uipc_socket2.c revision 1.41 1 1.41 enami /* $NetBSD: uipc_socket2.c,v 1.41 2001/08/05 08:25:39 enami Exp $ */
2 1.9 cgd
3 1.1 cgd /*
4 1.7 mycroft * Copyright (c) 1982, 1986, 1988, 1990, 1993
5 1.7 mycroft * The Regents of the University of California. All rights reserved.
6 1.1 cgd *
7 1.1 cgd * Redistribution and use in source and binary forms, with or without
8 1.1 cgd * modification, are permitted provided that the following conditions
9 1.1 cgd * are met:
10 1.1 cgd * 1. Redistributions of source code must retain the above copyright
11 1.1 cgd * notice, this list of conditions and the following disclaimer.
12 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 cgd * notice, this list of conditions and the following disclaimer in the
14 1.1 cgd * documentation and/or other materials provided with the distribution.
15 1.1 cgd * 3. All advertising materials mentioning features or use of this software
16 1.1 cgd * must display the following acknowledgement:
17 1.1 cgd * This product includes software developed by the University of
18 1.1 cgd * California, Berkeley and its contributors.
19 1.1 cgd * 4. Neither the name of the University nor the names of its contributors
20 1.1 cgd * may be used to endorse or promote products derived from this software
21 1.1 cgd * without specific prior written permission.
22 1.1 cgd *
23 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 1.1 cgd * SUCH DAMAGE.
34 1.1 cgd *
35 1.23 fvdl * @(#)uipc_socket2.c 8.2 (Berkeley) 2/14/95
36 1.1 cgd */
37 1.1 cgd
38 1.5 mycroft #include <sys/param.h>
39 1.5 mycroft #include <sys/systm.h>
40 1.5 mycroft #include <sys/proc.h>
41 1.5 mycroft #include <sys/file.h>
42 1.5 mycroft #include <sys/buf.h>
43 1.5 mycroft #include <sys/malloc.h>
44 1.5 mycroft #include <sys/mbuf.h>
45 1.5 mycroft #include <sys/protosw.h>
46 1.5 mycroft #include <sys/socket.h>
47 1.5 mycroft #include <sys/socketvar.h>
48 1.11 christos #include <sys/signalvar.h>
49 1.1 cgd
50 1.1 cgd /*
51 1.1 cgd * Primitive routines for operating on sockets and socket buffers
52 1.1 cgd */
53 1.1 cgd
54 1.1 cgd /* strings for sleep message: */
55 1.21 mycroft const char netcon[] = "netcon";
56 1.21 mycroft const char netcls[] = "netcls";
57 1.41 enami const char netio[] = "netio";
58 1.41 enami const char netlck[] = "netlck";
59 1.1 cgd
60 1.1 cgd /*
61 1.1 cgd * Procedures to manipulate state flags of socket
62 1.1 cgd * and do appropriate wakeups. Normal sequence from the
63 1.1 cgd * active (originating) side is that soisconnecting() is
64 1.1 cgd * called during processing of connect() call,
65 1.1 cgd * resulting in an eventual call to soisconnected() if/when the
66 1.1 cgd * connection is established. When the connection is torn down
67 1.1 cgd * soisdisconnecting() is called during processing of disconnect() call,
68 1.1 cgd * and soisdisconnected() is called when the connection to the peer
69 1.1 cgd * is totally severed. The semantics of these routines are such that
70 1.1 cgd * connectionless protocols can call soisconnected() and soisdisconnected()
71 1.1 cgd * only, bypassing the in-progress calls when setting up a ``connection''
72 1.1 cgd * takes no time.
73 1.1 cgd *
74 1.1 cgd * From the passive side, a socket is created with
75 1.1 cgd * two queues of sockets: so_q0 for connections in progress
76 1.1 cgd * and so_q for connections already made and awaiting user acceptance.
77 1.1 cgd * As a protocol is preparing incoming connections, it creates a socket
78 1.1 cgd * structure queued on so_q0 by calling sonewconn(). When the connection
79 1.1 cgd * is established, soisconnected() is called, and transfers the
80 1.1 cgd * socket structure to so_q, making it available to accept().
81 1.1 cgd *
82 1.1 cgd * If a socket is closed with sockets on either
83 1.1 cgd * so_q0 or so_q, these sockets are dropped.
84 1.1 cgd *
85 1.1 cgd * If higher level protocols are implemented in
86 1.1 cgd * the kernel, the wakeups done here will sometimes
87 1.1 cgd * cause software-interrupt process scheduling.
