wakeups. Normal sequence from the
62 1.1 cgd * active (originating) side is that soisconnecting() is
63 1.1 cgd * called during processing of connect() call,
64 1.1 cgd * resulting in an eventual call to soisconnected() if/when the
65 1.1 cgd * connection is established. When the connection is torn down
66 1.1 cgd * soisdisconnecting() is called during processing of disconnect() call,
67 1.1 cgd * and soisdisconnected() is called when the connection to the peer
68 1.1 cgd * is totally severed. The semantics of these routines are such that
69 1.1 cgd * connectionless protocols can call soisconnected() and soisdisconnected()
70 1.1 cgd * only, bypassing the in-progress calls when setting up a ``connection''
71 1.1 cgd * takes no time.
72 1.1 cgd *
73 1.1 cgd * From the passive side, a socket is created with
74 1.1 cgd * two queues of sockets: so_q0 for connections in progress
75 1.1 cgd * and so_q for connections already made and awaiting user acceptance.
76 1.1 cgd * As a protocol is preparing incoming connections, it creates a socket
77 1.1 cgd * structure queued on so_q0 by calling sonewconn(). When the connection
78 1.1 cgd * is established, soisconnected() is called, and transfers the
79 1.1 cgd * socket structure to so_q, making it available to accept().
80 1.1 cgd *
81 1.1 cgd * If a socket is closed with sockets on either
82 1.1 cgd * so_q0 or so_q, these sockets are dropped.
83 1.1 cgd *
84 1.1 cgd * If higher level protocols are implemented in
85 1.1 cgd * the kernel, the wakeups done here will sometimes
86 1.1 cgd * cause software-interrupt process scheduling.
87 1.1 cgd */
88 1.1 cgd
89 1.7 mycroft void
90 1.33.2.2 bouyer soisconnecting(struct socket *so)
91 1.1 cgd {
92 1.1 cgd
93 1.1 cgd so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
94 1.1 cgd so->so_state |= SS_ISCONNECTING;
95 1.1 cgd }
96 1.1 cgd
97 1.7 mycroft void
98 1.33.2.2 bouyer soisconnected(struct socket *so)
99 1.1 cgd {
100 1.33.2.2 bouyer struct socket *head;
101 1.1 cgd
102 1.33.2.2 bouyer head = so->so_head;
103 1.1 cgd so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
104 1.1 cgd so->so_state |= SS_ISCONNECTED;
105 1.1 cgd if (head && soqremque(so, 0)) {
106 1.1 cgd soqinsque(head, so, 1);
107 1.1 cgd sorwakeup(head);
108 1.1 cgd wakeup((caddr_t)&head->so_timeo);
109 1.1 cgd } else {
110 1.1 cgd wakeup((caddr_t)&so->so_timeo);
111 1.1 cgd sorwakeup(so);
112 1.1 cgd sowwakeup(so);
113 1.1 cgd }
114 1.1 cgd }
115 1.1 cgd
116 1.7 mycroft void
117 1.33.2.2 bouyer soisdisconnecting(struct socket *so)
118 1.1 cgd {
119 1.1 cgd
120 1.1 cgd so->so_state &= ~SS_ISCONNECTING;
121 1.1 cgd so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
122 1.1 cgd wakeup((caddr_t)&so->so_timeo);
123 1.1 cgd sowwakeup(so);
124 1.1 cgd sorwakeup(so);
125 1.1 cgd }
126 1.1 cgd
127 1.7 mycroft void
128 1.33.2.2 bouyer soisdisconnected(struct socket *so)
129 1.1 cgd {
130 1.1 cgd
131 1.1 cgd so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
132 1.27 mycroft so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
133 1.1 cgd wakeup((caddr_t)&so->so_timeo);
134 1.1 cgd sowwakeup(so);
135 1.1 cgd sorwakeup(so);
136 1.1 cgd }
137 1.1 cgd
138 1.1 cgd /*
139 1.1 cgd * When an attempt at a new connection is noted on a socket
140 1.1 cgd * which accepts connections, sonewconn is called. If the
141 1.1 cgd * connection is possible (subject to space constraints, etc.)
142 1.1 cgd * then we allocate a new structure, propoerly linked into the
143 1.1 cgd * data structure of the original socket, and return this.
144 1.1 cgd * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
145 1.1 cgd *
146 1.1 cgd * Currently, sonewconn() is defined as sonewconn1() in socketvar.h
147 1.1 cgd * to catch calls that are missing the (new) second parameter.
