Home | History | Annotate | Line # | Download | only in kern
uipc_socket2.c revision 1.4.4.2
      1      1.1      cgd /*
      2      1.1      cgd  * Copyright (c) 1982, 1986, 1988, 1990 Regents of the University of California.
      3      1.1      cgd  * All rights reserved.
      4      1.1      cgd  *
      5      1.1      cgd  * Redistribution and use in source and binary forms, with or without
      6      1.1      cgd  * modification, are permitted provided that the following conditions
      7      1.1      cgd  * are met:
      8      1.1      cgd  * 1. Redistributions of source code must retain the above copyright
      9      1.1      cgd  *    notice, this list of conditions and the following disclaimer.
     10      1.1      cgd  * 2. Redistributions in binary form must reproduce the above copyright
     11      1.1      cgd  *    notice, this list of conditions and the following disclaimer in the
     12      1.1      cgd  *    documentation and/or other materials provided with the distribution.
     13      1.1      cgd  * 3. All advertising materials mentioning features or use of this software
     14      1.1      cgd  *    must display the following acknowledgement:
     15      1.1      cgd  *	This product includes software developed by the University of
     16      1.1      cgd  *	California, Berkeley and its contributors.
     17      1.1      cgd  * 4. Neither the name of the University nor the names of its contributors
     18      1.1      cgd  *    may be used to endorse or promote products derived from this software
     19      1.1      cgd  *    without specific prior written permission.
     20      1.1      cgd  *
     21      1.1      cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     22      1.1      cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     23      1.1      cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     24      1.1      cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     25      1.1      cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     26      1.1      cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     27      1.1      cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     28      1.1      cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     29      1.1      cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     30      1.1      cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     31      1.1      cgd  * SUCH DAMAGE.
     32      1.1      cgd  *
     33      1.3      cgd  *	from: @(#)uipc_socket2.c	7.17 (Berkeley) 5/4/91
     34  1.4.4.2  mycroft  *	$Id: uipc_socket2.c,v 1.4.4.2 1993/11/14 21:21:34 mycroft Exp $
     35      1.1      cgd  */
     36      1.1      cgd 
     37  1.4.4.2  mycroft #include <sys/param.h>
     38  1.4.4.2  mycroft #include <sys/systm.h>
     39  1.4.4.2  mycroft #include <sys/proc.h>
     40  1.4.4.2  mycroft #include <sys/file.h>
     41  1.4.4.2  mycroft #include <sys/buf.h>
     42  1.4.4.2  mycroft #include <sys/malloc.h>
     43  1.4.4.2  mycroft #include <sys/select.h>
     44  1.4.4.2  mycroft #include <sys/mbuf.h>
     45  1.4.4.2  mycroft #include <sys/protosw.h>
     46  1.4.4.2  mycroft #include <sys/socket.h>
     47  1.4.4.2  mycroft #include <sys/socketvar.h>
     48  1.4.4.1  mycroft 
     49  1.4.4.2  mycroft #include <machine/cpu.h>
     50      1.1      cgd 
     51      1.1      cgd /*
     52      1.1      cgd  * Primitive routines for operating on sockets and socket buffers
     53      1.1      cgd  */
     54      1.1      cgd 
     55      1.1      cgd /* strings for sleep message: */
     56      1.1      cgd char	netio[] = "netio";
     57      1.1      cgd char	netcon[] = "netcon";
     58      1.1      cgd char	netcls[] = "netcls";
     59      1.1      cgd 
     60      1.1      cgd u_long	sb_max = SB_MAX;		/* patchable */
     61      1.1      cgd 
     62      1.1      cgd /*
     63      1.1      cgd  * Procedures to manipulate state flags of socket
     64      1.1      cgd  * and do appropriate wakeups.  Normal sequence from the
     65      1.1      cgd  * active (originating) side is that soisconnecting() is
     66      1.1      cgd  * called during processing of connect() call,
     67      1.1      cgd  * resulting in an eventual call to soisconnected() if/when the
     68      1.1      cgd  * connection is established.  When the connection is torn down
     69      1.1      cgd  * soisdisconnecting() is called during processing of disconnect() call,
     70      1.1      cgd  * and soisdisconnected() is called when the connection to the peer
     71      1.1      cgd  * is totally severed.  The semantics of these routines are such that
     72      1.1      cgd  * connectionless protocols can call soisconnected() and soisdisconnected()
     73      1.1      cgd  * only, bypassing the in-progress calls when setting up a ``connection''
     74      1.1      cgd  * takes no time.
     75      1.1      cgd  *
     76      1.1      cgd  * From the passive side, a socket is created with
     77      1.1      cgd  * two queues of sockets: so_q0 for connections in progress
     78      1.1      cgd  * and so_q for connections already made and awaiting user acceptance.
     79      1.1      cgd  * As a protocol is preparing incoming connections, it creates a socket
     80      1.1      cgd  * structure queued on so_q0 by calling sonewconn().  When the connection
     81      1.1      cgd  * is established, soisconnected() is called, and transfers the
     82      1.1      cgd  * socket structure to so_q, making it available to accept().
     83      1.1      cgd  *
     84      1.1      cgd  * If a socket is closed with sockets on either
     85      1.1      cgd  * so_q0 or so_q, these sockets are dropped.
     86      1.1      cgd  *
     87      1.1      cgd  * If higher level protocols are implemented in
     88      1.1      cgd  * the kernel, the wakeups done here will sometimes
     89      1.1      cgd  * cause software-interrupt process scheduling.