88 1.1 cgd */
89 1.1 cgd
90 1.7 mycroft void
91 1.37 lukem soisconnecting(struct socket *so)
92 1.1 cgd {
93 1.1 cgd
94 1.1 cgd so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
95 1.1 cgd so->so_state |= SS_ISCONNECTING;
96 1.1 cgd }
97 1.1 cgd
98 1.7 mycroft void
99 1.37 lukem soisconnected(struct socket *so)
100 1.1 cgd {
101 1.37 lukem struct socket *head;
102 1.1 cgd
103 1.37 lukem head = so->so_head;
104 1.1 cgd so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
105 1.1 cgd so->so_state |= SS_ISCONNECTED;
106 1.1 cgd if (head && soqremque(so, 0)) {
107 1.1 cgd soqinsque(head, so, 1);
108 1.1 cgd sorwakeup(head);
109 1.1 cgd wakeup((caddr_t)&head->so_timeo);
110 1.1 cgd } else {
111 1.1 cgd wakeup((caddr_t)&so->so_timeo);
112 1.1 cgd sorwakeup(so);
113 1.1 cgd sowwakeup(so);
114 1.1 cgd }
115 1.1 cgd }
116 1.1 cgd
117 1.7 mycroft void
118 1.37 lukem soisdisconnecting(struct socket *so)
119 1.1 cgd {
120 1.1 cgd
121 1.1 cgd so->so_state &= ~SS_ISCONNECTING;
122 1.1 cgd so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
123 1.1 cgd wakeup((caddr_t)&so->so_timeo);
124 1.1 cgd sowwakeup(so);
125 1.1 cgd sorwakeup(so);
126 1.1 cgd }
127 1.1 cgd
128 1.7 mycroft void
129 1.37 lukem soisdisconnected(struct socket *so)
130 1.1 cgd {
131 1.1 cgd
132 1.1 cgd so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
133 1.27 mycroft so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
134 1.1 cgd wakeup((caddr_t)&so->so_timeo);
135 1.1 cgd sowwakeup(so);
136 1.1 cgd sorwakeup(so);
137 1.1 cgd }
138 1.1 cgd
139 1.1 cgd /*
140 1.1 cgd * When an attempt at a new connection is noted on a socket
141 1.1 cgd * which accepts connections, sonewconn is called. If the
142 1.1 cgd * connection is possible (subject to space constraints, etc.)
143 1.1 cgd * then we allocate a new structure, propoerly linked into the
144 1.1 cgd * data structure of the original socket, and return this.
145 1.1 cgd * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
146 1.1 cgd *
147 1.1 cgd * Currently, sonewconn() is defined as sonewconn1() in socketvar.h
148 1.1 cgd * to catch calls that are missing the (new) second parameter.
149 1.1 cgd */
150 1.1 cgd struct socket *
151 1.37 lukem sonewconn1(struct socket *head, int connstatus)
152 1.1 cgd {
153 1.37 lukem struct socket *so;
154 1.37 lukem int soqueue;
155 1.1 cgd
156 1.37 lukem soqueue = connstatus ? 1 : 0;
157 1.1 cgd if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
158 1.1 cgd return ((struct socket *)0);
159 1.25 thorpej so = pool_get(&socket_pool, PR_NOWAIT);
160 1.1 cgd if (so == NULL)
161 1.25 thorpej return (NULL);
162 1.26 perry memset((caddr_t)so, 0, sizeof(*so));
163 1.1 cgd so->so_type = head->so_type;
164 1.1 cgd so->so_options = head->so_options &~ SO_ACCEPTCONN;
165 1.1 cgd so->so_linger = head->so_linger;
166 1.1 cgd so->so_state = head->so_state | SS_NOFDREF;
167 1.1 cgd so->so_proto = head->so_proto;
168 1.1 cgd so->so_timeo = head->so_timeo;
169 1.1 cgd so->so_pgid = head->so_pgid;
170 1.24 matt so->so_send = head->so_send;
171 1.24 matt so->so_receive = head->so_receive;
172 1.28 lukem so->so_uid = head->so_uid;
173 1.1 cgd (void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
174 1.1 cgd soqinsque(head, so, soqueue);
175 1.1 cgd if ((*so->so_proto->pr_usrreq)(so, PRU_ATTACH,
176 1.12 mycroft (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
177 1.12 mycroft (struct proc *)0)) {
178 1.1 cgd (void) soqremque(so, soqueue);
179 1.25 thorpej pool_put(&socket_pool, so);
180 1.25 thorpej return (NULL);
181 1.1 cgd }
182 1.1 cgd if (connstatus) {
183 1.1 cgd sorwakeup(head);
