uipc_socket2.c revision 1.4.4.1 1 1.1 cgd /*
2 1.1 cgd * Copyright (c) 1982, 1986, 1988, 1990 Regents of the University of California.
3 1.1 cgd * All rights reserved.
4 1.1 cgd *
5 1.1 cgd * Redistribution and use in source and binary forms, with or without
6 1.1 cgd * modification, are permitted provided that the following conditions
7 1.1 cgd * are met:
8 1.1 cgd * 1. Redistributions of source code must retain the above copyright
9 1.1 cgd * notice, this list of conditions and the following disclaimer.
10 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
11 1.1 cgd * notice, this list of conditions and the following disclaimer in the
12 1.1 cgd * documentation and/or other materials provided with the distribution.
13 1.1 cgd * 3. All advertising materials mentioning features or use of this software
14 1.1 cgd * must display the following acknowledgement:
15 1.1 cgd * This product includes software developed by the University of
16 1.1 cgd * California, Berkeley and its contributors.
17 1.1 cgd * 4. Neither the name of the University nor the names of its contributors
18 1.1 cgd * may be used to endorse or promote products derived from this software
19 1.1 cgd * without specific prior written permission.
20 1.1 cgd *
21 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 1.1 cgd * SUCH DAMAGE.
32 1.1 cgd *
33 1.3 cgd * from: @(#)uipc_socket2.c 7.17 (Berkeley) 5/4/91
34 1.4.4.1 mycroft * $Id: uipc_socket2.c,v 1.4.4.1 1993/09/24 08:51:56 mycroft Exp $
35 1.1 cgd */
36 1.1 cgd
37 1.1 cgd #include "param.h"
38 1.1 cgd #include "systm.h"
39 1.1 cgd #include "proc.h"
40 1.1 cgd #include "file.h"
41 1.1 cgd #include "buf.h"
42 1.1 cgd #include "malloc.h"
43 1.3 cgd #include "select.h"
44 1.1 cgd #include "mbuf.h"
45 1.1 cgd #include "protosw.h"
46 1.1 cgd #include "socket.h"
47 1.1 cgd #include "socketvar.h"
48 1.4.4.1 mycroft
49 1.4.4.1 mycroft #include "machine/cpu.h"
50 1.1 cgd
51 1.1 cgd /*
52 1.1 cgd * Primitive routines for operating on sockets and socket buffers
53 1.1 cgd */
54 1.1 cgd
55 1.1 cgd /* strings for sleep message: */
56 1.1 cgd char netio[] = "netio";
57 1.1 cgd char netcon[] = "netcon";
58 1.1 cgd char netcls[] = "netcls";
59 1.1 cgd
60 1.1 cgd u_long sb_max = SB_MAX; /* patchable */
61 1.1 cgd
62 1.1 cgd /*
63 1.1 cgd * Procedures to manipulate state flags of socket
64 1.1 cgd * and do appropriate wakeups. Normal sequence from the
65 1.1 cgd * active (originating) side is that soisconnecting() is
66 1.1 cgd * called during processing of connect() call,
67 1.1 cgd * resulting in an eventual call to soisconnected() if/when the
68 1.1 cgd * connection is established. When the connection is torn down
69 1.1 cgd * soisdisconnecting() is called during processing of disconnect() call,
70 1.1 cgd * and soisdisconnected() is called when the connection to the peer
71 1.1 cgd * is totally severed. The semantics of these routines are such that
72 1.1 cgd * connectionless protocols can call soisconnected() and soisdisconnected()
73 1.1 cgd * only, bypassing the in-progress calls when setting up a ``connection''
74 1.1 cgd * takes no time.
75 1.1 cgd *
76 1.1 cgd * From the passive side, a socket is created with
77 1.1 cgd * two queues of sockets: so_q0 for connections in progress
78 1.1 cgd * and so_q for connections already made and awaiting user acceptance.
79 1.1 cgd * As a protocol is preparing incoming connections, it creates a socket
80 1.1 cgd * structure queued on so_q0 by calling sonewconn(). When the connection
81 1.1 cgd * is established, soisconnected() is called, and transfers the
82 1.1 cgd * socket structure to so_q, making it available to accept().
83 1.1 cgd *
84 1.1 cgd * If a socket is closed with sockets on either
85 1.1 cgd * so_q0 or so_q, these sockets are dropped.
86 1.1 cgd *
87 1.1 cgd * If higher level protocols are implemented in
88 1.1 cgd * the kernel, the wakeups done here will sometimes
89 1.1 cgd * cause software-interrupt process scheduling.