     90      1.1      cgd  */
     91      1.1      cgd 
     92      1.1      cgd soisconnecting(so)
     93      1.1      cgd 	register struct socket *so;
     94      1.1      cgd {
     95      1.1      cgd 
     96      1.1      cgd 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
     97      1.1      cgd 	so->so_state |= SS_ISCONNECTING;
     98      1.1      cgd }
     99      1.1      cgd 
    100      1.1      cgd soisconnected(so)
    101      1.1      cgd 	register struct socket *so;
    102      1.1      cgd {
    103      1.1      cgd 	register struct socket *head = so->so_head;
    104      1.1      cgd 
    105      1.1      cgd 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
    106      1.1      cgd 	so->so_state |= SS_ISCONNECTED;
    107      1.1      cgd 	if (head && soqremque(so, 0)) {
    108      1.1      cgd 		soqinsque(head, so, 1);
    109      1.1      cgd 		sorwakeup(head);
    110      1.1      cgd 		wakeup((caddr_t)&head->so_timeo);
    111      1.1      cgd 	} else {
    112      1.1      cgd 		wakeup((caddr_t)&so->so_timeo);
    113      1.1      cgd 		sorwakeup(so);
    114      1.1      cgd 		sowwakeup(so);
    115      1.1      cgd 	}
    116      1.1      cgd }
    117      1.1      cgd 
    118      1.1      cgd soisdisconnecting(so)
    119      1.1      cgd 	register struct socket *so;
    120      1.1      cgd {
    121      1.1      cgd 
    122      1.1      cgd 	so->so_state &= ~SS_ISCONNECTING;
    123      1.1      cgd 	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
    124      1.1      cgd 	wakeup((caddr_t)&so->so_timeo);
    125      1.1      cgd 	sowwakeup(so);
    126      1.1      cgd 	sorwakeup(so);
    127      1.1      cgd }
    128      1.1      cgd 
    129      1.1      cgd soisdisconnected(so)
    130      1.1      cgd 	register struct socket *so;
    131      1.1      cgd {
    132      1.1      cgd 
    133      1.1      cgd 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
    134      1.1      cgd 	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE);
    135      1.1      cgd 	wakeup((caddr_t)&so->so_timeo);
    136      1.1      cgd 	sowwakeup(so);
    137      1.1      cgd 	sorwakeup(so);
    138      1.1      cgd }
    139      1.1      cgd 
    140      1.1      cgd /*
    141      1.1      cgd  * When an attempt at a new connection is noted on a socket
    142      1.1      cgd  * which accepts connections, sonewconn is called.  If the
    143      1.1      cgd  * connection is possible (subject to space constraints, etc.)
    144      1.1      cgd  * then we allocate a new structure, propoerly linked into the
    145      1.1      cgd  * data structure of the original socket, and return this.
    146      1.1      cgd  * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
    147      1.1      cgd  *
    148      1.1      cgd  * Currently, sonewconn() is defined as sonewconn1() in socketvar.h
    149      1.1      cgd  * to catch calls that are missing the (new) second parameter.
    150      1.1      cgd  */
    151      1.1      cgd struct socket *
    152      1.1      cgd sonewconn1(head, connstatus)
    153      1.1      cgd 	register struct socket *head;
    154      1.1      cgd 	int connstatus;
    155      1.1      cgd {
    156      1.1      cgd 	register struct socket *so;
    157      1.1      cgd 	int soqueue = connstatus ? 1 : 0;
    158      1.1      cgd 
    159      1.1      cgd 	if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
    160      1.1      cgd 		return ((struct socket *)0);
    161      1.1      cgd 	MALLOC(so, struct socket *, sizeof(*so), M_SOCKET, M_DONTWAIT);
    162      1.1      cgd 	if (so == NULL)
    163      1.1      cgd 		return ((struct socket *)0);
    164      1.1      cgd 	bzero((caddr_t)so, sizeof(*so));
    165      1.1      cgd 	so->so_type = head->so_type;
    166      1.1      cgd 	so->so_options = head->so_options &~ SO_ACCEPTCONN;
    167      1.1      cgd 	so->so_linger = head->so_linger;
    168      1.1      cgd 	so->so_state = head->so_state | SS_NOFDREF;
    169      1.1      cgd 	so->so_proto = head->so_proto;
    170      1.1      cgd 	so->so_timeo = head->so_timeo;
    171      1.1      cgd 	so->so_pgid = head->so_pgid;
    172      1.1      cgd 	(void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
    173      1.1      cgd 	soqinsque(head, so, soqueue);
    174      1.1      cgd 	if ((*so->so_proto->pr_usrreq)(so, PRU_ATTACH,
    175      1.1      cgd 	    (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0)) {
    176      1.1      cgd 		(void) soqremque(so, soqueue);
    177      1.1      cgd 		(void) free((caddr_t)so, M_SOCKET);
    178      1.1      cgd 		return ((struct socket *)0);
    179      1.1      cgd 	}
    180      1.1      cgd 	if (connstatus) {
    181      1.1      cgd 		sorwakeup(head);
    182      1.1      cgd 		wakeup((caddr_t)&head->so_timeo);
    183      1.1      cgd 		so->so_state |= connstatus;