184 1.1 cgd wakeup((caddr_t)&head->so_timeo);
185 1.1 cgd so->so_state |= connstatus;
186 1.1 cgd }
187 1.1 cgd return (so);
188 1.1 cgd }
189 1.1 cgd
190 1.7 mycroft void
191 1.37 lukem soqinsque(struct socket *head, struct socket *so, int q)
192 1.1 cgd {
193 1.1 cgd
194 1.22 thorpej #ifdef DIAGNOSTIC
195 1.22 thorpej if (so->so_onq != NULL)
196 1.22 thorpej panic("soqinsque");
197 1.22 thorpej #endif
198 1.22 thorpej
199 1.1 cgd so->so_head = head;
200 1.1 cgd if (q == 0) {
201 1.1 cgd head->so_q0len++;
202 1.22 thorpej so->so_onq = &head->so_q0;
203 1.1 cgd } else {
204 1.1 cgd head->so_qlen++;
205 1.22 thorpej so->so_onq = &head->so_q;
206 1.1 cgd }
207 1.22 thorpej TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
208 1.1 cgd }
209 1.1 cgd
210 1.7 mycroft int
211 1.37 lukem soqremque(struct socket *so, int q)
212 1.1 cgd {
213 1.37 lukem struct socket *head;
214 1.1 cgd
215 1.37 lukem head = so->so_head;
216 1.22 thorpej if (q == 0) {
217 1.22 thorpej if (so->so_onq != &head->so_q0)
218 1.17 thorpej return (0);
219 1.1 cgd head->so_q0len--;
220 1.1 cgd } else {
221 1.22 thorpej if (so->so_onq != &head->so_q)
222 1.22 thorpej return (0);
223 1.1 cgd head->so_qlen--;
224 1.1 cgd }
225 1.22 thorpej TAILQ_REMOVE(so->so_onq, so, so_qe);
226 1.22 thorpej so->so_onq = NULL;
227 1.22 thorpej so->so_head = NULL;
228 1.1 cgd return (1);
229 1.1 cgd }
230 1.1 cgd
231 1.1 cgd /*
232 1.1 cgd * Socantsendmore indicates that no more data will be sent on the
233 1.1 cgd * socket; it would normally be applied to a socket when the user
234 1.1 cgd * informs the system that no more data is to be sent, by the protocol
235 1.1 cgd * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data
236 1.1 cgd * will be received, and will normally be applied to the socket by a
237 1.1 cgd * protocol when it detects that the peer will send no more data.
238 1.1 cgd * Data queued for reading in the socket may yet be read.
239 1.1 cgd */
240 1.1 cgd
241 1.4 andrew void
242 1.37 lukem socantsendmore(struct socket *so)
243 1.1 cgd {
244 1.1 cgd
245 1.1 cgd so->so_state |= SS_CANTSENDMORE;
246 1.1 cgd sowwakeup(so);
247 1.1 cgd }
248 1.1 cgd
249 1.4 andrew void
250 1.37 lukem socantrcvmore(struct socket *so)
251 1.1 cgd {
252 1.1 cgd
253 1.1 cgd so->so_state |= SS_CANTRCVMORE;
254 1.1 cgd sorwakeup(so);
255 1.1 cgd }
256 1.1 cgd
257 1.1 cgd /*
258 1.1 cgd * Wait for data to arrive at/drain from a socket buffer.
259 1.1 cgd */
260 1.7 mycroft int
261 1.37 lukem sbwait(struct sockbuf *sb)
262 1.1 cgd {
263 1.1 cgd
264 1.1 cgd sb->sb_flags |= SB_WAIT;
265 1.1 cgd return (tsleep((caddr_t)&sb->sb_cc,
266 1.1 cgd (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, netio,
267 1.1 cgd sb->sb_timeo));
268 1.1 cgd }
269 1.1 cgd
270 1.1 cgd /*
271 1.1 cgd * Lock a sockbuf already known to be locked;
272 1.1 cgd * return any error returned from sleep (EINTR).
273 1.1 cgd */
274 1.7 mycroft int
275 1.37 lukem sb_lock(struct sockbuf *sb)
276 1.1 cgd {
277 1.37 lukem int error;
278 1.1 cgd
279 1.1 cgd while (sb->sb_flags & SB_LOCK) {
280 1.1 cgd sb->sb_flags |= SB_WANT;
281 1.11 christos error = tsleep((caddr_t)&sb->sb_flags,
282 1.41 enami (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK|PCATCH,
283 1.41 enami netlck, 0);
284 1.11 christos if (error)
285 1.1 cgd return (error);
286 1.1 cgd }
287 1.1 cgd sb->sb_flags |= SB_LOCK;
288 1.1 cgd return (0);
289 1.1 cgd }
290 1.1 cgd
291 1.1 cgd /*
292 1.1 cgd * Wakeup processes waiting on a socket buffer.
293 1.1 cgd * Do asynchronous notification via SIGIO
294 1.39 manu * if the socket buffer has the SB_ASYNC flag set.
