Home | History | Annotate | Line # | Download | only in kern
uipc_socket2.c revision 1.94
      1  1.94        ad /*	$NetBSD: uipc_socket2.c,v 1.94 2008/05/26 17:21:18 ad Exp $	*/
      2  1.91        ad 
      3  1.91        ad /*-
      4  1.91        ad  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      5  1.91        ad  * All rights reserved.
      6  1.91        ad  *
      7  1.91        ad  * Redistribution and use in source and binary forms, with or without
      8  1.91        ad  * modification, are permitted provided that the following conditions
      9  1.91        ad  * are met:
     10  1.91        ad  * 1. Redistributions of source code must retain the above copyright
     11  1.91        ad  *    notice, this list of conditions and the following disclaimer.
     12  1.91        ad  * 2. Redistributions in binary form must reproduce the above copyright
     13  1.91        ad  *    notice, this list of conditions and the following disclaimer in the
     14  1.91        ad  *    documentation and/or other materials provided with the distribution.
     15  1.91        ad  *
     16  1.91        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17  1.91        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18  1.91        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19  1.91        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20  1.91        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21  1.91        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22  1.91        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23  1.91        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24  1.91        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25  1.91        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26  1.91        ad  * POSSIBILITY OF SUCH DAMAGE.
     27  1.91        ad  */
     28   1.9       cgd 
     29   1.1       cgd /*
     30   1.7   mycroft  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     31   1.7   mycroft  *	The Regents of the University of California.  All rights reserved.
     32   1.1       cgd  *
     33   1.1       cgd  * Redistribution and use in source and binary forms, with or without
     34   1.1       cgd  * modification, are permitted provided that the following conditions
     35   1.1       cgd  * are met:
     36   1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     37   1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     38   1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     39   1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     40   1.1       cgd  *    documentation and/or other materials provided with the distribution.
     41  1.54       agc  * 3. Neither the name of the University nor the names of its contributors
     42   1.1       cgd  *    may be used to endorse or promote products derived from this software
     43   1.1       cgd  *    without specific prior written permission.
     44   1.1       cgd  *
     45   1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     46   1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     47   1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     48   1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     49   1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     50   1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     51   1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     52   1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     53   1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     54   1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     55   1.1       cgd  * SUCH DAMAGE.
     56   1.1       cgd  *
     57  1.23      fvdl  *	@(#)uipc_socket2.c	8.2 (Berkeley) 2/14/95
     58   1.1       cgd  */
     59  1.42     lukem 
     60  1.42     lukem #include <sys/cdefs.h>
     61  1.94        ad __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.94 2008/05/26 17:21:18 ad Exp $");
     62  1.51    martin 
     63  1.51    martin #include "opt_mbuftrace.h"
     64  1.58   thorpej #include "opt_sb_max.h"
     65   1.1       cgd 
     66   1.5   mycroft #include <sys/param.h>
     67   1.5   mycroft #include <sys/systm.h>
     68   1.5   mycroft #include <sys/proc.h>
     69   1.5   mycroft #include <sys/file.h>
     70   1.5   mycroft #include <sys/buf.h>
     71   1.5   mycroft #include <sys/malloc.h>
     72   1.5   mycroft #include <sys/mbuf.h>
     73   1.5   mycroft #include <sys/protosw.h>
     74  1.91        ad #include <sys/domain.h>
     75  1.55  christos #include <sys/poll.h>
     76   1.5   mycroft #include <sys/socket.h>
     77   1.5   mycroft #include <sys/socketvar.h>
     78  1.11  christos #include <sys/signalvar.h>
     79  1.71      elad #include <sys/kauth.h>
     80  1.91        ad #include <sys/pool.h>
     81   1.1       cgd 
     82   1.1       cgd /*
     83  1.91        ad  * Primitive routines for operating on sockets and socket buffers.