    184      1.1      cgd 	}
    185      1.1      cgd 	return (so);
    186      1.1      cgd }
    187      1.1      cgd 
    188      1.1      cgd soqinsque(head, so, q)
    189      1.1      cgd 	register struct socket *head, *so;
    190      1.1      cgd 	int q;
    191      1.1      cgd {
    192      1.1      cgd 
    193      1.1      cgd 	register struct socket **prev;
    194      1.1      cgd 	so->so_head = head;
    195      1.1      cgd 	if (q == 0) {
    196      1.1      cgd 		head->so_q0len++;
    197      1.1      cgd 		so->so_q0 = 0;
    198      1.1      cgd 		for (prev = &(head->so_q0); *prev; )
    199      1.1      cgd 			prev = &((*prev)->so_q0);
    200      1.1      cgd 	} else {
    201      1.1      cgd 		head->so_qlen++;
    202      1.1      cgd 		so->so_q = 0;
    203      1.1      cgd 		for (prev = &(head->so_q); *prev; )
    204      1.1      cgd 			prev = &((*prev)->so_q);
    205      1.1      cgd 	}
    206      1.1      cgd 	*prev = so;
    207      1.1      cgd }
    208      1.1      cgd 
    209      1.1      cgd soqremque(so, q)
    210      1.1      cgd 	register struct socket *so;
    211      1.1      cgd 	int q;
    212      1.1      cgd {
    213      1.1      cgd 	register struct socket *head, *prev, *next;
    214      1.1      cgd 
    215      1.1      cgd 	head = so->so_head;
    216      1.1      cgd 	prev = head;
    217      1.1      cgd 	for (;;) {
    218      1.1      cgd 		next = q ? prev->so_q : prev->so_q0;
    219      1.1      cgd 		if (next == so)
    220      1.1      cgd 			break;
    221      1.1      cgd 		if (next == 0)
    222      1.1      cgd 			return (0);
    223      1.1      cgd 		prev = next;
    224      1.1      cgd 	}
    225      1.1      cgd 	if (q == 0) {
    226      1.1      cgd 		prev->so_q0 = next->so_q0;
    227      1.1      cgd 		head->so_q0len--;
    228      1.1      cgd 	} else {
    229      1.1      cgd 		prev->so_q = next->so_q;
    230      1.1      cgd 		head->so_qlen--;
    231      1.1      cgd 	}
    232      1.1      cgd 	next->so_q0 = next->so_q = 0;
    233      1.1      cgd 	next->so_head = 0;
    234      1.1      cgd 	return (1);
    235      1.1      cgd }
    236      1.1      cgd 
    237      1.1      cgd /*
    238      1.1      cgd  * Socantsendmore indicates that no more data will be sent on the
    239      1.1      cgd  * socket; it would normally be applied to a socket when the user
    240      1.1      cgd  * informs the system that no more data is to be sent, by the protocol
    241      1.1      cgd  * code (in case PRU_SHUTDOWN).  Socantrcvmore indicates that no more data
    242      1.1      cgd  * will be received, and will normally be applied to the socket by a
    243      1.1      cgd  * protocol when it detects that the peer will send no more data.
    244      1.1      cgd  * Data queued for reading in the socket may yet be read.
    245      1.1      cgd  */
    246      1.1      cgd 
    247      1.4   andrew void
    248      1.1      cgd socantsendmore(so)
    249      1.1      cgd 	struct socket *so;
    250      1.1      cgd {
    251      1.1      cgd 
    252      1.1      cgd 	so->so_state |= SS_CANTSENDMORE;
    253      1.1      cgd 	sowwakeup(so);
    254      1.1      cgd }
    255      1.1      cgd 
    256      1.4   andrew void
    257      1.1      cgd socantrcvmore(so)
    258      1.1      cgd 	struct socket *so;
    259      1.1      cgd {
    260      1.1      cgd 
    261      1.1      cgd 	so->so_state |= SS_CANTRCVMORE;
    262      1.1      cgd 	sorwakeup(so);
    263      1.1      cgd }
    264      1.1      cgd 
    265      1.1      cgd /*
    266      1.1      cgd  * Socket select/wakeup routines.
    267      1.1      cgd  */
    268      1.1      cgd 
    269      1.1      cgd /*
    270      1.1      cgd  * Queue a process for a select on a socket buffer.
    271      1.1      cgd  */
    272      1.1      cgd sbselqueue(sb, cp)
    273      1.1      cgd 	struct sockbuf *sb;
    274      1.1      cgd 	struct proc *cp;
    275      1.1      cgd {
    276      1.3      cgd 	selrecord(cp, &sb->sb_sel);
    277      1.3      cgd 	sb->sb_flags |= SB_SEL;
    278      1.1      cgd }
    279      1.1      cgd 
    280      1.1      cgd /*
    281      1.1      cgd  * Wait for data to arrive at/drain from a socket buffer.
    282      1.1      cgd  */
    283      1.1      cgd sbwait(sb)
    284      1.1      cgd 	struct sockbuf *sb;
    285      1.1      cgd {
    286      1.1      cgd 
    287      1.1      cgd 	sb->sb_flags |= SB_WAIT;
    288      1.1      cgd 	return (tsleep((caddr_t)&sb->sb_cc,
    289      1.1      cgd 	    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, netio,
    290      1.1      cgd 	    sb->sb_timeo));
    291      1.1      cgd }
    292      1.1      cgd 
    293      1.1      cgd /*
    294      1.1      cgd  * Lock a sockbuf already known to be locked;
    295      1.1      cgd  * return any error returned from sleep (EINTR).