295 1.1 cgd */
296 1.7 mycroft void
297 1.37 lukem sowakeup(struct socket *so, struct sockbuf *sb)
298 1.1 cgd {
299 1.37 lukem struct proc *p;
300 1.1 cgd
301 1.3 cgd selwakeup(&sb->sb_sel);
302 1.7 mycroft sb->sb_flags &= ~SB_SEL;
303 1.1 cgd if (sb->sb_flags & SB_WAIT) {
304 1.1 cgd sb->sb_flags &= ~SB_WAIT;
305 1.1 cgd wakeup((caddr_t)&sb->sb_cc);
306 1.1 cgd }
307 1.39 manu if (sb->sb_flags & SB_ASYNC) {
308 1.1 cgd if (so->so_pgid < 0)
309 1.1 cgd gsignal(-so->so_pgid, SIGIO);
310 1.1 cgd else if (so->so_pgid > 0 && (p = pfind(so->so_pgid)) != 0)
311 1.1 cgd psignal(p, SIGIO);
312 1.1 cgd }
313 1.24 matt if (sb->sb_flags & SB_UPCALL)
314 1.24 matt (*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT);
315 1.1 cgd }
316 1.1 cgd
317 1.1 cgd /*
318 1.1 cgd * Socket buffer (struct sockbuf) utility routines.
319 1.1 cgd *
320 1.1 cgd * Each socket contains two socket buffers: one for sending data and
321 1.1 cgd * one for receiving data. Each buffer contains a queue of mbufs,
322 1.1 cgd * information about the number of mbufs and amount of data in the
323 1.13 mycroft * queue, and other fields allowing poll() statements and notification
324 1.1 cgd * on data availability to be implemented.
325 1.1 cgd *
326 1.1 cgd * Data stored in a socket buffer is maintained as a list of records.
327 1.1 cgd * Each record is a list of mbufs chained together with the m_next
328 1.1 cgd * field. Records are chained together with the m_nextpkt field. The upper
329 1.1 cgd * level routine soreceive() expects the following conventions to be
330 1.1 cgd * observed when placing information in the receive buffer:
331 1.1 cgd *
332 1.1 cgd * 1. If the protocol requires each message be preceded by the sender's
333 1.1 cgd * name, then a record containing that name must be present before
334 1.1 cgd * any associated data (mbuf's must be of type MT_SONAME).
335 1.1 cgd * 2. If the protocol supports the exchange of ``access rights'' (really
336 1.1 cgd * just additional data associated with the message), and there are
337 1.1 cgd * ``rights'' to be received, then a record containing this data
338 1.10 mycroft * should be present (mbuf's must be of type MT_CONTROL).
339 1.1 cgd * 3. If a name or rights record exists, then it must be followed by
340 1.1 cgd * a data record, perhaps of zero length.
341 1.1 cgd *
342 1.1 cgd * Before using a new socket structure it is first necessary to reserve
343 1.1 cgd * buffer space to the socket, by calling sbreserve(). This should commit
344 1.1 cgd * some of the available buffer space in the system buffer pool for the
345 1.1 cgd * socket (currently, it does nothing but enforce limits). The space
346 1.1 cgd * should be released by calling sbrelease() when the socket is destroyed.
347 1.1 cgd */
348 1.1 cgd
349 1.7 mycroft int
350 1.37 lukem soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
351 1.1 cgd {
352 1.1 cgd
353 1.1 cgd if (sbreserve(&so->so_snd, sndcc) == 0)
354 1.1 cgd goto bad;
355 1.1 cgd if (sbreserve(&so->so_rcv, rcvcc) == 0)
356 1.1 cgd goto bad2;
357 1.1 cgd if (so->so_rcv.sb_lowat == 0)
358 1.1 cgd so->so_rcv.sb_lowat = 1;
359 1.1 cgd if (so->so_snd.sb_lowat == 0)
360 1.1 cgd so->so_snd.sb_lowat = MCLBYTES;
361 1.1 cgd if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
362 1.1 cgd so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
363 1.1 cgd return (0);
364 1.37 lukem bad2:
365 1.1 cgd sbrelease(&so->so_snd);
366 1.37 lukem bad:
367 1.1 cgd return (ENOBUFS);
368 1.1 cgd }
369 1.1 cgd
370 1.1 cgd /*
371 1.1 cgd * Allot mbufs to a sockbuf.
372 1.1 cgd * Attempt to scale mbmax so that mbcnt doesn't become limiting
373 1.1 cgd * if buffering efficiency is near the normal case.
374 1.1 cgd */
375 1.7 mycroft int
376 1.37 lukem sbreserve(struct sockbuf *sb, u_long cc)
377 1.1 cgd {
378 1.1 cgd
379 1.38 kml if (cc == 0 ||
380 1.38 kml (u_quad_t) cc > (u_quad_t) sb_max * MCLBYTES / (MSIZE + MCLBYTES))
381 1.1 cgd return (0);
382 1.1 cgd sb->sb_hiwat = cc;
383 1.1 cgd sb->sb_mbmax = min(cc * 2, sb_max);
384 1.1 cgd if (sb->sb_lowat > sb->sb_hiwat)
385 1.1 cgd sb->sb_lowat = sb->sb_hiwat;
386 1.1 cgd return (1);
387 1.1 cgd }
388 1.1 cgd
389 1.1 cgd /*
390 1.1 cgd * Free mbufs held by a socket, and reserved mbuf space.