148 1.1 cgd */
149 1.1 cgd struct socket *
150 1.33.2.2 bouyer sonewconn1(struct socket *head, int connstatus)
151 1.1 cgd {
152 1.33.2.2 bouyer struct socket *so;
153 1.33.2.2 bouyer int soqueue;
154 1.1 cgd
155 1.33.2.2 bouyer soqueue = connstatus ? 1 : 0;
156 1.1 cgd if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
157 1.1 cgd return ((struct socket *)0);
158 1.25 thorpej so = pool_get(&socket_pool, PR_NOWAIT);
159 1.1 cgd if (so == NULL)
160 1.25 thorpej return (NULL);
161 1.26 perry memset((caddr_t)so, 0, sizeof(*so));
162 1.1 cgd so->so_type = head->so_type;
163 1.1 cgd so->so_options = head->so_options &~ SO_ACCEPTCONN;
164 1.1 cgd so->so_linger = head->so_linger;
165 1.1 cgd so->so_state = head->so_state | SS_NOFDREF;
166 1.1 cgd so->so_proto = head->so_proto;
167 1.1 cgd so->so_timeo = head->so_timeo;
168 1.1 cgd so->so_pgid = head->so_pgid;
169 1.24 matt so->so_send = head->so_send;
170 1.24 matt so->so_receive = head->so_receive;
171 1.28 lukem so->so_uid = head->so_uid;
172 1.1 cgd (void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
173 1.1 cgd soqinsque(head, so, soqueue);
174 1.1 cgd if ((*so->so_proto->pr_usrreq)(so, PRU_ATTACH,
175 1.12 mycroft (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
176 1.12 mycroft (struct proc *)0)) {
177 1.1 cgd (void) soqremque(so, soqueue);
178 1.25 thorpej pool_put(&socket_pool, so);
179 1.25 thorpej return (NULL);
180 1.1 cgd }
181 1.1 cgd if (connstatus) {
182 1.1 cgd sorwakeup(head);
183 1.1 cgd wakeup((caddr_t)&head->so_timeo);
184 1.1 cgd so->so_state |= connstatus;
185 1.1 cgd }
186 1.1 cgd return (so);
187 1.1 cgd }
188 1.1 cgd
189 1.7 mycroft void
190 1.33.2.2 bouyer soqinsque(struct socket *head, struct socket *so, int q)
191 1.1 cgd {
192 1.1 cgd
193 1.22 thorpej #ifdef DIAGNOSTIC
194 1.22 thorpej if (so->so_onq != NULL)
195 1.22 thorpej panic("soqinsque");
196 1.22 thorpej #endif
197 1.22 thorpej
198 1.1 cgd so->so_head = head;
199 1.1 cgd if (q == 0) {
200 1.1 cgd head->so_q0len++;
201 1.22 thorpej so->so_onq = &head->so_q0;
202 1.1 cgd } else {
203 1.1 cgd head->so_qlen++;
204 1.22 thorpej so->so_onq = &head->so_q;
205 1.1 cgd }
206 1.22 thorpej TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
207 1.1 cgd }
208 1.1 cgd
209 1.7 mycroft int
210 1.33.2.2 bouyer soqremque(struct socket *so, int q)
211 1.1 cgd {
212 1.33.2.2 bouyer struct socket *head;
213 1.1 cgd
214 1.33.2.2 bouyer head = so->so_head;
215 1.22 thorpej if (q == 0) {
216 1.22 thorpej if (so->so_onq != &head->so_q0)
217 1.17 thorpej return (0);
218 1.1 cgd head->so_q0len--;
219 1.1 cgd } else {
220 1.22 thorpej if (so->so_onq != &head->so_q)
221 1.22 thorpej return (0);
222 1.1 cgd head->so_qlen--;
223 1.1 cgd }
224 1.22 thorpej TAILQ_REMOVE(so->so_onq, so, so_qe);
225 1.22 thorpej so->so_onq = NULL;
226 1.22 thorpej so->so_head = NULL;
227 1.1 cgd return (1);
228 1.1 cgd }
229 1.1 cgd
230 1.1 cgd /*
231 1.1 cgd * Socantsendmore indicates that no more data will be sent on the
232 1.1 cgd * socket; it would normally be applied to a socket when the user
233 1.1 cgd * informs the system that no more data is to be sent, by the protocol
234 1.1 cgd * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data
235 1.1 cgd * will be received, and will normally be applied to the socket by a
236 1.1 cgd * protocol when it detects that the peer will send no more data.
237 1.1 cgd * Data queued for reading in the socket may yet be read.