90 1.1 cgd */
91 1.1 cgd
92 1.1 cgd soisconnecting(so)
93 1.1 cgd register struct socket *so;
94 1.1 cgd {
95 1.1 cgd
96 1.1 cgd so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
97 1.1 cgd so->so_state |= SS_ISCONNECTING;
98 1.1 cgd }
99 1.1 cgd
100 1.1 cgd soisconnected(so)
101 1.1 cgd register struct socket *so;
102 1.1 cgd {
103 1.1 cgd register struct socket *head = so->so_head;
104 1.1 cgd
105 1.1 cgd so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
106 1.1 cgd so->so_state |= SS_ISCONNECTED;
107 1.1 cgd if (head && soqremque(so, 0)) {
108 1.1 cgd soqinsque(head, so, 1);
109 1.1 cgd sorwakeup(head);
110 1.1 cgd wakeup((caddr_t)&head->so_timeo);
111 1.1 cgd } else {
112 1.1 cgd wakeup((caddr_t)&so->so_timeo);
113 1.1 cgd sorwakeup(so);
114 1.1 cgd sowwakeup(so);
115 1.1 cgd }
116 1.1 cgd }
117 1.1 cgd
118 1.1 cgd soisdisconnecting(so)
119 1.1 cgd register struct socket *so;
120 1.1 cgd {
121 1.1 cgd
122 1.1 cgd so->so_state &= ~SS_ISCONNECTING;
123 1.1 cgd so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
124 1.1 cgd wakeup((caddr_t)&so->so_timeo);
125 1.1 cgd sowwakeup(so);
126 1.1 cgd sorwakeup(so);
127 1.1 cgd }
128 1.1 cgd
129 1.1 cgd soisdisconnected(so)
130 1.1 cgd register struct socket *so;
131 1.1 cgd {
132 1.1 cgd
133 1.1 cgd so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
134 1.1 cgd so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE);
135 1.1 cgd wakeup((caddr_t)&so->so_timeo);
136 1.1 cgd sowwakeup(so);
137 1.1 cgd sorwakeup(so);
138 1.1 cgd }
139 1.1 cgd
140 1.1 cgd /*
141 1.1 cgd * When an attempt at a new connection is noted on a socket
142 1.1 cgd * which accepts connections, sonewconn is called. If the
143 1.1 cgd * connection is possible (subject to space constraints, etc.)
144 1.1 cgd * then we allocate a new structure, propoerly linked into the
145 1.1 cgd * data structure of the original socket, and return this.
146 1.1 cgd * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
147 1.1 cgd *
148 1.1 cgd * Currently, sonewconn() is defined as sonewconn1() in socketvar.h
149 1.1 cgd * to catch calls that are missing the (new) second parameter.
150 1.1 cgd */
151 1.1 cgd struct socket *
152 1.1 cgd sonewconn1(head, connstatus)
153 1.1 cgd register struct socket *head;
154 1.1 cgd int connstatus;
155 1.1 cgd {
156 1.1 cgd register struct socket *so;
157 1.1 cgd int soqueue = connstatus ? 1 : 0;
158 1.1 cgd
159 1.1 cgd if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
160 1.1 cgd return ((struct socket *)0);
161 1.1 cgd MALLOC(so, struct socket *, sizeof(*so), M_SOCKET, M_DONTWAIT);
162 1.1 cgd if (so == NULL)
163 1.1 cgd return ((struct socket *)0);
164 1.1 cgd bzero((caddr_t)so, sizeof(*so));
165 1.1 cgd so->so_type = head->so_type;
166 1.1 cgd so->so_options = head->so_options &~ SO_ACCEPTCONN;
167 1.1 cgd so->so_linger = head->so_linger;
168 1.1 cgd so->so_state = head->so_state | SS_NOFDREF;
169 1.1 cgd so->so_proto = head->so_proto;
170 1.1 cgd so->so_timeo = head->so_timeo;
171 1.1 cgd so->so_pgid = head->so_pgid;
172 1.1 cgd (void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
173 1.1 cgd soqinsque(head, so, soqueue);
174 1.1 cgd if ((*so->so_proto->pr_usrreq)(so, PRU_ATTACH,
175 1.1 cgd (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0)) {
176 1.1 cgd (void) soqremque(so, soqueue);
177 1.1 cgd (void) free((caddr_t)so, M_SOCKET);
178 1.1 cgd return ((struct socket *)0);
179 1.1 cgd }
180 1.1 cgd if (connstatus) {