    296      1.1      cgd  */
    297      1.1      cgd sb_lock(sb)
    298      1.1      cgd 	register struct sockbuf *sb;
    299      1.1      cgd {
    300      1.1      cgd 	int error;
    301      1.1      cgd 
    302      1.1      cgd 	while (sb->sb_flags & SB_LOCK) {
    303      1.1      cgd 		sb->sb_flags |= SB_WANT;
    304      1.1      cgd 		if (error = tsleep((caddr_t)&sb->sb_flags,
    305      1.1      cgd 		    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK|PCATCH,
    306      1.1      cgd 		    netio, 0))
    307      1.1      cgd 			return (error);
    308      1.1      cgd 	}
    309      1.1      cgd 	sb->sb_flags |= SB_LOCK;
    310      1.1      cgd 	return (0);
    311      1.1      cgd }
    312      1.1      cgd 
    313      1.1      cgd /*
    314      1.1      cgd  * Wakeup processes waiting on a socket buffer.
    315      1.1      cgd  * Do asynchronous notification via SIGIO
    316      1.1      cgd  * if the socket has the SS_ASYNC flag set.
    317      1.1      cgd  */
    318      1.1      cgd sowakeup(so, sb)
    319      1.1      cgd 	register struct socket *so;
    320      1.1      cgd 	register struct sockbuf *sb;
    321      1.1      cgd {
    322      1.1      cgd 	struct proc *p;
    323      1.1      cgd 
    324      1.3      cgd 	selwakeup(&sb->sb_sel);
    325      1.3      cgd         sb->sb_flags &= ~SB_SEL;
    326      1.1      cgd 	if (sb->sb_flags & SB_WAIT) {
    327      1.1      cgd 		sb->sb_flags &= ~SB_WAIT;
    328      1.1      cgd 		wakeup((caddr_t)&sb->sb_cc);
    329      1.1      cgd 	}
    330      1.1      cgd 	if (so->so_state & SS_ASYNC) {
    331      1.1      cgd 		if (so->so_pgid < 0)
    332      1.1      cgd 			gsignal(-so->so_pgid, SIGIO);
    333      1.1      cgd 		else if (so->so_pgid > 0 && (p = pfind(so->so_pgid)) != 0)
    334      1.1      cgd 			psignal(p, SIGIO);
    335      1.1      cgd 	}
    336      1.1      cgd }
    337      1.1      cgd 
    338      1.1      cgd /*
    339      1.1      cgd  * Socket buffer (struct sockbuf) utility routines.
    340      1.1      cgd  *
    341      1.1      cgd  * Each socket contains two socket buffers: one for sending data and
    342      1.1      cgd  * one for receiving data.  Each buffer contains a queue of mbufs,
    343      1.1      cgd  * information about the number of mbufs and amount of data in the
    344      1.1      cgd  * queue, and other fields allowing select() statements and notification
    345      1.1      cgd  * on data availability to be implemented.
    346      1.1      cgd  *
    347      1.1      cgd  * Data stored in a socket buffer is maintained as a list of records.
    348      1.1      cgd  * Each record is a list of mbufs chained together with the m_next
    349      1.1      cgd  * field.  Records are chained together with the m_nextpkt field. The upper
    350      1.1      cgd  * level routine soreceive() expects the following conventions to be
    351      1.1      cgd  * observed when placing information in the receive buffer:
    352      1.1      cgd  *
    353      1.1      cgd  * 1. If the protocol requires each message be preceded by the sender's
    354      1.1      cgd  *    name, then a record containing that name must be present before
    355      1.1      cgd  *    any associated data (mbuf's must be of type MT_SONAME).
    356      1.1      cgd  * 2. If the protocol supports the exchange of ``access rights'' (really
    357      1.1      cgd  *    just additional data associated with the message), and there are
    358      1.1      cgd  *    ``rights'' to be received, then a record containing this data
    359      1.1      cgd  *    should be present (mbuf's must be of type MT_RIGHTS).
    360      1.1      cgd  * 3. If a name or rights record exists, then it must be followed by
    361      1.1      cgd  *    a data record, perhaps of zero length.
    362      1.1      cgd  *
    363      1.1      cgd  * Before using a new socket structure it is first necessary to reserve
    364      1.1      cgd  * buffer space to the socket, by calling sbreserve().  This should commit
    365      1.1      cgd  * some of the available buffer space in the system buffer pool for the
    366      1.1      cgd  * socket (currently, it does nothing but enforce limits).  The space
    367      1.1      cgd  * should be released by calling sbrelease() when the socket is destroyed.
    368      1.1      cgd  */
    369      1.1      cgd 
    370      1.1      cgd soreserve(so, sndcc, rcvcc)
    371      1.1      cgd 	register struct socket *so;
    372      1.1      cgd 	u_long sndcc, rcvcc;
    373      1.1      cgd {
    374      1.1      cgd 
    375      1.1      cgd 	if (sbreserve(&so->so_snd, sndcc) == 0)
    376      1.1      cgd 		goto bad;
    377      1.1      cgd 	if (sbreserve(&so->so_rcv, rcvcc) == 0)
    378      1.1      cgd 		goto bad2;
    379      1.1      cgd 	if (so->so_rcv.sb_lowat == 0)
    380      1.1      cgd 		so->so_rcv.sb_lowat = 1;
    381      1.1      cgd 	if (so->so_snd.sb_lowat == 0)
    382      1.1      cgd 		so->so_snd.sb_lowat = MCLBYTES;
    383      1.1      cgd 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
    384      1.1      cgd 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
    385      1.1      cgd 	return (0);
    386      1.1      cgd bad2:
    387      1.1      cgd 	sbrelease(&so->so_snd);
    388      1.1      cgd bad:
    389      1.1      cgd 	return (ENOBUFS);
    390      1.1      cgd }
    391      1.1      cgd 
    392      1.1      cgd /*
    393      1.1      cgd  * Allot mbufs to a sockbuf.