238 1.1 cgd */
239 1.1 cgd
240 1.4 andrew void
241 1.33.2.2 bouyer socantsendmore(struct socket *so)
242 1.1 cgd {
243 1.1 cgd
244 1.1 cgd so->so_state |= SS_CANTSENDMORE;
245 1.1 cgd sowwakeup(so);
246 1.1 cgd }
247 1.1 cgd
248 1.4 andrew void
249 1.33.2.2 bouyer socantrcvmore(struct socket *so)
250 1.1 cgd {
251 1.1 cgd
252 1.1 cgd so->so_state |= SS_CANTRCVMORE;
253 1.1 cgd sorwakeup(so);
254 1.1 cgd }
255 1.1 cgd
256 1.1 cgd /*
257 1.1 cgd * Wait for data to arrive at/drain from a socket buffer.
258 1.1 cgd */
259 1.7 mycroft int
260 1.33.2.2 bouyer sbwait(struct sockbuf *sb)
261 1.1 cgd {
262 1.1 cgd
263 1.1 cgd sb->sb_flags |= SB_WAIT;
264 1.1 cgd return (tsleep((caddr_t)&sb->sb_cc,
265 1.1 cgd (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, netio,
266 1.1 cgd sb->sb_timeo));
267 1.1 cgd }
268 1.1 cgd
269 1.1 cgd /*
270 1.1 cgd * Lock a sockbuf already known to be locked;
271 1.1 cgd * return any error returned from sleep (EINTR).
272 1.1 cgd */
273 1.7 mycroft int
274 1.33.2.2 bouyer sb_lock(struct sockbuf *sb)
275 1.1 cgd {
276 1.33.2.2 bouyer int error;
277 1.1 cgd
278 1.1 cgd while (sb->sb_flags & SB_LOCK) {
279 1.1 cgd sb->sb_flags |= SB_WANT;
280 1.11 christos error = tsleep((caddr_t)&sb->sb_flags,
281 1.11 christos (sb->sb_flags & SB_NOINTR) ?
282 1.11 christos PSOCK : PSOCK|PCATCH, netio, 0);
283 1.11 christos if (error)
284 1.1 cgd return (error);
285 1.1 cgd }
286 1.1 cgd sb->sb_flags |= SB_LOCK;
287 1.1 cgd return (0);
288 1.1 cgd }
289 1.1 cgd
290 1.1 cgd /*
291 1.1 cgd * Wakeup processes waiting on a socket buffer.
292 1.1 cgd * Do asynchronous notification via SIGIO
293 1.1 cgd * if the socket has the SS_ASYNC flag set.
294 1.1 cgd */
295 1.7 mycroft void
296 1.33.2.2 bouyer sowakeup(struct socket *so, struct sockbuf *sb)
297 1.1 cgd {
298 1.33.2.2 bouyer struct proc *p;
299 1.1 cgd
300 1.3 cgd selwakeup(&sb->sb_sel);
301 1.7 mycroft sb->sb_flags &= ~SB_SEL;
302 1.1 cgd if (sb->sb_flags & SB_WAIT) {
303 1.1 cgd sb->sb_flags &= ~SB_WAIT;
304 1.1 cgd wakeup((caddr_t)&sb->sb_cc);
305 1.1 cgd }
306 1.1 cgd if (so->so_state & SS_ASYNC) {
307 1.1 cgd if (so->so_pgid < 0)
308 1.1 cgd gsignal(-so->so_pgid, SIGIO);
309 1.1 cgd else if (so->so_pgid > 0 && (p = pfind(so->so_pgid)) != 0)
310 1.1 cgd psignal(p, SIGIO);
311 1.1 cgd }
312 1.24 matt if (sb->sb_flags & SB_UPCALL)
313 1.24 matt (*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT);
314 1.1 cgd }
315 1.1 cgd
316 1.1 cgd /*
317 1.1 cgd * Socket buffer (struct sockbuf) utility routines.
318 1.1 cgd *
319 1.1 cgd * Each socket contains two socket buffers: one for sending data and
320 1.1 cgd * one for receiving data. Each buffer contains a queue of mbufs,
321 1.1 cgd * information about the number of mbufs and amount of data in the
322 1.13 mycroft * queue, and other fields allowing poll() statements and notification
323 1.1 cgd * on data availability to be implemented.
324 1.1 cgd *
325 1.1 cgd * Data stored in a socket buffer is maintained as a list of records.
326 1.1 cgd * Each record is a list of mbufs chained together with the m_next
327 1.1 cgd * field. Records are chained together with the m_nextpkt field. The upper
328 1.1 cgd * level routine soreceive() expects the following conventions to be
329 1.1 cgd * observed when placing information in the receive buffer:
330 1.1 cgd *
331 1.1 cgd * 1. If the protocol requires each message be preceded by the sender's
332 1.1 cgd * name, then a record containing that name must be present before
333 1.1 cgd * any associated data (mbuf's must be of type MT_SONAME).