181 1.1 cgd sorwakeup(head);
182 1.1 cgd wakeup((caddr_t)&head->so_timeo);
183 1.1 cgd so->so_state |= connstatus;
184 1.1 cgd }
185 1.1 cgd return (so);
186 1.1 cgd }
187 1.1 cgd
188 1.1 cgd soqinsque(head, so, q)
189 1.1 cgd register struct socket *head, *so;
190 1.1 cgd int q;
191 1.1 cgd {
192 1.1 cgd
193 1.1 cgd register struct socket **prev;
194 1.1 cgd so->so_head = head;
195 1.1 cgd if (q == 0) {
196 1.1 cgd head->so_q0len++;
197 1.1 cgd so->so_q0 = 0;
198 1.1 cgd for (prev = &(head->so_q0); *prev; )
199 1.1 cgd prev = &((*prev)->so_q0);
200 1.1 cgd } else {
201 1.1 cgd head->so_qlen++;
202 1.1 cgd so->so_q = 0;
203 1.1 cgd for (prev = &(head->so_q); *prev; )
204 1.1 cgd prev = &((*prev)->so_q);
205 1.1 cgd }
206 1.1 cgd *prev = so;
207 1.1 cgd }
208 1.1 cgd
209 1.1 cgd soqremque(so, q)
210 1.1 cgd register struct socket *so;
211 1.1 cgd int q;
212 1.1 cgd {
213 1.1 cgd register struct socket *head, *prev, *next;
214 1.1 cgd
215 1.1 cgd head = so->so_head;
216 1.1 cgd prev = head;
217 1.1 cgd for (;;) {
218 1.1 cgd next = q ? prev->so_q : prev->so_q0;
219 1.1 cgd if (next == so)
220 1.1 cgd break;
221 1.1 cgd if (next == 0)
222 1.1 cgd return (0);
223 1.1 cgd prev = next;
224 1.1 cgd }
225 1.1 cgd if (q == 0) {
226 1.1 cgd prev->so_q0 = next->so_q0;
227 1.1 cgd head->so_q0len--;
228 1.1 cgd } else {
229 1.1 cgd prev->so_q = next->so_q;
230 1.1 cgd head->so_qlen--;
231 1.1 cgd }
232 1.1 cgd next->so_q0 = next->so_q = 0;
233 1.1 cgd next->so_head = 0;
234 1.1 cgd return (1);
235 1.1 cgd }
236 1.1 cgd
237 1.1 cgd /*
238 1.1 cgd * Socantsendmore indicates that no more data will be sent on the
239 1.1 cgd * socket; it would normally be applied to a socket when the user
240 1.1 cgd * informs the system that no more data is to be sent, by the protocol
241 1.1 cgd * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data
242 1.1 cgd * will be received, and will normally be applied to the socket by a
243 1.1 cgd * protocol when it detects that the peer will send no more data.
244 1.1 cgd * Data queued for reading in the socket may yet be read.
245 1.1 cgd */
246 1.1 cgd
247 1.4 andrew void
248 1.1 cgd socantsendmore(so)
249 1.1 cgd struct socket *so;
250 1.1 cgd {
251 1.1 cgd
252 1.1 cgd so->so_state |= SS_CANTSENDMORE;
253 1.1 cgd sowwakeup(so);
254 1.1 cgd }
255 1.1 cgd
256 1.4 andrew void
257 1.1 cgd socantrcvmore(so)
258 1.1 cgd struct socket *so;
259 1.1 cgd {
260 1.1 cgd
261 1.1 cgd so->so_state |= SS_CANTRCVMORE;
262 1.1 cgd sorwakeup(so);
263 1.1 cgd }
264 1.1 cgd
265 1.1 cgd /*
266 1.1 cgd * Socket select/wakeup routines.
267 1.1 cgd */
268 1.1 cgd
269 1.1 cgd /*
270 1.1 cgd * Queue a process for a select on a socket buffer.
271 1.1 cgd */
272 1.1 cgd sbselqueue(sb, cp)
273 1.1 cgd struct sockbuf *sb;
274 1.1 cgd struct proc *cp;
275 1.1 cgd {
276 1.3 cgd selrecord(cp, &sb->sb_sel);
277 1.3 cgd sb->sb_flags |= SB_SEL;
278 1.1 cgd }
279 1.1 cgd
280 1.1 cgd /*
281 1.1 cgd * Wait for data to arrive at/drain from a socket buffer.
282 1.1 cgd */
283 1.1 cgd sbwait(sb)
284 1.1 cgd struct sockbuf *sb;
285 1.1 cgd {
286 1.1 cgd
287 1.1 cgd sb->sb_flags |= SB_WAIT;
288 1.1 cgd return (tsleep((caddr_t)&sb->sb_cc,
289 1.1 cgd (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, netio,
290 1.1 cgd sb->sb_timeo));
291 1.1 cgd }
292 1.1 cgd
293 1.1 cgd /*
294 1.1 cgd * Lock a sockbuf already known to be locked;
295 1.1 cgd * return any error returned from sleep (EINTR).