    394      1.1      cgd  * Attempt to scale mbmax so that mbcnt doesn't become limiting
    395      1.1      cgd  * if buffering efficiency is near the normal case.
    396      1.1      cgd  */
    397      1.1      cgd sbreserve(sb, cc)
    398      1.1      cgd 	struct sockbuf *sb;
    399      1.1      cgd 	u_long cc;
    400      1.1      cgd {
    401      1.1      cgd 
    402      1.1      cgd 	if (cc > sb_max * MCLBYTES / (MSIZE + MCLBYTES))
    403      1.1      cgd 		return (0);
    404      1.1      cgd 	sb->sb_hiwat = cc;
    405      1.1      cgd 	sb->sb_mbmax = min(cc * 2, sb_max);
    406      1.1      cgd 	if (sb->sb_lowat > sb->sb_hiwat)
    407      1.1      cgd 		sb->sb_lowat = sb->sb_hiwat;
    408      1.1      cgd 	return (1);
    409      1.1      cgd }
    410      1.1      cgd 
    411      1.1      cgd /*
    412      1.1      cgd  * Free mbufs held by a socket, and reserved mbuf space.
    413      1.1      cgd  */
    414      1.1      cgd sbrelease(sb)
    415      1.1      cgd 	struct sockbuf *sb;
    416      1.1      cgd {
    417      1.1      cgd 
    418      1.1      cgd 	sbflush(sb);
    419      1.1      cgd 	sb->sb_hiwat = sb->sb_mbmax = 0;
    420      1.1      cgd }
    421      1.1      cgd 
    422      1.1      cgd /*
    423      1.1      cgd  * Routines to add and remove
    424      1.1      cgd  * data from an mbuf queue.
    425      1.1      cgd  *
    426      1.1      cgd  * The routines sbappend() or sbappendrecord() are normally called to
    427      1.1      cgd  * append new mbufs to a socket buffer, after checking that adequate
    428      1.1      cgd  * space is available, comparing the function sbspace() with the amount
    429      1.1      cgd  * of data to be added.  sbappendrecord() differs from sbappend() in
    430      1.1      cgd  * that data supplied is treated as the beginning of a new record.
    431      1.1      cgd  * To place a sender's address, optional access rights, and data in a
    432      1.1      cgd  * socket receive buffer, sbappendaddr() should be used.  To place
    433      1.1      cgd  * access rights and data in a socket receive buffer, sbappendrights()
    434      1.1      cgd  * should be used.  In either case, the new data begins a new record.
    435      1.1      cgd  * Note that unlike sbappend() and sbappendrecord(), these routines check
    436      1.1      cgd  * for the caller that there will be enough space to store the data.
    437      1.1      cgd  * Each fails if there is not enough space, or if it cannot find mbufs
    438      1.1      cgd  * to store additional information in.
    439      1.1      cgd  *
    440      1.1      cgd  * Reliable protocols may use the socket send buffer to hold data
    441      1.1      cgd  * awaiting acknowledgement.  Data is normally copied from a socket
    442      1.1      cgd  * send buffer in a protocol with m_copy for output to a peer,
    443      1.1      cgd  * and then removing the data from the socket buffer with sbdrop()
    444      1.1      cgd  * or sbdroprecord() when the data is acknowledged by the peer.
    445      1.1      cgd  */
    446      1.1      cgd 
    447      1.1      cgd /*
    448      1.1      cgd  * Append mbuf chain m to the last record in the
    449      1.1      cgd  * socket buffer sb.  The additional space associated
    450      1.1      cgd  * the mbuf chain is recorded in sb.  Empty mbufs are
    451      1.1      cgd  * discarded and mbufs are compacted where possible.