334 1.1 cgd * 2. If the protocol supports the exchange of ``access rights'' (really
335 1.1 cgd * just additional data associated with the message), and there are
336 1.1 cgd * ``rights'' to be received, then a record containing this data
337 1.10 mycroft * should be present (mbuf's must be of type MT_CONTROL).
338 1.1 cgd * 3. If a name or rights record exists, then it must be followed by
339 1.1 cgd * a data record, perhaps of zero length.
340 1.1 cgd *
341 1.1 cgd * Before using a new socket structure it is first necessary to reserve
342 1.1 cgd * buffer space to the socket, by calling sbreserve(). This should commit
343 1.1 cgd * some of the available buffer space in the system buffer pool for the
344 1.1 cgd * socket (currently, it does nothing but enforce limits). The space
345 1.1 cgd * should be released by calling sbrelease() when the socket is destroyed.
346 1.1 cgd */
347 1.1 cgd
348 1.7 mycroft int
349 1.33.2.2 bouyer soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
350 1.1 cgd {
351 1.1 cgd
352 1.1 cgd if (sbreserve(&so->so_snd, sndcc) == 0)
353 1.1 cgd goto bad;
354 1.1 cgd if (sbreserve(&so->so_rcv, rcvcc) == 0)
355 1.1 cgd goto bad2;
356 1.1 cgd if (so->so_rcv.sb_lowat == 0)
357 1.1 cgd so->so_rcv.sb_lowat = 1;
358 1.1 cgd if (so->so_snd.sb_lowat == 0)
359 1.1 cgd so->so_snd.sb_lowat = MCLBYTES;
360 1.1 cgd if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
361 1.1 cgd so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
362 1.1 cgd return (0);
363 1.33.2.2 bouyer bad2:
364 1.1 cgd sbrelease(&so->so_snd);
365 1.33.2.2 bouyer bad:
366 1.1 cgd return (ENOBUFS);
367 1.1 cgd }
368 1.1 cgd
369 1.1 cgd /*
370 1.1 cgd * Allot mbufs to a sockbuf.
371 1.1 cgd * Attempt to scale mbmax so that mbcnt doesn't become limiting
372 1.1 cgd * if buffering efficiency is near the normal case.
373 1.1 cgd */
374 1.7 mycroft int
375 1.33.2.2 bouyer sbreserve(struct sockbuf *sb, u_long cc)
376 1.1 cgd {
377 1.1 cgd
378 1.18 thorpej if (cc == 0 || cc > sb_max * MCLBYTES / (MSIZE + MCLBYTES))
379 1.1 cgd return (0);
380 1.1 cgd sb->sb_hiwat = cc;
381 1.1 cgd sb->sb_mbmax = min(cc * 2, sb_max);
382 1.1 cgd if (sb->sb_lowat > sb->sb_hiwat)
383 1.1 cgd sb->sb_lowat = sb->sb_hiwat;
384 1.1 cgd return (1);
385 1.1 cgd }
386 1.1 cgd
387 1.1 cgd /*
388 1.1 cgd * Free mbufs held by a socket, and reserved mbuf space.
389 1.1 cgd */
390 1.7 mycroft void
391 1.33.2.2 bouyer sbrelease(struct sockbuf *sb)
392 1.1 cgd {
393 1.1 cgd
394 1.1 cgd sbflush(sb);
395 1.1 cgd sb->sb_hiwat = sb->sb_mbmax = 0;
396 1.1 cgd }
397 1.1 cgd
398 1.1 cgd /*
399 1.1 cgd * Routines to add and remove
400 1.1 cgd * data from an mbuf queue.
401 1.1 cgd *
402 1.1 cgd * The routines sbappend() or sbappendrecord() are normally called to
403 1.1 cgd * append new mbufs to a socket buffer, after checking that adequate
404 1.1 cgd * space is available, comparing the function sbspace() with the amount
405 1.1 cgd * of data to be added. sbappendrecord() differs from sbappend() in
406 1.1 cgd * that data supplied is treated as the beginning of a new record.
407 1.1 cgd * To place a sender's address, optional access rights, and data in a
408 1.1 cgd * socket receive buffer, sbappendaddr() should be used. To place
409 1.1 cgd * access rights and data in a socket receive buffer, sbappendrights()
410 1.1 cgd * should be used. In either case, the new data begins a new record.
411 1.1 cgd * Note that unlike sbappend() and sbappendrecord(), these routines check
412 1.1 cgd * for the caller that there will be enough space to store the data.
413 1.1 cgd * Each fails if there is not enough space, or if it cannot find mbufs
414 1.1 cgd * to store additional information in.