296 1.1 cgd */
297 1.1 cgd sb_lock(sb)
298 1.1 cgd register struct sockbuf *sb;
299 1.1 cgd {
300 1.1 cgd int error;
301 1.1 cgd
302 1.1 cgd while (sb->sb_flags & SB_LOCK) {
303 1.1 cgd sb->sb_flags |= SB_WANT;
304 1.1 cgd if (error = tsleep((caddr_t)&sb->sb_flags,
305 1.1 cgd (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK|PCATCH,
306 1.1 cgd netio, 0))
307 1.1 cgd return (error);
308 1.1 cgd }
309 1.1 cgd sb->sb_flags |= SB_LOCK;
310 1.1 cgd return (0);
311 1.1 cgd }
312 1.1 cgd
313 1.1 cgd /*
314 1.1 cgd * Wakeup processes waiting on a socket buffer.
315 1.1 cgd * Do asynchronous notification via SIGIO
316 1.1 cgd * if the socket has the SS_ASYNC flag set.
317 1.1 cgd */
318 1.1 cgd sowakeup(so, sb)
319 1.1 cgd register struct socket *so;
320 1.1 cgd register struct sockbuf *sb;
321 1.1 cgd {
322 1.1 cgd struct proc *p;
323 1.1 cgd
324 1.3 cgd selwakeup(&sb->sb_sel);
325 1.3 cgd sb->sb_flags &= ~SB_SEL;
326 1.1 cgd if (sb->sb_flags & SB_WAIT) {
327 1.1 cgd sb->sb_flags &= ~SB_WAIT;
328 1.1 cgd wakeup((caddr_t)&sb->sb_cc);
329 1.1 cgd }
330 1.1 cgd if (so->so_state & SS_ASYNC) {
331 1.1 cgd if (so->so_pgid < 0)
332 1.1 cgd gsignal(-so->so_pgid, SIGIO);
333 1.1 cgd else if (so->so_pgid > 0 && (p = pfind(so->so_pgid)) != 0)
334 1.1 cgd psignal(p, SIGIO);
335 1.1 cgd }
336 1.1 cgd }
337 1.1 cgd
338 1.1 cgd /*
339 1.1 cgd * Socket buffer (struct sockbuf) utility routines.
340 1.1 cgd *
341 1.1 cgd * Each socket contains two socket buffers: one for sending data and
342 1.1 cgd * one for receiving data. Each buffer contains a queue of mbufs,
343 1.1 cgd * information about the number of mbufs and amount of data in the
344 1.1 cgd * queue, and other fields allowing select() statements and notification
345 1.1 cgd * on data availability to be implemented.
346 1.1 cgd *
347 1.1 cgd * Data stored in a socket buffer is maintained as a list of records.
348 1.1 cgd * Each record is a list of mbufs chained together with the m_next
349 1.1 cgd * field. Records are chained together with the m_nextpkt field. The upper
350 1.1 cgd * level routine soreceive() expects the following conventions to be
351 1.1 cgd * observed when placing information in the receive buffer:
352 1.1 cgd *
353 1.1 cgd * 1. If the protocol requires each message be preceded by the sender's
354 1.1 cgd * name, then a record containing that name must be present before
355 1.1 cgd * any associated data (mbuf's must be of type MT_SONAME).
356 1.1 cgd * 2. If the protocol supports the exchange of ``access rights'' (really
357 1.1 cgd * just additional data associated with the message), and there are
358 1.1 cgd * ``rights'' to be received, then a record containing this data
359 1.1 cgd * should be present (mbuf's must be of type MT_RIGHTS).
360 1.1 cgd * 3. If a name or rights record exists, then it must be followed by
361 1.1 cgd * a data record, perhaps of zero length.
362 1.1 cgd *
363 1.1 cgd * Before using a new socket structure it is first necessary to reserve
364 1.1 cgd * buffer space to the socket, by calling sbreserve(). This should commit
365 1.1 cgd * some of the available buffer space in the system buffer pool for the
366 1.1 cgd * socket (currently, it does nothing but enforce limits). The space
367 1.1 cgd * should be released by calling sbrelease() when the socket is destroyed.
368 1.1 cgd */
369 1.1 cgd
370 1.1 cgd soreserve(so, sndcc, rcvcc)
371 1.1 cgd register struct socket *so;
372 1.1 cgd u_long sndcc, rcvcc;
373 1.1 cgd {
374 1.1 cgd
375 1.1 cgd if (sbreserve(&so->so_snd, sndcc) == 0)
376 1.1 cgd goto bad;
377 1.1 cgd if (sbreserve(&so->so_rcv, rcvcc) == 0)
378 1.1 cgd goto bad2;
379 1.1 cgd if (so->so_rcv.sb_lowat == 0)
380 1.1 cgd so->so_rcv.sb_lowat = 1;
381 1.1 cgd if (so->so_snd.sb_lowat == 0)
382 1.1 cgd so->so_snd.sb_lowat = MCLBYTES;
383 1.1 cgd if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
384 1.1 cgd so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
385 1.1 cgd return (0);
386 1.1 cgd bad2:
387 1.1 cgd sbrelease(&so->so_snd);
388 1.1 cgd bad:
389 1.1 cgd return (ENOBUFS);
390 1.1 cgd }
391 1.1 cgd
392 1.1 cgd /*
393 1.1 cgd * Allot mbufs to a sockbuf.