    452      1.1      cgd  */
    453      1.1      cgd sbappend(sb, m)
    454      1.1      cgd 	struct sockbuf *sb;
    455      1.1      cgd 	struct mbuf *m;
    456      1.1      cgd {
    457      1.1      cgd 	register struct mbuf *n;
    458      1.1      cgd 
    459      1.1      cgd 	if (m == 0)
    460      1.1      cgd 		return;
    461      1.1      cgd 	if (n = sb->sb_mb) {
    462      1.1      cgd 		while (n->m_nextpkt)
    463      1.1      cgd 			n = n->m_nextpkt;
    464      1.1      cgd 		do {
    465      1.1      cgd 			if (n->m_flags & M_EOR) {
    466      1.1      cgd 				sbappendrecord(sb, m); /* XXXXXX!!!! */
    467      1.1      cgd 				return;
    468      1.1      cgd 			}
    469      1.1      cgd 		} while (n->m_next && (n = n->m_next));
    470      1.1      cgd 	}
    471      1.1      cgd 	sbcompress(sb, m, n);
    472      1.1      cgd }
    473      1.1      cgd 
    474      1.1      cgd #ifdef SOCKBUF_DEBUG
    475      1.1      cgd sbcheck(sb)
    476      1.1      cgd 	register struct sockbuf *sb;
    477      1.1      cgd {
    478      1.1      cgd 	register struct mbuf *m;
    479      1.1      cgd 	register int len = 0, mbcnt = 0;
    480      1.1      cgd 
    481      1.1      cgd 	for (m = sb->sb_mb; m; m = m->m_next) {
    482      1.1      cgd 		len += m->m_len;
    483      1.1      cgd 		mbcnt += MSIZE;
    484      1.1      cgd 		if (m->m_flags & M_EXT)
    485      1.1      cgd 			mbcnt += m->m_ext.ext_size;
    486      1.1      cgd 		if (m->m_nextpkt)
    487      1.1      cgd 			panic("sbcheck nextpkt");
    488      1.1      cgd 	}
    489      1.1      cgd 	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
    490      1.1      cgd 		printf("cc %d != %d || mbcnt %d != %d\n", len, sb->sb_cc,
    491      1.1      cgd 		    mbcnt, sb->sb_mbcnt);
    492      1.1      cgd 		panic("sbcheck");
    493      1.1      cgd 	}
    494      1.1      cgd }
    495      1.1      cgd #endif
    496      1.1      cgd 
    497      1.1      cgd /*
    498      1.1      cgd  * As above, except the mbuf chain
    499      1.1      cgd  * begins a new record.
    500      1.1      cgd  */
    501      1.1      cgd sbappendrecord(sb, m0)
    502      1.1      cgd 	register struct sockbuf *sb;
    503      1.1      cgd 	register struct mbuf *m0;
    504      1.1      cgd {
    505      1.1      cgd 	register struct mbuf *m;
    506      1.1      cgd 
    507      1.1      cgd 	if (m0 == 0)
    508      1.1      cgd 		return;
    509      1.1      cgd 	if (m = sb->sb_mb)
    510      1.1      cgd 		while (m->m_nextpkt)
    511      1.1      cgd 			m = m->m_nextpkt;
    512      1.1      cgd 	/*
    513      1.1      cgd 	 * Put the first mbuf on the queue.
    514      1.1      cgd 	 * Note this permits zero length records.
    515      1.1      cgd 	 */
    516      1.1      cgd 	sballoc(sb, m0);
    517      1.1      cgd 	if (m)
    518      1.1      cgd 		m->m_nextpkt = m0;
    519      1.1      cgd 	else
    520      1.1      cgd 		sb->sb_mb = m0;
    521      1.1      cgd 	m = m0->m_next;
    522      1.1      cgd 	m0->m_next = 0;
    523      1.1      cgd 	if (m && (m0->m_flags & M_EOR)) {
    524      1.1      cgd 		m0->m_flags &= ~M_EOR;
    525      1.1      cgd 		m->m_flags |= M_EOR;
    526      1.1      cgd 	}
    527      1.1      cgd 	sbcompress(sb, m, m0);
    528      1.1      cgd }
    529      1.1      cgd 
    530      1.1      cgd /*
    531      1.1      cgd  * As above except that OOB data
    532      1.1      cgd  * is inserted at the beginning of the sockbuf,
    533      1.1      cgd  * but after any other OOB data.
    534      1.1      cgd  */
    535      1.1      cgd sbinsertoob(sb, m0)
    536      1.1      cgd 	register struct sockbuf *sb;
    537      1.1      cgd 	register struct mbuf *m0;
    538      1.1      cgd {
    539      1.1      cgd 	register struct mbuf *m;
    540      1.1      cgd 	register struct mbuf **mp;
    541      1.1      cgd 
    542      1.1      cgd 	if (m0 == 0)
    543      1.1      cgd 		return;
    544      1.1      cgd 	for (mp = &sb->sb_mb; m = *mp; mp = &((*mp)->m_nextpkt)) {
    545      1.1      cgd 	    again:
    546      1.1      cgd 		switch (m->m_type) {
    547      1.1      cgd 
    548      1.1      cgd 		case MT_OOBDATA:
    549      1.1      cgd 			continue;		/* WANT next train */
    550      1.1      cgd 
    551      1.1      cgd 		case MT_CONTROL:
    552      1.1      cgd 			if (m = m->m_next)
    553      1.1      cgd 				goto again;	/* inspect THIS train further */
    554      1.1      cgd 		}
    555      1.1      cgd 		break;
    556      1.1      cgd 	}
    557      1.1      cgd 	/*
    558      1.1      cgd 	 * Put the first mbuf on the queue.
    559      1.1      cgd 	 * Note this permits zero length records.
    560      1.1      cgd 	 */
    561      1.1      cgd 	sballoc(sb, m0);
    562      1.1      cgd 	m0->m_nextpkt = *mp;
    563      1.1      cgd 	*mp = m0;
    564      1.1      cgd 	m = m0->m_next;
    565      1.1      cgd 	m0->m_next = 0;
    566      1.1      cgd 	if (m && (m0->m_flags & M_EOR)) {
    567      1.1      cgd 		m0->m_flags &= ~M_EOR;
    568      1.1      cgd 		m->m_flags |= M_EOR;
    569      1.1      cgd 	}
    570      1.1      cgd 	sbcompress(sb, m, m0);
    571      1.1      cgd }
    572      1.1      cgd 
    573      1.1      cgd /*
    574      1.1      cgd  * Append address and data, and optionally, control (ancillary) data
    575      1.1      cgd  * to the receive queue of a socket.  If present,
    576      1.1      cgd  * m0 must include a packet header with total length.