415 1.1 cgd *
416 1.1 cgd * Reliable protocols may use the socket send buffer to hold data
417 1.1 cgd * awaiting acknowledgement. Data is normally copied from a socket
418 1.1 cgd * send buffer in a protocol with m_copy for output to a peer,
419 1.1 cgd * and then removing the data from the socket buffer with sbdrop()
420 1.1 cgd * or sbdroprecord() when the data is acknowledged by the peer.
421 1.1 cgd */
422 1.1 cgd
423 1.1 cgd /*
424 1.1 cgd * Append mbuf chain m to the last record in the
425 1.1 cgd * socket buffer sb. The additional space associated
426 1.1 cgd * the mbuf chain is recorded in sb. Empty mbufs are
427 1.1 cgd * discarded and mbufs are compacted where possible.
428 1.1 cgd */
429 1.7 mycroft void
430 1.33.2.2 bouyer sbappend(struct sockbuf *sb, struct mbuf *m)
431 1.1 cgd {
432 1.33.2.2 bouyer struct mbuf *n;
433 1.1 cgd
434 1.1 cgd if (m == 0)
435 1.1 cgd return;
436 1.11 christos if ((n = sb->sb_mb) != NULL) {
437 1.1 cgd while (n->m_nextpkt)
438 1.1 cgd n = n->m_nextpkt;
439 1.1 cgd do {
440 1.1 cgd if (n->m_flags & M_EOR) {
441 1.1 cgd sbappendrecord(sb, m); /* XXXXXX!!!! */
442 1.1 cgd return;
443 1.1 cgd }
444 1.1 cgd } while (n->m_next && (n = n->m_next));
445 1.1 cgd }
446 1.1 cgd sbcompress(sb, m, n);
447 1.1 cgd }
448 1.1 cgd
449 1.1 cgd #ifdef SOCKBUF_DEBUG
450 1.7 mycroft void
451 1.33.2.2 bouyer sbcheck(struct sockbuf *sb)
452 1.1 cgd {
453 1.33.2.2 bouyer struct mbuf *m;
454 1.33.2.2 bouyer int len, mbcnt;
455 1.1 cgd
456 1.33.2.2 bouyer len = 0;
457 1.33.2.2 bouyer mbcnt = 0;
458 1.1 cgd for (m = sb->sb_mb; m; m = m->m_next) {
459 1.1 cgd len += m->m_len;
460 1.1 cgd mbcnt += MSIZE;
461 1.1 cgd if (m->m_flags & M_EXT)
462 1.1 cgd mbcnt += m->m_ext.ext_size;
463 1.1 cgd if (m->m_nextpkt)
464 1.1 cgd panic("sbcheck nextpkt");
465 1.1 cgd }
466 1.1 cgd if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
467 1.15 christos printf("cc %d != %d || mbcnt %d != %d\n", len, sb->sb_cc,
468 1.1 cgd mbcnt, sb->sb_mbcnt);
469 1.1 cgd panic("sbcheck");
470 1.1 cgd }
471 1.1 cgd }
472 1.1 cgd #endif
473 1.1 cgd
474 1.1 cgd /*
475 1.1 cgd * As above, except the mbuf chain
476 1.1 cgd * begins a new record.
477 1.1 cgd */
478 1.7 mycroft void
479 1.33.2.2 bouyer sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
480 1.1 cgd {
481 1.33.2.2 bouyer struct mbuf *m;
482 1.1 cgd
483 1.1 cgd if (m0 == 0)
484 1.1 cgd return;
485 1.11 christos if ((m = sb->sb_mb) != NULL)
486 1.1 cgd while (m->m_nextpkt)
487 1.1 cgd m = m->m_nextpkt;
488 1.1 cgd /*
489 1.1 cgd * Put the first mbuf on the queue.
490 1.1 cgd * Note this permits zero length records.
491 1.1 cgd */
492 1.1 cgd sballoc(sb, m0);
493 1.1 cgd if (m)
494 1.1 cgd m->m_nextpkt = m0;
495 1.1 cgd else
496 1.1 cgd sb->sb_mb = m0;
497 1.1 cgd m = m0->m_next;
498 1.1 cgd m0->m_next = 0;
499 1.1 cgd if (m && (m0->m_flags & M_EOR)) {
500 1.1 cgd m0->m_flags &= ~M_EOR;
501 1.1 cgd m->m_flags |= M_EOR;
502 1.1 cgd }
503 1.1 cgd sbcompress(sb, m, m0);
504 1.1 cgd }
505 1.1 cgd
506 1.1 cgd /*
507 1.1 cgd * As above except that OOB data
508 1.1 cgd * is inserted at the beginning of the sockbuf,
509 1.1 cgd * but after any other OOB data.