394 1.1 cgd * Attempt to scale mbmax so that mbcnt doesn't become limiting
395 1.1 cgd * if buffering efficiency is near the normal case.
396 1.1 cgd */
397 1.1 cgd sbreserve(sb, cc)
398 1.1 cgd struct sockbuf *sb;
399 1.1 cgd u_long cc;
400 1.1 cgd {
401 1.1 cgd
402 1.1 cgd if (cc > sb_max * MCLBYTES / (MSIZE + MCLBYTES))
403 1.1 cgd return (0);
404 1.1 cgd sb->sb_hiwat = cc;
405 1.1 cgd sb->sb_mbmax = min(cc * 2, sb_max);
406 1.1 cgd if (sb->sb_lowat > sb->sb_hiwat)
407 1.1 cgd sb->sb_lowat = sb->sb_hiwat;
408 1.1 cgd return (1);
409 1.1 cgd }
410 1.1 cgd
411 1.1 cgd /*
412 1.1 cgd * Free mbufs held by a socket, and reserved mbuf space.
413 1.1 cgd */
414 1.1 cgd sbrelease(sb)
415 1.1 cgd struct sockbuf *sb;
416 1.1 cgd {
417 1.1 cgd
418 1.1 cgd sbflush(sb);
419 1.1 cgd sb->sb_hiwat = sb->sb_mbmax = 0;
420 1.1 cgd }
421 1.1 cgd
422 1.1 cgd /*
423 1.1 cgd * Routines to add and remove
424 1.1 cgd * data from an mbuf queue.
425 1.1 cgd *
426 1.1 cgd * The routines sbappend() or sbappendrecord() are normally called to
427 1.1 cgd * append new mbufs to a socket buffer, after checking that adequate
428 1.1 cgd * space is available, comparing the function sbspace() with the amount
429 1.1 cgd * of data to be added. sbappendrecord() differs from sbappend() in
430 1.1 cgd * that data supplied is treated as the beginning of a new record.
431 1.1 cgd * To place a sender's address, optional access rights, and data in a
432 1.1 cgd * socket receive buffer, sbappendaddr() should be used. To place
433 1.1 cgd * access rights and data in a socket receive buffer, sbappendrights()
434 1.1 cgd * should be used. In either case, the new data begins a new record.
435 1.1 cgd * Note that unlike sbappend() and sbappendrecord(), these routines check
436 1.1 cgd * for the caller that there will be enough space to store the data.
437 1.1 cgd * Each fails if there is not enough space, or if it cannot find mbufs
438 1.1 cgd * to store additional information in.
439 1.1 cgd *
440 1.1 cgd * Reliable protocols may use the socket send buffer to hold data
441 1.1 cgd * awaiting acknowledgement. Data is normally copied from a socket
442 1.1 cgd * send buffer in a protocol with m_copy for output to a peer,
443 1.1 cgd * and then removing the data from the socket buffer with sbdrop()
444 1.1 cgd * or sbdroprecord() when the data is acknowledged by the peer.
445 1.1 cgd */
446 1.1 cgd
447 1.1 cgd /*
448 1.1 cgd * Append mbuf chain m to the last record in the
449 1.1 cgd * socket buffer sb. The additional space associated
450 1.1 cgd * the mbuf chain is recorded in sb. Empty mbufs are
451 1.1 cgd * discarded and mbufs are compacted where possible.