391 1.1 cgd */
392 1.7 mycroft void
393 1.37 lukem sbrelease(struct sockbuf *sb)
394 1.1 cgd {
395 1.1 cgd
396 1.1 cgd sbflush(sb);
397 1.1 cgd sb->sb_hiwat = sb->sb_mbmax = 0;
398 1.1 cgd }
399 1.1 cgd
400 1.1 cgd /*
401 1.1 cgd * Routines to add and remove
402 1.1 cgd * data from an mbuf queue.
403 1.1 cgd *
404 1.1 cgd * The routines sbappend() or sbappendrecord() are normally called to
405 1.1 cgd * append new mbufs to a socket buffer, after checking that adequate
406 1.1 cgd * space is available, comparing the function sbspace() with the amount
407 1.1 cgd * of data to be added. sbappendrecord() differs from sbappend() in
408 1.1 cgd * that data supplied is treated as the beginning of a new record.
409 1.1 cgd * To place a sender's address, optional access rights, and data in a
410 1.1 cgd * socket receive buffer, sbappendaddr() should be used. To place
411 1.1 cgd * access rights and data in a socket receive buffer, sbappendrights()
412 1.1 cgd * should be used. In either case, the new data begins a new record.
413 1.1 cgd * Note that unlike sbappend() and sbappendrecord(), these routines check
414 1.1 cgd * for the caller that there will be enough space to store the data.
415 1.1 cgd * Each fails if there is not enough space, or if it cannot find mbufs
416 1.1 cgd * to store additional information in.
417 1.1 cgd *
418 1.1 cgd * Reliable protocols may use the socket send buffer to hold data
419 1.1 cgd * awaiting acknowledgement. Data is normally copied from a socket
420 1.1 cgd * send buffer in a protocol with m_copy for output to a peer,
421 1.1 cgd * and then removing the data from the socket buffer with sbdrop()
422 1.1 cgd * or sbdroprecord() when the data is acknowledged by the peer.
423 1.1 cgd */
424 1.1 cgd
425 1.1 cgd /*
426 1.1 cgd * Append mbuf chain m to the last record in the
427 1.1 cgd * socket buffer sb. The additional space associated
428 1.1 cgd * the mbuf chain is recorded in sb. Empty mbufs are
429 1.1 cgd * discarded and mbufs are compacted where possible.
430 1.1 cgd */
431 1.7 mycroft void
432 1.37 lukem sbappend(struct sockbuf *sb, struct mbuf *m)
433 1.1 cgd {
434 1.37 lukem struct mbuf *n;
435 1.1 cgd
436 1.1 cgd if (m == 0)
437 1.1 cgd return;
438 1.11 christos if ((n = sb->sb_mb) != NULL) {
439 1.1 cgd while (n->m_nextpkt)
440 1.1 cgd n = n->m_nextpkt;
441 1.1 cgd do {
442 1.1 cgd if (n->m_flags & M_EOR) {
443 1.1 cgd sbappendrecord(sb, m); /* XXXXXX!!!! */
444 1.1 cgd return;
445 1.1 cgd }
446 1.1 cgd } while (n->m_next && (n = n->m_next));
447 1.1 cgd }
448 1.1 cgd sbcompress(sb, m, n);
449 1.1 cgd }
450 1.1 cgd
451 1.1 cgd #ifdef SOCKBUF_DEBUG
452 1.7 mycroft void
453 1.37 lukem sbcheck(struct sockbuf *sb)
454 1.1 cgd {
455 1.37 lukem struct mbuf *m;
456 1.37 lukem int len, mbcnt;
457 1.1 cgd
458 1.37 lukem len = 0;
459 1.37 lukem mbcnt = 0;
460 1.1 cgd for (m = sb->sb_mb; m; m = m->m_next) {
461 1.1 cgd len += m->m_len;
462 1.1 cgd mbcnt += MSIZE;
463 1.1 cgd if (m->m_flags & M_EXT)
464 1.1 cgd mbcnt += m->m_ext.ext_size;
465 1.1 cgd if (m->m_nextpkt)
466 1.1 cgd panic("sbcheck nextpkt");
467 1.1 cgd }
468 1.1 cgd if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
469 1.15 christos printf("cc %d != %d || mbcnt %d != %d\n", len, sb->sb_cc,
470 1.1 cgd mbcnt, sb->sb_mbcnt);
471 1.1 cgd panic("sbcheck");
472 1.1 cgd }
473 1.1 cgd }
474 1.1 cgd #endif
475 1.1 cgd
476 1.1 cgd /*
477 1.1 cgd * As above, except the mbuf chain
478 1.1 cgd * begins a new record.