     84  1.91        ad  *
     85  1.91        ad  * Locking rules and assumptions:
     86  1.91        ad  *
     87  1.91        ad  * o socket::so_lock can change on the fly.  The low level routines used
     88  1.91        ad  *   to lock sockets are aware of this.  When so_lock is acquired, the
     89  1.91        ad  *   routine locking must check to see if so_lock still points to the
     90  1.91        ad  *   lock that was acquired.  If so_lock has changed in the meantime, the
     91  1.91        ad  *   now irellevant lock that was acquired must be dropped and the lock
     92  1.91        ad  *   operation retried.  Although not proven here, this is completely safe
     93  1.91        ad  *   on a multiprocessor system, even with relaxed memory ordering, given
     94  1.91        ad  *   the next two rules:
     95  1.91        ad  *
     96  1.91        ad  * o In order to mutate so_lock, the lock pointed to by the current value
     97  1.91        ad  *   of so_lock must be held: i.e., the socket must be held locked by the
     98  1.91        ad  *   changing thread.  The thread must issue membar_exit() to prevent
     99  1.91        ad  *   memory accesses being reordered, and can set so_lock to the desired
    100  1.91        ad  *   value.  If the lock pointed to by the new value of so_lock is not
    101  1.91        ad  *   held by the changing thread, the socket must then be considered
    102  1.91        ad  *   unlocked.
    103  1.91        ad  *
    104  1.91        ad  * o If so_lock is mutated, and the previous lock referred to by so_lock
    105  1.91        ad  *   could still be visible to other threads in the system (e.g. via file
    106  1.91        ad  *   descriptor or protocol-internal reference), then the old lock must
    107  1.91        ad  *   remain valid until the socket and/or protocol control block has been
    108  1.91        ad  *   torn down.
    109  1.91        ad  *
    110  1.91        ad  * o If a socket has a non-NULL so_head value (i.e. is in the process of
    111  1.91        ad  *   connecting), then locking the socket must also lock the socket pointed
    112  1.91        ad  *   to by so_head: their lock pointers must match.
    113  1.91        ad  *
    114  1.91        ad  * o If a socket has connections in progress (so_q, so_q0 not empty) then
    115  1.91        ad  *   locking the socket must also lock the sockets attached to both queues.
    116  1.91        ad  *   Again, their lock pointers must match.
    117  1.91        ad  *
    118  1.91        ad  * o Beyond the initial lock assigment in socreate(), assigning locks to
    119  1.91        ad  *   sockets is the responsibility of the individual protocols / protocol
    120  1.91        ad  *   domains.
    121   1.1       cgd  */
    122   1.1       cgd 
    123  1.94        ad static pool_cache_t socket_cache;
    124   1.1       cgd 
    125  1.58   thorpej u_long	sb_max = SB_MAX;	/* maximum socket buffer size */
    126  1.58   thorpej static u_long sb_max_adj;	/* adjusted sb_max */
    127  1.58   thorpej 
    128   1.1       cgd /*
    129   1.1       cgd  * Procedures to manipulate state flags of socket
    130   1.1       cgd  * and do appropriate wakeups.  Normal sequence from the
    131   1.1       cgd  * active (originating) side is that soisconnecting() is
    132   1.1       cgd  * called during processing of connect() call,
    133   1.1       cgd  * resulting in an eventual call to soisconnected() if/when the
    134   1.1       cgd  * connection is established.  When the connection is torn down
    135   1.1       cgd  * soisdisconnecting() is called during processing of disconnect() call,
    136   1.1       cgd  * and soisdisconnected() is called when the connection to the peer
    137   1.1       cgd  * is totally severed.  The semantics of these routines are such that
    138   1.1       cgd  * connectionless protocols can call soisconnected() and soisdisconnected()
    139   1.1       cgd  * only, bypassing the in-progress calls when setting up a ``connection''
    140   1.1       cgd  * takes no time.
    141   1.1       cgd  *
    142   1.1       cgd  * From the passive side, a socket is created with
    143   1.1       cgd  * two queues of sockets: so_q0 for connections in progress
    144   1.1       cgd  * and so_q for connections already made and awaiting user acceptance.