    577      1.1      cgd  * Returns 0 if no space in sockbuf or insufficient mbufs.
    578      1.1      cgd  */
    579      1.1      cgd sbappendaddr(sb, asa, m0, control)
    580      1.1      cgd 	register struct sockbuf *sb;
    581      1.1      cgd 	struct sockaddr *asa;
    582      1.1      cgd 	struct mbuf *m0, *control;
    583      1.1      cgd {
    584      1.1      cgd 	register struct mbuf *m, *n;
    585      1.1      cgd 	int space = asa->sa_len;
    586      1.1      cgd 
    587      1.1      cgd if (m0 && (m0->m_flags & M_PKTHDR) == 0)
    588      1.1      cgd panic("sbappendaddr");
    589      1.1      cgd 	if (m0)
    590      1.1      cgd 		space += m0->m_pkthdr.len;
    591      1.1      cgd 	for (n = control; n; n = n->m_next) {
    592      1.1      cgd 		space += n->m_len;
    593      1.1      cgd 		if (n->m_next == 0)	/* keep pointer to last control buf */
    594      1.1      cgd 			break;
    595      1.1      cgd 	}
    596      1.1      cgd 	if (space > sbspace(sb))
    597      1.1      cgd 		return (0);
    598      1.1      cgd 	if (asa->sa_len > MLEN)
    599      1.1      cgd 		return (0);
    600      1.1      cgd 	MGET(m, M_DONTWAIT, MT_SONAME);
    601      1.1      cgd 	if (m == 0)
    602      1.1      cgd 		return (0);
    603      1.1      cgd 	m->m_len = asa->sa_len;
    604      1.1      cgd 	bcopy((caddr_t)asa, mtod(m, caddr_t), asa->sa_len);
    605      1.1      cgd 	if (n)
    606      1.1      cgd 		n->m_next = m0;		/* concatenate data to control */
    607      1.1      cgd 	else
    608      1.1      cgd 		control = m0;
    609      1.1      cgd 	m->m_next = control;
    610      1.1      cgd 	for (n = m; n; n = n->m_next)
    611      1.1      cgd 		sballoc(sb, n);
    612      1.1      cgd 	if (n = sb->sb_mb) {
    613      1.1      cgd 		while (n->m_nextpkt)
    614      1.1      cgd 			n = n->m_nextpkt;
    615      1.1      cgd 		n->m_nextpkt = m;
    616      1.1      cgd 	} else
    617      1.1      cgd 		sb->sb_mb = m;
    618      1.1      cgd 	return (1);
    619      1.1      cgd }
    620      1.1      cgd 
    621      1.1      cgd sbappendcontrol(sb, m0, control)
    622      1.1      cgd 	struct sockbuf *sb;
    623      1.1      cgd 	struct mbuf *control, *m0;
    624      1.1      cgd {
    625      1.1      cgd 	register struct mbuf *m, *n;
    626      1.1      cgd 	int space = 0;
    627      1.1      cgd 
    628      1.1      cgd 	if (control == 0)
    629      1.1      cgd 		panic("sbappendcontrol");
    630      1.1      cgd 	for (m = control; ; m = m->m_next) {
    631      1.1      cgd 		space += m->m_len;
    632      1.1      cgd 		if (m->m_next == 0)
    633      1.1      cgd 			break;
    634      1.1      cgd 	}
    635      1.1      cgd 	n = m;			/* save pointer to last control buffer */
    636      1.1      cgd 	for (m = m0; m; m = m->m_next)
    637      1.1      cgd 		space += m->m_len;
    638      1.1      cgd 	if (space > sbspace(sb))
    639      1.1      cgd 		return (0);
    640      1.1      cgd 	n->m_next = m0;			/* concatenate data to control */
    641      1.1      cgd 	for (m = control; m; m = m->m_next)
    642      1.1      cgd 		sballoc(sb, m);
    643      1.1      cgd 	if (n = sb->sb_mb) {
    644      1.1      cgd 		while (n->m_nextpkt)
    645      1.1      cgd 			n = n->m_nextpkt;
    646      1.1      cgd 		n->m_nextpkt = control;
    647      1.1      cgd 	} else
    648      1.1      cgd 		sb->sb_mb = control;
    649      1.1      cgd 	return (1);
    650      1.1      cgd }
    651      1.1      cgd 
    652      1.1      cgd /*
    653      1.1      cgd  * Compress mbuf chain m into the socket
    654      1.1      cgd  * buffer sb following mbuf n.  If n
    655      1.1      cgd  * is null, the buffer is presumed empty.