510 1.1 cgd */
511 1.7 mycroft void
512 1.33.2.2 bouyer sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
513 1.1 cgd {
514 1.33.2.2 bouyer struct mbuf *m, **mp;
515 1.1 cgd
516 1.1 cgd if (m0 == 0)
517 1.1 cgd return;
518 1.11 christos for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
519 1.1 cgd again:
520 1.1 cgd switch (m->m_type) {
521 1.1 cgd
522 1.1 cgd case MT_OOBDATA:
523 1.1 cgd continue; /* WANT next train */
524 1.1 cgd
525 1.1 cgd case MT_CONTROL:
526 1.11 christos if ((m = m->m_next) != NULL)
527 1.1 cgd goto again; /* inspect THIS train further */
528 1.1 cgd }
529 1.1 cgd break;
530 1.1 cgd }
531 1.1 cgd /*
532 1.1 cgd * Put the first mbuf on the queue.
533 1.1 cgd * Note this permits zero length records.
534 1.1 cgd */
535 1.1 cgd sballoc(sb, m0);
536 1.1 cgd m0->m_nextpkt = *mp;
537 1.1 cgd *mp = m0;
538 1.1 cgd m = m0->m_next;
539 1.1 cgd m0->m_next = 0;
540 1.1 cgd if (m && (m0->m_flags & M_EOR)) {
541 1.1 cgd m0->m_flags &= ~M_EOR;
542 1.1 cgd m->m_flags |= M_EOR;
543 1.1 cgd }
544 1.1 cgd sbcompress(sb, m, m0);
545 1.1 cgd }
546 1.1 cgd
547 1.1 cgd /*
548 1.1 cgd * Append address and data, and optionally, control (ancillary) data
549 1.1 cgd * to the receive queue of a socket. If present,
550 1.1 cgd * m0 must include a packet header with total length.
551 1.1 cgd * Returns 0 if no space in sockbuf or insufficient mbufs.
552 1.1 cgd */
553 1.7 mycroft int
554 1.33.2.2 bouyer sbappendaddr(struct sockbuf *sb, struct sockaddr *asa, struct mbuf *m0,
555 1.33.2.2 bouyer struct mbuf *control)
556 1.1 cgd {
557 1.33.2.2 bouyer struct mbuf *m, *n;
558 1.33.2.2 bouyer int space;
559 1.1 cgd
560 1.33.2.2 bouyer space = asa->sa_len;
561 1.33.2.2 bouyer
562 1.33.2.2 bouyer if (m0 && (m0->m_flags & M_PKTHDR) == 0)
563 1.33.2.2 bouyer panic("sbappendaddr");
564 1.1 cgd if (m0)
565 1.1 cgd space += m0->m_pkthdr.len;
566 1.1 cgd for (n = control; n; n = n->m_next) {
567 1.1 cgd space += n->m_len;
568 1.1 cgd if (n->m_next == 0) /* keep pointer to last control buf */
569 1.1 cgd break;
570 1.1 cgd }
571 1.1 cgd if (space > sbspace(sb))
572 1.1 cgd return (0);
573 1.1 cgd MGET(m, M_DONTWAIT, MT_SONAME);
574 1.1 cgd if (m == 0)
575 1.1 cgd return (0);
576 1.20 thorpej if (asa->sa_len > MLEN) {
577 1.20 thorpej MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
578 1.20 thorpej if ((m->m_flags & M_EXT) == 0) {
579 1.20 thorpej m_free(m);
580 1.20 thorpej return (0);
581 1.20 thorpej }
582 1.20 thorpej }
583 1.1 cgd m->m_len = asa->sa_len;
584 1.26 perry memcpy(mtod(m, caddr_t), (caddr_t)asa, asa->sa_len);
585 1.1 cgd if (n)
586 1.1 cgd n->m_next = m0; /* concatenate data to control */
587 1.1 cgd else
588 1.1 cgd control = m0;
589 1.1 cgd m->m_next = control;
590 1.1 cgd for (n = m; n; n = n->m_next)
591 1.1 cgd sballoc(sb, n);
592 1.11 christos if ((n = sb->sb_mb) != NULL) {
593 1.1 cgd while (n->m_nextpkt)
594 1.1 cgd n = n->m_nextpkt;
595 1.1 cgd n->m_nextpkt = m;
596 1.1 cgd } else