    145   1.1       cgd  * As a protocol is preparing incoming connections, it creates a socket
    146   1.1       cgd  * structure queued on so_q0 by calling sonewconn().  When the connection
    147   1.1       cgd  * is established, soisconnected() is called, and transfers the
    148   1.1       cgd  * socket structure to so_q, making it available to accept().
    149  1.66     perry  *
    150   1.1       cgd  * If a socket is closed with sockets on either
    151   1.1       cgd  * so_q0 or so_q, these sockets are dropped.
    152   1.1       cgd  *
    153   1.1       cgd  * If higher level protocols are implemented in
    154   1.1       cgd  * the kernel, the wakeups done here will sometimes
    155   1.1       cgd  * cause software-interrupt process scheduling.
    156   1.1       cgd  */
    157   1.1       cgd 
    158   1.7   mycroft void
    159  1.37     lukem soisconnecting(struct socket *so)
    160   1.1       cgd {
    161   1.1       cgd 
    162  1.91        ad 	KASSERT(solocked(so));
    163  1.91        ad 
    164   1.1       cgd 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
    165   1.1       cgd 	so->so_state |= SS_ISCONNECTING;
    166   1.1       cgd }
    167   1.1       cgd 
    168   1.7   mycroft void
    169  1.37     lukem soisconnected(struct socket *so)
    170   1.1       cgd {
    171  1.37     lukem 	struct socket	*head;
    172   1.1       cgd 
    173  1.37     lukem 	head = so->so_head;
    174  1.91        ad 
    175  1.91        ad 	KASSERT(solocked(so));
    176  1.91        ad 	KASSERT(head == NULL || solocked2(so, head));
    177  1.91        ad 
    178   1.1       cgd 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
    179   1.1       cgd 	so->so_state |= SS_ISCONNECTED;
    180   1.1       cgd 	if (head && soqremque(so, 0)) {
    181   1.1       cgd 		soqinsque(head, so, 1);
    182   1.1       cgd 		sorwakeup(head);
    183  1.91        ad 		cv_broadcast(&head->so_cv);
    184   1.1       cgd 	} else {
    185  1.91        ad 		cv_broadcast(&so->so_cv);
    186   1.1       cgd 		sorwakeup(so);
    187   1.1       cgd 		sowwakeup(so);
    188   1.1       cgd 	}
    189   1.1       cgd }
    190   1.1       cgd 
    191   1.7   mycroft void
    192  1.37     lukem soisdisconnecting(struct socket *so)
    193   1.1       cgd {
    194   1.1       cgd 
    195  1.91        ad 	KASSERT(solocked(so));
    196  1.91        ad 
    197   1.1       cgd 	so->so_state &= ~SS_ISCONNECTING;
    198   1.1       cgd 	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
    199  1.91        ad 	cv_broadcast(&so->so_cv);
    200   1.1       cgd 	sowwakeup(so);
    201   1.1       cgd 	sorwakeup(so);
    202   1.1       cgd }
    203   1.1       cgd 
    204   1.7   mycroft void
    205  1.37     lukem soisdisconnected(struct socket *so)
    206   1.1       cgd {
    207   1.1       cgd 
    208  1.91        ad 	KASSERT(solocked(so));
    209  1.91        ad 
    210   1.1       cgd 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
    211  1.27   mycroft 	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
    212  1.91        ad 	cv_broadcast(&so->so_cv);
    213   1.1       cgd 	sowwakeup(so);
    214   1.1       cgd 	sorwakeup(so);
    215   1.1       cgd }
    216   1.1       cgd 
    217  1.94        ad void
    218  1.94        ad soinit2(void)
    219  1.94        ad {
    220  1.94        ad 
    221  1.94        ad 	socket_cache = pool_cache_init(sizeof(struct socket), 0, 0, 0,
    222  1.94        ad 	    "socket", NULL, IPL_SOFTNET, NULL, NULL, NULL);
    223  1.94        ad }
    224  1.94        ad 
    225   1.1       cgd /*
    226   1.1       cgd  * When an attempt at a new connection is noted on a socket
    227   1.1       cgd  * which accepts connections, sonewconn is called.  If the
    228   1.1       cgd  * connection is possible (subject to space constraints, etc.)