479 1.1 cgd */
480 1.7 mycroft void
481 1.37 lukem sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
482 1.1 cgd {
483 1.37 lukem struct mbuf *m;
484 1.1 cgd
485 1.1 cgd if (m0 == 0)
486 1.1 cgd return;
487 1.11 christos if ((m = sb->sb_mb) != NULL)
488 1.1 cgd while (m->m_nextpkt)
489 1.1 cgd m = m->m_nextpkt;
490 1.1 cgd /*
491 1.1 cgd * Put the first mbuf on the queue.
492 1.1 cgd * Note this permits zero length records.
493 1.1 cgd */
494 1.1 cgd sballoc(sb, m0);
495 1.1 cgd if (m)
496 1.1 cgd m->m_nextpkt = m0;
497 1.1 cgd else
498 1.1 cgd sb->sb_mb = m0;
499 1.1 cgd m = m0->m_next;
500 1.1 cgd m0->m_next = 0;
501 1.1 cgd if (m && (m0->m_flags & M_EOR)) {
502 1.1 cgd m0->m_flags &= ~M_EOR;
503 1.1 cgd m->m_flags |= M_EOR;
504 1.1 cgd }
505 1.1 cgd sbcompress(sb, m, m0);
506 1.1 cgd }
507 1.1 cgd
508 1.1 cgd /*
509 1.1 cgd * As above except that OOB data
510 1.1 cgd * is inserted at the beginning of the sockbuf,
511 1.1 cgd * but after any other OOB data.
512 1.1 cgd */
513 1.7 mycroft void
514 1.37 lukem sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
515 1.1 cgd {
516 1.37 lukem struct mbuf *m, **mp;
517 1.1 cgd
518 1.1 cgd if (m0 == 0)
519 1.1 cgd return;
520 1.11 christos for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
521 1.1 cgd again:
522 1.1 cgd switch (m->m_type) {
523 1.1 cgd
524 1.1 cgd case MT_OOBDATA:
525 1.1 cgd continue; /* WANT next train */
526 1.1 cgd
527 1.1 cgd case MT_CONTROL:
528 1.11 christos if ((m = m->m_next) != NULL)
529 1.1 cgd goto again; /* inspect THIS train further */
530 1.1 cgd }
531 1.1 cgd break;
532 1.1 cgd }
533 1.1 cgd /*
534 1.1 cgd * Put the first mbuf on the queue.
535 1.1 cgd * Note this permits zero length records.
536 1.1 cgd */
537 1.1 cgd sballoc(sb, m0);
538 1.1 cgd m0->m_nextpkt = *mp;
539 1.1 cgd *mp = m0;
540 1.1 cgd m = m0->m_next;
541 1.1 cgd m0->m_next = 0;
542 1.1 cgd if (m && (m0->m_flags & M_EOR)) {
543 1.1 cgd m0->m_flags &= ~M_EOR;
544 1.1 cgd m->m_flags |= M_EOR;
545 1.1 cgd }
546 1.1 cgd sbcompress(sb, m, m0);
547 1.1 cgd }
548 1.1 cgd
549 1.1 cgd /*
550 1.1 cgd * Append address and data, and optionally, control (ancillary) data
551 1.1 cgd * to the receive queue of a socket. If present,
552 1.1 cgd * m0 must include a packet header with total length.
553 1.1 cgd * Returns 0 if no space in sockbuf or insufficient mbufs.
554 1.1 cgd */
555 1.7 mycroft int
556 1.37 lukem sbappendaddr(struct sockbuf *sb, struct sockaddr *asa, struct mbuf *m0,
557 1.37 lukem struct mbuf *control)
558 1.1 cgd {
559 1.37 lukem struct mbuf *m, *n;
560 1.37 lukem int space;
561 1.1 cgd
562 1.37 lukem space = asa->sa_len;
563 1.37 lukem
564 1.37 lukem if (m0 && (m0->m_flags & M_PKTHDR) == 0)
565 1.37 lukem panic("sbappendaddr");
566 1.1 cgd if (m0)
567 1.1 cgd space += m0->m_pkthdr.len;
568 1.1 cgd for (n = control; n; n = n->m_next) {
569 1.1 cgd space += n->m_len;
570 1.1 cgd if (n->m_next == 0) /* keep pointer to last control buf */
571 1.1 cgd break;
572 1.1 cgd }
573 1.1 cgd if (space > sbspace(sb))
574 1.1 cgd return (0);
575 1.1 cgd MGET(m, M_DONTWAIT, MT_SONAME);
576 1.1 cgd if (m == 0)
577 1.1 cgd return (0);
578 1.20 thorpej if (asa->sa_len > MLEN) {
579 1.20 thorpej MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
580 1.20 thorpej if ((m->m_flags & M_EXT) == 0) {