597 1.1 cgd sb->sb_mb = m;
598 1.1 cgd return (1);
599 1.1 cgd }
600 1.1 cgd
601 1.7 mycroft int
602 1.33.2.2 bouyer sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
603 1.1 cgd {
604 1.33.2.2 bouyer struct mbuf *m, *n;
605 1.33.2.2 bouyer int space;
606 1.1 cgd
607 1.33.2.2 bouyer space = 0;
608 1.1 cgd if (control == 0)
609 1.1 cgd panic("sbappendcontrol");
610 1.1 cgd for (m = control; ; m = m->m_next) {
611 1.1 cgd space += m->m_len;
612 1.1 cgd if (m->m_next == 0)
613 1.1 cgd break;
614 1.1 cgd }
615 1.1 cgd n = m; /* save pointer to last control buffer */
616 1.1 cgd for (m = m0; m; m = m->m_next)
617 1.1 cgd space += m->m_len;
618 1.1 cgd if (space > sbspace(sb))
619 1.1 cgd return (0);
620 1.1 cgd n->m_next = m0; /* concatenate data to control */
621 1.1 cgd for (m = control; m; m = m->m_next)
622 1.1 cgd sballoc(sb, m);
623 1.11 christos if ((n = sb->sb_mb) != NULL) {
624 1.1 cgd while (n->m_nextpkt)
625 1.1 cgd n = n->m_nextpkt;
626 1.1 cgd n->m_nextpkt = control;
627 1.1 cgd } else
628 1.1 cgd sb->sb_mb = control;
629 1.1 cgd return (1);
630 1.1 cgd }
631 1.1 cgd
632 1.1 cgd /*
633 1.1 cgd * Compress mbuf chain m into the socket
634 1.1 cgd * buffer sb following mbuf n. If n
635 1.1 cgd * is null, the buffer is presumed empty.
636 1.1 cgd */
637 1.7 mycroft void
638 1.33.2.2 bouyer sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
639 1.1 cgd {
640 1.33.2.2 bouyer int eor;
641 1.33.2.2 bouyer struct mbuf *o;
642 1.1 cgd
643 1.33.2.2 bouyer eor = 0;
644 1.1 cgd while (m) {
645 1.1 cgd eor |= m->m_flags & M_EOR;
646 1.1 cgd if (m->m_len == 0 &&
647 1.1 cgd (eor == 0 ||
648 1.1 cgd (((o = m->m_next) || (o = n)) &&
649 1.1 cgd o->m_type == m->m_type))) {
650 1.1 cgd m = m_free(m);
651 1.1 cgd continue;
652 1.1 cgd }
653 1.31 mycroft if (n && (n->m_flags & M_EOR) == 0 && n->m_type == m->m_type &&
654 1.31 mycroft (((n->m_flags & M_EXT) == 0 &&
655 1.33 mycroft n->m_data + n->m_len + m->m_len <= &n->m_dat[MLEN]) ||
656 1.31 mycroft ((~n->m_flags & (M_EXT|M_CLUSTER)) == 0 &&
657 1.32 matt !MCLISREFERENCED(n) &&
658 1.33.2.2 bouyer n->m_data + n->m_len + m->m_len <=
659 1.33.2.2 bouyer &n->m_ext.ext_buf[MCLBYTES]))) {
660 1.26 perry memcpy(mtod(n, caddr_t) + n->m_len, mtod(m, caddr_t),
661 1.1 cgd (unsigned)m->m_len);
662 1.1 cgd n->m_len += m->m_len;
663 1.1 cgd sb->sb_cc += m->m_len;
664 1.1 cgd m = m_free(m);
665 1.1 cgd continue;
666 1.1 cgd }
667 1.1 cgd if (n)
668 1.1 cgd n->m_next = m;
669 1.1 cgd else
670 1.1 cgd sb->sb_mb = m;
671 1.1 cgd sballoc(sb, m);
672 1.1 cgd n = m;
673 1.1 cgd m->m_flags &= ~M_EOR;
674 1.1 cgd m = m->m_next;
675 1.1 cgd n->m_next = 0;
676 1.1 cgd }
677 1.1 cgd if (eor) {
678 1.1 cgd if (n)
679 1.1 cgd n->m_flags |= eor;
680 1.1 cgd else
681 1.15 christos printf("semi-panic: sbcompress\n");
682 1.1 cgd }
683 1.1 cgd }
684 1.1 cgd
685 1.1 cgd /*
686 1.1 cgd * Free all mbufs in a sockbuf.
687 1.1 cgd * Check that all resources are reclaimed.