452 1.1 cgd */
453 1.1 cgd sbappend(sb, m)
454 1.1 cgd struct sockbuf *sb;
455 1.1 cgd struct mbuf *m;
456 1.1 cgd {
457 1.1 cgd register struct mbuf *n;
458 1.1 cgd
459 1.1 cgd if (m == 0)
460 1.1 cgd return;
461 1.1 cgd if (n = sb->sb_mb) {
462 1.1 cgd while (n->m_nextpkt)
463 1.1 cgd n = n->m_nextpkt;
464 1.1 cgd do {
465 1.1 cgd if (n->m_flags & M_EOR) {
466 1.1 cgd sbappendrecord(sb, m); /* XXXXXX!!!! */
467 1.1 cgd return;
468 1.1 cgd }
469 1.1 cgd } while (n->m_next && (n = n->m_next));
470 1.1 cgd }
471 1.1 cgd sbcompress(sb, m, n);
472 1.1 cgd }
473 1.1 cgd
474 1.1 cgd #ifdef SOCKBUF_DEBUG
475 1.1 cgd sbcheck(sb)
476 1.1 cgd register struct sockbuf *sb;
477 1.1 cgd {
478 1.1 cgd register struct mbuf *m;
479 1.1 cgd register int len = 0, mbcnt = 0;
480 1.1 cgd
481 1.1 cgd for (m = sb->sb_mb; m; m = m->m_next) {
482 1.1 cgd len += m->m_len;
483 1.1 cgd mbcnt += MSIZE;
484 1.1 cgd if (m->m_flags & M_EXT)
485 1.1 cgd mbcnt += m->m_ext.ext_size;
486 1.1 cgd if (m->m_nextpkt)
487 1.1 cgd panic("sbcheck nextpkt");
488 1.1 cgd }
489 1.1 cgd if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
490 1.1 cgd printf("cc %d != %d || mbcnt %d != %d\n", len, sb->sb_cc,
491 1.1 cgd mbcnt, sb->sb_mbcnt);
492 1.1 cgd panic("sbcheck");
493 1.1 cgd }
494 1.1 cgd }
495 1.1 cgd #endif
496 1.1 cgd
497 1.1 cgd /*
498 1.1 cgd * As above, except the mbuf chain
499 1.1 cgd * begins a new record.
500 1.1 cgd */
501 1.1 cgd sbappendrecord(sb, m0)
502 1.1 cgd register struct sockbuf *sb;
503 1.1 cgd register struct mbuf *m0;
504 1.1 cgd {
505 1.1 cgd register struct mbuf *m;
506 1.1 cgd
507 1.1 cgd if (m0 == 0)
508 1.1 cgd return;
509 1.1 cgd if (m = sb->sb_mb)
510 1.1 cgd while (m->m_nextpkt)
511 1.1 cgd m = m->m_nextpkt;
512 1.1 cgd /*
513 1.1 cgd * Put the first mbuf on the queue.
514 1.1 cgd * Note this permits zero length records.
515 1.1 cgd */
516 1.1 cgd sballoc(sb, m0);
517 1.1 cgd if (m)
518 1.1 cgd m->m_nextpkt = m0;
519 1.1 cgd else
520 1.1 cgd sb->sb_mb = m0;
521 1.1 cgd m = m0->m_next;
522 1.1 cgd m0->m_next = 0;
523 1.1 cgd if (m && (m0->m_flags & M_EOR)) {
524 1.1 cgd m0->m_flags &= ~M_EOR;
525 1.1 cgd m->m_flags |= M_EOR;
526 1.1 cgd }
527 1.1 cgd sbcompress(sb, m, m0);
528 1.1 cgd }
529 1.1 cgd
530 1.1 cgd /*
531 1.1 cgd * As above except that OOB data
532 1.1 cgd * is inserted at the beginning of the sockbuf,
533 1.1 cgd * but after any other OOB data.
534 1.1 cgd */
535 1.1 cgd sbinsertoob(sb, m0)
536 1.1 cgd register struct sockbuf *sb;
537 1.1 cgd register struct mbuf *m0;
538 1.1 cgd {
539 1.1 cgd register struct mbuf *m;
540 1.1 cgd register struct mbuf **mp;
541 1.1 cgd
542 1.1 cgd if (m0 == 0)
543 1.1 cgd return;
544 1.1 cgd for (mp = &sb->sb_mb; m = *mp; mp = &((*mp)->m_nextpkt)) {
545 1.1 cgd again:
546 1.1 cgd switch (m->m_type) {
547 1.1 cgd
548 1.1 cgd case MT_OOBDATA:
549 1.1 cgd continue; /* WANT next train */
550 1.1 cgd
551 1.1 cgd case MT_CONTROL:
552 1.1 cgd if (m = m->m_next)
553 1.1 cgd goto again; /* inspect THIS train further */
554 1.1 cgd }
555 1.1 cgd break;
556 1.1 cgd }
557 1.1 cgd /*
558 1.1 cgd * Put the first mbuf on the queue.
559 1.1 cgd * Note this permits zero length records.
560 1.1 cgd */
561 1.1 cgd sballoc(sb, m0);
562 1.1 cgd m0->m_nextpkt = *mp;
563 1.1 cgd *mp = m0;
564 1.1 cgd m = m0->m_next;
565 1.1 cgd m0->m_next = 0;
566 1.1 cgd if (m && (m0->m_flags & M_EOR)) {
567 1.1 cgd m0->m_flags &= ~M_EOR;
568 1.1 cgd m->m_flags |= M_EOR;
569 1.1 cgd }
570 1.1 cgd sbcompress(sb, m, m0);
571 1.1 cgd }
572 1.1 cgd
573 1.1 cgd /*
574 1.1 cgd * Append address and data, and optionally, control (ancillary) data
575 1.1 cgd * to the receive queue of a socket. If present,
576 1.1 cgd * m0 must include a packet header with total length.