581 1.20 thorpej m_free(m);
582 1.20 thorpej return (0);
583 1.20 thorpej }
584 1.20 thorpej }
585 1.1 cgd m->m_len = asa->sa_len;
586 1.26 perry memcpy(mtod(m, caddr_t), (caddr_t)asa, asa->sa_len);
587 1.1 cgd if (n)
588 1.1 cgd n->m_next = m0; /* concatenate data to control */
589 1.1 cgd else
590 1.1 cgd control = m0;
591 1.1 cgd m->m_next = control;
592 1.1 cgd for (n = m; n; n = n->m_next)
593 1.1 cgd sballoc(sb, n);
594 1.11 christos if ((n = sb->sb_mb) != NULL) {
595 1.1 cgd while (n->m_nextpkt)
596 1.1 cgd n = n->m_nextpkt;
597 1.1 cgd n->m_nextpkt = m;
598 1.1 cgd } else
599 1.1 cgd sb->sb_mb = m;
600 1.1 cgd return (1);
601 1.1 cgd }
602 1.1 cgd
603 1.7 mycroft int
604 1.37 lukem sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
605 1.1 cgd {
606 1.37 lukem struct mbuf *m, *n;
607 1.37 lukem int space;
608 1.1 cgd
609 1.37 lukem space = 0;
610 1.1 cgd if (control == 0)
611 1.1 cgd panic("sbappendcontrol");
612 1.1 cgd for (m = control; ; m = m->m_next) {
613 1.1 cgd space += m->m_len;
614 1.1 cgd if (m->m_next == 0)
615 1.1 cgd break;
616 1.1 cgd }
617 1.1 cgd n = m; /* save pointer to last control buffer */
618 1.1 cgd for (m = m0; m; m = m->m_next)
619 1.1 cgd space += m->m_len;
620 1.1 cgd if (space > sbspace(sb))
621 1.1 cgd return (0);
622 1.1 cgd n->m_next = m0; /* concatenate data to control */
623 1.1 cgd for (m = control; m; m = m->m_next)
624 1.1 cgd sballoc(sb, m);
625 1.11 christos if ((n = sb->sb_mb) != NULL) {
626 1.1 cgd while (n->m_nextpkt)
627 1.1 cgd n = n->m_nextpkt;
628 1.1 cgd n->m_nextpkt = control;
629 1.1 cgd } else
630 1.1 cgd sb->sb_mb = control;
631 1.1 cgd return (1);
632 1.1 cgd }
633 1.1 cgd
634 1.1 cgd /*
635 1.1 cgd * Compress mbuf chain m into the socket
636 1.1 cgd * buffer sb following mbuf n. If n
637 1.1 cgd * is null, the buffer is presumed empty.
638 1.1 cgd */
639 1.7 mycroft void
640 1.37 lukem sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
641 1.1 cgd {
642 1.37 lukem int eor;
643 1.37 lukem struct mbuf *o;
644 1.1 cgd
645 1.37 lukem eor = 0;
646 1.1 cgd while (m) {
647 1.1 cgd eor |= m->m_flags & M_EOR;
648 1.1 cgd if (m->m_len == 0 &&
649 1.1 cgd (eor == 0 ||
650 1.1 cgd (((o = m->m_next) || (o = n)) &&
651 1.1 cgd o->m_type == m->m_type))) {
652 1.1 cgd m = m_free(m);
653 1.1 cgd continue;
654 1.1 cgd }
655 1.40 thorpej if (n && (n->m_flags & M_EOR) == 0 &&
656 1.40 thorpej /* M_TRAILINGSPACE() checks buffer writeability */
657 1.40 thorpej m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
658 1.40 thorpej m->m_len <= M_TRAILINGSPACE(n) &&
659 1.40 thorpej n->m_type == m->m_type) {
660 1.26 perry memcpy(mtod(n, caddr_t) + n->m_len, mtod(m, caddr_t),
661 1.1 cgd (unsigned)m->m_len);
662 1.1 cgd n->m_len += m->m_len;
663 1.1 cgd sb->sb_cc += m->m_len;
664 1.1 cgd m = m_free(m);
665 1.1 cgd continue;
666 1.1 cgd }
667 1.1 cgd if (n)
668 1.1 cgd n->m_next = m;
669 1.1 cgd else
670 1.1 cgd sb->sb_mb = m;
671 1.1 cgd sballoc(sb, m);
672 1.1 cgd n = m;
673 1.1 cgd m->m_flags &= ~M_EOR;
674 1.1 cgd m = m->m_next;
675 1.1 cgd n->m_next = 0;
676 1.1 cgd }
677 1.1 cgd if (eor) {
678 1.1 cgd if (n)
679 1.1 cgd n->m_flags |= eor;
680 1.1 cgd else
681 1.15 christos printf("semi-panic: sbcompress\n");
682 1.1 cgd }
683 1.1 cgd }
684 1.1 cgd
685 1.1 cgd /*
686 1.1 cgd * Free all mbufs in a sockbuf.