    656      1.1      cgd  */
    657      1.1      cgd sbcompress(sb, m, n)
    658      1.1      cgd 	register struct sockbuf *sb;
    659      1.1      cgd 	register struct mbuf *m, *n;
    660      1.1      cgd {
    661      1.1      cgd 	register int eor = 0;
    662      1.1      cgd 	register struct mbuf *o;
    663      1.1      cgd 
    664      1.1      cgd 	while (m) {
    665      1.1      cgd 		eor |= m->m_flags & M_EOR;
    666      1.1      cgd 		if (m->m_len == 0 &&
    667      1.1      cgd 		    (eor == 0 ||
    668      1.1      cgd 		     (((o = m->m_next) || (o = n)) &&
    669      1.1      cgd 		      o->m_type == m->m_type))) {
    670      1.1      cgd 			m = m_free(m);
    671      1.1      cgd 			continue;
    672      1.1      cgd 		}
    673      1.1      cgd 		if (n && (n->m_flags & (M_EXT | M_EOR)) == 0 &&
    674      1.1      cgd 		    (n->m_data + n->m_len + m->m_len) < &n->m_dat[MLEN] &&
    675      1.1      cgd 		    n->m_type == m->m_type) {
    676      1.1      cgd 			bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len,
    677      1.1      cgd 			    (unsigned)m->m_len);
    678      1.1      cgd 			n->m_len += m->m_len;
    679      1.1      cgd 			sb->sb_cc += m->m_len;
    680      1.1      cgd 			m = m_free(m);
    681      1.1      cgd 			continue;
    682      1.1      cgd 		}
    683      1.1      cgd 		if (n)
    684      1.1      cgd 			n->m_next = m;
    685      1.1      cgd 		else
    686      1.1      cgd 			sb->sb_mb = m;
    687      1.1      cgd 		sballoc(sb, m);
    688      1.1      cgd 		n = m;
    689      1.1      cgd 		m->m_flags &= ~M_EOR;
    690      1.1      cgd 		m = m->m_next;
    691      1.1      cgd 		n->m_next = 0;
    692      1.1      cgd 	}
    693      1.1      cgd 	if (eor) {
    694      1.1      cgd 		if (n)
    695      1.1      cgd 			n->m_flags |= eor;
    696      1.1      cgd 		else
    697      1.1      cgd 			printf("semi-panic: sbcompress\n");
    698      1.1      cgd 	}
    699      1.1      cgd }
    700      1.1      cgd 
    701      1.1      cgd /*
    702      1.1      cgd  * Free all mbufs in a sockbuf.
    703      1.1      cgd  * Check that all resources are reclaimed.
    704      1.1      cgd  */
    705      1.1      cgd sbflush(sb)
    706      1.1      cgd 	register struct sockbuf *sb;
    707      1.1      cgd {
    708      1.1      cgd 
    709      1.1      cgd 	if (sb->sb_flags & SB_LOCK)
    710      1.1      cgd 		panic("sbflush");
    711      1.1      cgd 	while (sb->sb_mbcnt)
    712      1.1      cgd 		sbdrop(sb, (int)sb->sb_cc);
    713      1.1      cgd 	if (sb->sb_cc || sb->sb_mb)
    714      1.1      cgd 		panic("sbflush 2");
    715      1.1      cgd }
    716      1.1      cgd 
    717      1.1      cgd /*
    718      1.1      cgd  * Drop data from (the front of) a sockbuf.
    719      1.1      cgd  */
    720      1.1      cgd sbdrop(sb, len)
    721      1.1      cgd 	register struct sockbuf *sb;
    722      1.1      cgd 	register int len;
    723      1.1      cgd {
    724      1.1      cgd 	register struct mbuf *m, *mn;
    725      1.1      cgd 	struct mbuf *next;
    726      1.1      cgd 
    727      1.1      cgd 	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
    728      1.1      cgd 	while (len > 0) {
    729      1.1      cgd 		if (m == 0) {
    730      1.1      cgd 			if (next == 0)
    731      1.1      cgd 				panic("sbdrop");
    732      1.1      cgd 			m = next;
    733      1.1      cgd 			next = m->m_nextpkt;
    734      1.1      cgd 			continue;
    735      1.1      cgd 		}
    736      1.1      cgd 		if (m->m_len > len) {
    737      1.1      cgd 			m->m_len -= len;
    738      1.1      cgd 			m->m_data += len;
    739      1.1      cgd 			sb->sb_cc -= len;
    740      1.1      cgd 			break;
    741      1.1      cgd 		}
    742      1.1      cgd 		len -= m->m_len;
    743      1.1      cgd 		sbfree(sb, m);
    744      1.1      cgd 		MFREE(m, mn);
    745      1.1      cgd 		m = mn;
    746      1.1      cgd 	}
    747      1.1      cgd 	while (m && m->m_len == 0) {
    748      1.1      cgd 		sbfree(sb, m);
    749      1.1      cgd 		MFREE(m, mn);
    750      1.1      cgd 		m = mn;
    751      1.1      cgd 	}
    752      1.1      cgd 	if (m) {
    753      1.1      cgd 		sb->sb_mb = m;
    754      1.1      cgd 		m->m_nextpkt = next;
    755      1.1      cgd 	} else
    756      1.1      cgd 		sb->sb_mb = next;
    757      1.1      cgd }
    758      1.1      cgd 
    759      1.1      cgd /*
    760      1.1      cgd  * Drop a record off the front of a sockbuf
    761      1.1      cgd  * and move the next record to the front.
    762      1.1      cgd  */
    763      1.1      cgd sbdroprecord(sb)
    764      1.1      cgd 	register struct sockbuf *sb;
    765      1.1      cgd {
    766      1.1      cgd 	register struct mbuf *m, *mn;
    767      1.1      cgd 
    768      1.1      cgd 	m = sb->sb_mb;
    769      1.1      cgd 	if (m) {
    770      1.1      cgd 		sb->sb_mb = m->m_nextpkt;
    771      1.1      cgd 		do {
    772      1.1      cgd 			sbfree(sb, m);
    773      1.1      cgd 			MFREE(m, mn);
    774      1.1      cgd 		} while (m = mn);
    775      1.1      cgd 	}
    776      1.1      cgd }
    777