577 1.1 cgd * Returns 0 if no space in sockbuf or insufficient mbufs.
578 1.1 cgd */
579 1.1 cgd sbappendaddr(sb, asa, m0, control)
580 1.1 cgd register struct sockbuf *sb;
581 1.1 cgd struct sockaddr *asa;
582 1.1 cgd struct mbuf *m0, *control;
583 1.1 cgd {
584 1.1 cgd register struct mbuf *m, *n;
585 1.1 cgd int space = asa->sa_len;
586 1.1 cgd
587 1.1 cgd if (m0 && (m0->m_flags & M_PKTHDR) == 0)
588 1.1 cgd panic("sbappendaddr");
589 1.1 cgd if (m0)
590 1.1 cgd space += m0->m_pkthdr.len;
591 1.1 cgd for (n = control; n; n = n->m_next) {
592 1.1 cgd space += n->m_len;
593 1.1 cgd if (n->m_next == 0) /* keep pointer to last control buf */
594 1.1 cgd break;
595 1.1 cgd }
596 1.1 cgd if (space > sbspace(sb))
597 1.1 cgd return (0);
598 1.1 cgd if (asa->sa_len > MLEN)
599 1.1 cgd return (0);
600 1.1 cgd MGET(m, M_DONTWAIT, MT_SONAME);
601 1.1 cgd if (m == 0)
602 1.1 cgd return (0);
603 1.1 cgd m->m_len = asa->sa_len;
604 1.1 cgd bcopy((caddr_t)asa, mtod(m, caddr_t), asa->sa_len);
605 1.1 cgd if (n)
606 1.1 cgd n->m_next = m0; /* concatenate data to control */
607 1.1 cgd else
608 1.1 cgd control = m0;
609 1.1 cgd m->m_next = control;
610 1.1 cgd for (n = m; n; n = n->m_next)
611 1.1 cgd sballoc(sb, n);
612 1.1 cgd if (n = sb->sb_mb) {
613 1.1 cgd while (n->m_nextpkt)
614 1.1 cgd n = n->m_nextpkt;
615 1.1 cgd n->m_nextpkt = m;
616 1.1 cgd } else
617 1.1 cgd sb->sb_mb = m;
618 1.1 cgd return (1);
619 1.1 cgd }
620 1.1 cgd
621 1.1 cgd sbappendcontrol(sb, m0, control)
622 1.1 cgd struct sockbuf *sb;
623 1.1 cgd struct mbuf *control, *m0;
624 1.1 cgd {
625 1.1 cgd register struct mbuf *m, *n;
626 1.1 cgd int space = 0;
627 1.1 cgd
628 1.1 cgd if (control == 0)
629 1.1 cgd panic("sbappendcontrol");
630 1.1 cgd for (m = control; ; m = m->m_next) {
631 1.1 cgd space += m->m_len;
632 1.1 cgd if (m->m_next == 0)
633 1.1 cgd break;
634 1.1 cgd }
635 1.1 cgd n = m; /* save pointer to last control buffer */
636 1.1 cgd for (m = m0; m; m = m->m_next)
637 1.1 cgd space += m->m_len;
638 1.1 cgd if (space > sbspace(sb))
639 1.1 cgd return (0);
640 1.1 cgd n->m_next = m0; /* concatenate data to control */
641 1.1 cgd for (m = control; m; m = m->m_next)
642 1.1 cgd sballoc(sb, m);
643 1.1 cgd if (n = sb->sb_mb) {
644 1.1 cgd while (n->m_nextpkt)
645 1.1 cgd n = n->m_nextpkt;
646 1.1 cgd n->m_nextpkt = control;
647 1.1 cgd } else
648 1.1 cgd sb->sb_mb = control;
649 1.1 cgd return (1);
650 1.1 cgd }
651 1.1 cgd
652 1.1 cgd /*
653 1.1 cgd * Compress mbuf chain m into the socket
654 1.1 cgd * buffer sb following mbuf n. If n
655 1.1 cgd * is null, the buffer is presumed empty.