688 1.1 cgd */
689 1.7 mycroft void
690 1.33.2.2 bouyer sbflush(struct sockbuf *sb)
691 1.1 cgd {
692 1.1 cgd
693 1.1 cgd if (sb->sb_flags & SB_LOCK)
694 1.1 cgd panic("sbflush");
695 1.1 cgd while (sb->sb_mbcnt)
696 1.1 cgd sbdrop(sb, (int)sb->sb_cc);
697 1.1 cgd if (sb->sb_cc || sb->sb_mb)
698 1.1 cgd panic("sbflush 2");
699 1.1 cgd }
700 1.1 cgd
701 1.1 cgd /*
702 1.1 cgd * Drop data from (the front of) a sockbuf.
703 1.1 cgd */
704 1.7 mycroft void
705 1.33.2.2 bouyer sbdrop(struct sockbuf *sb, int len)
706 1.1 cgd {
707 1.33.2.2 bouyer struct mbuf *m, *mn, *next;
708 1.1 cgd
709 1.1 cgd next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
710 1.1 cgd while (len > 0) {
711 1.1 cgd if (m == 0) {
712 1.1 cgd if (next == 0)
713 1.1 cgd panic("sbdrop");
714 1.1 cgd m = next;
715 1.1 cgd next = m->m_nextpkt;
716 1.1 cgd continue;
717 1.1 cgd }
718 1.1 cgd if (m->m_len > len) {
719 1.1 cgd m->m_len -= len;
720 1.1 cgd m->m_data += len;
721 1.1 cgd sb->sb_cc -= len;
722 1.1 cgd break;
723 1.1 cgd }
724 1.1 cgd len -= m->m_len;
725 1.1 cgd sbfree(sb, m);
726 1.1 cgd MFREE(m, mn);
727 1.1 cgd m = mn;
728 1.1 cgd }
729 1.1 cgd while (m && m->m_len == 0) {
730 1.1 cgd sbfree(sb, m);
731 1.1 cgd MFREE(m, mn);
732 1.1 cgd m = mn;
733 1.1 cgd }
734 1.1 cgd if (m) {
735 1.1 cgd sb->sb_mb = m;
736 1.1 cgd m->m_nextpkt = next;
737 1.1 cgd } else
738 1.1 cgd sb->sb_mb = next;
739 1.1 cgd }
740 1.1 cgd
741 1.1 cgd /*
742 1.1 cgd * Drop a record off the front of a sockbuf
743 1.1 cgd * and move the next record to the front.
744 1.1 cgd */
745 1.7 mycroft void
746 1.33.2.2 bouyer sbdroprecord(struct sockbuf *sb)
747 1.1 cgd {
748 1.33.2.2 bouyer struct mbuf *m, *mn;
749 1.1 cgd
750 1.1 cgd m = sb->sb_mb;
751 1.1 cgd if (m) {
752 1.1 cgd sb->sb_mb = m->m_nextpkt;
753 1.1 cgd do {
754 1.1 cgd sbfree(sb, m);
755 1.1 cgd MFREE(m, mn);
756 1.11 christos } while ((m = mn) != NULL);
757 1.1 cgd }
758 1.19 thorpej }
759 1.19 thorpej
760 1.19 thorpej /*
761 1.19 thorpej * Create a "control" mbuf containing the specified data
762 1.19 thorpej * with the specified type for presentation on a socket buffer.
763 1.19 thorpej */
764 1.19 thorpej struct mbuf *
765 1.33.2.2 bouyer sbcreatecontrol(caddr_t p, int size, int type, int level)
766 1.19 thorpej {
767 1.33.2.2 bouyer struct cmsghdr *cp;
768 1.33.2.2 bouyer struct mbuf *m;
769 1.19 thorpej
770 1.33.2.1 bouyer if (CMSG_SPACE(size) > MCLBYTES) {
771 1.30 itojun printf("sbcreatecontrol: message too large %d\n", size);
772 1.30 itojun return NULL;
773 1.30 itojun }
774 1.30 itojun
775 1.19 thorpej if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
776 1.19 thorpej return ((struct mbuf *) NULL);
777 1.33.2.1 bouyer if (CMSG_SPACE(size) > MLEN) {
778 1.30 itojun MCLGET(m, M_DONTWAIT);
779 1.30 itojun if ((m->m_flags & M_EXT) == 0) {
780 1.30 itojun m_free(m);
781 1.30 itojun return NULL;
782 1.30 itojun }
783 1.30 itojun }
784 1.19 thorpej cp = mtod(m, struct cmsghdr *);
785 1.26 perry memcpy(CMSG_DATA(cp), p, size);
786 1.33.2.1 bouyer m->m_len = CMSG_SPACE(size);
787 1.33.2.1 bouyer cp->cmsg_len = CMSG_LEN(size);
788 1.19 thorpej cp->cmsg_level = level;
789 1.19 thorpej cp->cmsg_type = type;
790 1.19 thorpej return (m);
791 1.1 cgd }
792