    229   1.1       cgd  * then we allocate a new structure, propoerly linked into the
    230   1.1       cgd  * data structure of the original socket, and return this.
    231  1.77    plunky  * Connstatus may be 0, SS_ISCONFIRMING, or SS_ISCONNECTED.
    232   1.1       cgd  */
    233   1.1       cgd struct socket *
    234  1.76    plunky sonewconn(struct socket *head, int connstatus)
    235   1.1       cgd {
    236  1.37     lukem 	struct socket	*so;
    237  1.91        ad 	int		soqueue, error;
    238  1.91        ad 
    239  1.91        ad 	KASSERT(solocked(head));
    240   1.1       cgd 
    241  1.37     lukem 	soqueue = connstatus ? 1 : 0;
    242   1.1       cgd 	if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
    243   1.1       cgd 		return ((struct socket *)0);
    244  1.91        ad 	so = soget(false);
    245  1.66     perry 	if (so == NULL)
    246  1.25   thorpej 		return (NULL);
    247  1.91        ad 	mutex_obj_hold(head->so_lock);
    248  1.91        ad 	so->so_lock = head->so_lock;
    249   1.1       cgd 	so->so_type = head->so_type;
    250   1.1       cgd 	so->so_options = head->so_options &~ SO_ACCEPTCONN;
    251   1.1       cgd 	so->so_linger = head->so_linger;
    252   1.1       cgd 	so->so_state = head->so_state | SS_NOFDREF;
    253  1.89        ad 	so->so_nbio = head->so_nbio;
    254   1.1       cgd 	so->so_proto = head->so_proto;
    255   1.1       cgd 	so->so_timeo = head->so_timeo;
    256   1.1       cgd 	so->so_pgid = head->so_pgid;
    257  1.24      matt 	so->so_send = head->so_send;
    258  1.24      matt 	so->so_receive = head->so_receive;
    259  1.67  christos 	so->so_uidinfo = head->so_uidinfo;
    260  1.49      matt #ifdef MBUFTRACE
    261  1.49      matt 	so->so_mowner = head->so_mowner;
    262  1.49      matt 	so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
    263  1.49      matt 	so->so_snd.sb_mowner = head->so_snd.sb_mowner;
    264  1.49      matt #endif
    265   1.1       cgd 	(void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
    266  1.83       tls 	so->so_snd.sb_lowat = head->so_snd.sb_lowat;
    267  1.83       tls 	so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
    268  1.84       tls 	so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
    269  1.84       tls 	so->so_snd.sb_timeo = head->so_snd.sb_timeo;
    270  1.85     rmind 	so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE;
    271  1.85     rmind 	so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE;
    272   1.1       cgd 	soqinsque(head, so, soqueue);
    273  1.91        ad 	error = (*so->so_proto->pr_usrreq)(so, PRU_ATTACH, NULL, NULL,
    274  1.91        ad 	    NULL, NULL);
    275  1.91        ad 	KASSERT(solocked(so));
    276  1.91        ad 	if (error != 0) {
    277   1.1       cgd 		(void) soqremque(so, soqueue);
    278  1.91        ad 		soput(so);
    279  1.25   thorpej 		return (NULL);
    280   1.1       cgd 	}
    281   1.1       cgd 	if (connstatus) {
    282   1.1       cgd 		sorwakeup(head);
    283  1.91        ad 		cv_broadcast(&head->so_cv);
    284   1.1       cgd 		so->so_state |= connstatus;
    285   1.1       cgd 	}
    286   1.1       cgd 	return (so);
    287   1.1       cgd }
    288   1.1       cgd 
    289  1.91        ad struct socket *
    290  1.91        ad soget(bool waitok)
    291  1.91        ad {
    292  1.91        ad 	struct socket *so;
    293  1.91        ad 
    294  1.94        ad 	so = pool_cache_get(socket_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