656 1.1 cgd */
657 1.1 cgd sbcompress(sb, m, n)
658 1.1 cgd register struct sockbuf *sb;
659 1.1 cgd register struct mbuf *m, *n;
660 1.1 cgd {
661 1.1 cgd register int eor = 0;
662 1.1 cgd register struct mbuf *o;
663 1.1 cgd
664 1.1 cgd while (m) {
665 1.1 cgd eor |= m->m_flags & M_EOR;
666 1.1 cgd if (m->m_len == 0 &&
667 1.1 cgd (eor == 0 ||
668 1.1 cgd (((o = m->m_next) || (o = n)) &&
669 1.1 cgd o->m_type == m->m_type))) {
670 1.1 cgd m = m_free(m);
671 1.1 cgd continue;
672 1.1 cgd }
673 1.1 cgd if (n && (n->m_flags & (M_EXT | M_EOR)) == 0 &&
674 1.1 cgd (n->m_data + n->m_len + m->m_len) < &n->m_dat[MLEN] &&
675 1.1 cgd n->m_type == m->m_type) {
676 1.1 cgd bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len,
677 1.1 cgd (unsigned)m->m_len);
678 1.1 cgd n->m_len += m->m_len;
679 1.1 cgd sb->sb_cc += m->m_len;
680 1.1 cgd m = m_free(m);
681 1.1 cgd continue;
682 1.1 cgd }
683 1.1 cgd if (n)
684 1.1 cgd n->m_next = m;
685 1.1 cgd else
686 1.1 cgd sb->sb_mb = m;
687 1.1 cgd sballoc(sb, m);
688 1.1 cgd n = m;
689 1.1 cgd m->m_flags &= ~M_EOR;
690 1.1 cgd m = m->m_next;
691 1.1 cgd n->m_next = 0;
692 1.1 cgd }
693 1.1 cgd if (eor) {
694 1.1 cgd if (n)
695 1.1 cgd n->m_flags |= eor;
696 1.1 cgd else
697 1.1 cgd printf("semi-panic: sbcompress\n");
698 1.1 cgd }
699 1.1 cgd }
700 1.1 cgd
701 1.1 cgd /*
702 1.1 cgd * Free all mbufs in a sockbuf.
703 1.1 cgd * Check that all resources are reclaimed.
704 1.1 cgd */
705 1.1 cgd sbflush(sb)
706 1.1 cgd register struct sockbuf *sb;
707 1.1 cgd {
708 1.1 cgd
709 1.1 cgd if (sb->sb_flags & SB_LOCK)
710 1.1 cgd panic("sbflush");
711 1.1 cgd while (sb->sb_mbcnt)
712 1.1 cgd sbdrop(sb, (int)sb->sb_cc);
713 1.1 cgd if (sb->sb_cc || sb->sb_mb)
714 1.1 cgd panic("sbflush 2");
715 1.1 cgd }
716 1.1 cgd
717 1.1 cgd /*
718 1.1 cgd * Drop data from (the front of) a sockbuf.
719 1.1 cgd */
720 1.1 cgd sbdrop(sb, len)
721 1.1 cgd register struct sockbuf *sb;
722 1.1 cgd register int len;
723 1.1 cgd {
724 1.1 cgd register struct mbuf *m, *mn;
725 1.1 cgd struct mbuf *next;
726 1.1 cgd
727 1.1 cgd next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
728 1.1 cgd while (len > 0) {
729 1.1 cgd if (m == 0) {
730 1.1 cgd if (next == 0)
731 1.1 cgd panic("sbdrop");
732 1.1 cgd m = next;
733 1.1 cgd next = m->m_nextpkt;
734 1.1 cgd continue;
735 1.1 cgd }
736 1.1 cgd if (m->m_len > len) {
737 1.1 cgd m->m_len -= len;
738 1.1 cgd m->m_data += len;
739 1.1 cgd sb->sb_cc -= len;
740 1.1 cgd break;
741 1.1 cgd }
742 1.1 cgd len -= m->m_len;
743 1.1 cgd sbfree(sb, m);
744 1.1 cgd MFREE(m, mn);
745 1.1 cgd m = mn;
746 1.1 cgd }
747 1.1 cgd while (m && m->m_len == 0) {
748 1.1 cgd sbfree(sb, m);
749 1.1 cgd MFREE(m, mn);
750 1.1 cgd m = mn;
751 1.1 cgd }
752 1.1 cgd if (m) {
753 1.1 cgd sb->sb_mb = m;
754 1.1 cgd m->m_nextpkt = next;
755 1.1 cgd } else
756 1.1 cgd sb->sb_mb = next;
757 1.1 cgd }
758 1.1 cgd
759 1.1 cgd /*
760 1.1 cgd * Drop a record off the front of a sockbuf
761 1.1 cgd * and move the next record to the front.
762 1.1 cgd */
763 1.1 cgd sbdroprecord(sb)
764 1.1 cgd register struct sockbuf *sb;
765 1.1 cgd {
766 1.1 cgd register struct mbuf *m, *mn;
767 1.1 cgd
768 1.1 cgd m = sb->sb_mb;
769 1.1 cgd if (m) {
770 1.1 cgd sb->sb_mb = m->m_nextpkt;
771 1.1 cgd do {
772 1.1 cgd sbfree(sb, m);
773 1.1 cgd MFREE(m, mn);
774 1.1 cgd } while (m = mn);
775 1.1 cgd }
776 1.1 cgd }
777