687 1.1 cgd * Check that all resources are reclaimed.
688 1.1 cgd */
689 1.7 mycroft void
690 1.37 lukem sbflush(struct sockbuf *sb)
691 1.1 cgd {
692 1.1 cgd
693 1.1 cgd if (sb->sb_flags & SB_LOCK)
694 1.1 cgd panic("sbflush");
695 1.1 cgd while (sb->sb_mbcnt)
696 1.1 cgd sbdrop(sb, (int)sb->sb_cc);
697 1.1 cgd if (sb->sb_cc || sb->sb_mb)
698 1.1 cgd panic("sbflush 2");
699 1.1 cgd }
700 1.1 cgd
701 1.1 cgd /*
702 1.1 cgd * Drop data from (the front of) a sockbuf.
703 1.1 cgd */
704 1.7 mycroft void
705 1.37 lukem sbdrop(struct sockbuf *sb, int len)
706 1.1 cgd {
707 1.37 lukem struct mbuf *m, *mn, *next;
708 1.1 cgd
709 1.1 cgd next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
710 1.1 cgd while (len > 0) {
711 1.1 cgd if (m == 0) {
712 1.1 cgd if (next == 0)
713 1.1 cgd panic("sbdrop");
714 1.1 cgd m = next;
715 1.1 cgd next = m->m_nextpkt;
716 1.1 cgd continue;
717 1.1 cgd }
718 1.1 cgd if (m->m_len > len) {
719 1.1 cgd m->m_len -= len;
720 1.1 cgd m->m_data += len;
721 1.1 cgd sb->sb_cc -= len;
722 1.1 cgd break;
723 1.1 cgd }
724 1.1 cgd len -= m->m_len;
725 1.1 cgd sbfree(sb, m);
726 1.1 cgd MFREE(m, mn);
727 1.1 cgd m = mn;
728 1.1 cgd }
729 1.1 cgd while (m && m->m_len == 0) {
730 1.1 cgd sbfree(sb, m);
731 1.1 cgd MFREE(m, mn);
732 1.1 cgd m = mn;
733 1.1 cgd }
734 1.1 cgd if (m) {
735 1.1 cgd sb->sb_mb = m;
736 1.1 cgd m->m_nextpkt = next;
737 1.1 cgd } else
738 1.1 cgd sb->sb_mb = next;
739 1.1 cgd }
740 1.1 cgd
741 1.1 cgd /*
742 1.1 cgd * Drop a record off the front of a sockbuf
743 1.1 cgd * and move the next record to the front.
744 1.1 cgd */
745 1.7 mycroft void
746 1.37 lukem sbdroprecord(struct sockbuf *sb)
747 1.1 cgd {
748 1.37 lukem struct mbuf *m, *mn;
749 1.1 cgd
750 1.1 cgd m = sb->sb_mb;
751 1.1 cgd if (m) {
752 1.1 cgd sb->sb_mb = m->m_nextpkt;
753 1.1 cgd do {
754 1.1 cgd sbfree(sb, m);
755 1.1 cgd MFREE(m, mn);
756 1.11 christos } while ((m = mn) != NULL);
757 1.1 cgd }
758 1.19 thorpej }
759 1.19 thorpej
760 1.19 thorpej /*
761 1.19 thorpej * Create a "control" mbuf containing the specified data
762 1.19 thorpej * with the specified type for presentation on a socket buffer.
763 1.19 thorpej */
764 1.19 thorpej struct mbuf *
765 1.37 lukem sbcreatecontrol(caddr_t p, int size, int type, int level)
766 1.19 thorpej {
767 1.37 lukem struct cmsghdr *cp;
768 1.37 lukem struct mbuf *m;
769 1.19 thorpej
770 1.35 itojun if (CMSG_SPACE(size) > MCLBYTES) {
771 1.30 itojun printf("sbcreatecontrol: message too large %d\n", size);
772 1.30 itojun return NULL;
773 1.30 itojun }
774 1.30 itojun
775 1.19 thorpej if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
776 1.19 thorpej return ((struct mbuf *) NULL);
777 1.35 itojun if (CMSG_SPACE(size) > MLEN) {
778 1.30 itojun MCLGET(m, M_DONTWAIT);
779 1.30 itojun if ((m->m_flags & M_EXT) == 0) {
780 1.30 itojun m_free(m);
781 1.30 itojun return NULL;
782 1.30 itojun }
783 1.30 itojun }
784 1.19 thorpej cp = mtod(m, struct cmsghdr *);
785 1.26 perry memcpy(CMSG_DATA(cp), p, size);
786 1.35 itojun m->m_len = CMSG_SPACE(size);
787 1.35 itojun cp->cmsg_len = CMSG_LEN(size);
788 1.19 thorpej cp->cmsg_level = level;
789 1.19 thorpej cp->cmsg_type = type;
790 1.19 thorpej return (m);
791 1.1 cgd }
792