    295  1.91        ad 	if (__predict_false(so == NULL))
    296  1.91        ad 		return (NULL);
    297  1.91        ad 	memset(so, 0, sizeof(*so));
    298  1.91        ad 	TAILQ_INIT(&so->so_q0);
    299  1.91        ad 	TAILQ_INIT(&so->so_q);
    300  1.91        ad 	cv_init(&so->so_cv, "socket");
    301  1.91        ad 	cv_init(&so->so_rcv.sb_cv, "netio");
    302  1.91        ad 	cv_init(&so->so_snd.sb_cv, "netio");
    303  1.91        ad 	selinit(&so->so_rcv.sb_sel);
    304  1.91        ad 	selinit(&so->so_snd.sb_sel);
    305  1.91        ad 	so->so_rcv.sb_so = so;
    306  1.91        ad 	so->so_snd.sb_so = so;
    307  1.91        ad 	return so;
    308  1.91        ad }
    309  1.91        ad 
    310  1.91        ad void
    311  1.91        ad soput(struct socket *so)
    312  1.91        ad {
    313  1.91        ad 
    314  1.91        ad 	KASSERT(!cv_has_waiters(&so->so_cv));
    315  1.91        ad 	KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
    316  1.91        ad 	KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
    317  1.91        ad 	seldestroy(&so->so_rcv.sb_sel);
    318  1.91        ad 	seldestroy(&so->so_snd.sb_sel);
    319  1.91        ad 	mutex_obj_free(so->so_lock);
    320  1.91        ad 	cv_destroy(&so->so_cv);
    321  1.91        ad 	cv_destroy(&so->so_rcv.sb_cv);
    322  1.91        ad 	cv_destroy(&so->so_snd.sb_cv);
    323  1.94        ad 	pool_cache_put(socket_cache, so);
    324  1.91        ad }
    325  1.91        ad 
    326   1.7   mycroft void
    327  1.37     lukem soqinsque(struct socket *head, struct socket *so, int q)
    328   1.1       cgd {
    329   1.1       cgd 
    330  1.91        ad 	KASSERT(solocked2(head, so));
    331  1.91        ad 
    332  1.22   thorpej #ifdef DIAGNOSTIC
    333  1.22   thorpej 	if (so->so_onq != NULL)
    334  1.22   thorpej 		panic("soqinsque");
    335  1.22   thorpej #endif
    336  1.22   thorpej 
    337   1.1       cgd 	so->so_head = head;
    338   1.1       cgd 	if (q == 0) {
    339   1.1       cgd 		head->so_q0len++;
    340  1.22   thorpej 		so->so_onq = &head->so_q0;
    341   1.1       cgd 	} else {
    342   1.1       cgd 		head->so_qlen++;
    343  1.22   thorpej 		so->so_onq = &head->so_q;
    344   1.1       cgd 	}
    345  1.22   thorpej 	TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
    346   1.1       cgd }
    347   1.1       cgd 
    348   1.7   mycroft int
    349  1.37     lukem soqremque(struct socket *so, int q)
    350   1.1       cgd {
    351  1.37     lukem 	struct socket	*head;
    352   1.1       cgd 
    353  1.37     lukem 	head = so->so_head;
    354  1.91        ad 
    355  1.91        ad 	KASSERT(solocked(so));
    356  1.22   thorpej 	if (q == 0) {
    357  1.22   thorpej 		if (so->so_onq != &head->so_q0)
    358  1.17   thorpej 			return (0);
    359   1.1       cgd 		head->so_q0len--;
    360   1.1       cgd 	} else {
    361  1.22   thorpej 		if (so->so_onq != &head->so_q)
    362  1.22   thorpej 			return (0);
    363   1.1       cgd 		head->so_qlen--;
    364   1.1       cgd 	}
    365  1.91        ad 	KASSERT(solocked2(so, head));
    366  1.22   thorpej 	TAILQ_REMOVE(so->so_onq, so, so_qe);
    367  1.22   thorpej 	so->so_onq = NULL;
    368  1.22   thorpej 	so->so_head = NULL;
    369   1.1       cgd 	return (1);
    370   1.1       cgd }
    371   1.1       cgd 
    372   1.1       cgd /*
    373   1.1       cgd  * Socantsendmore indicates that no more data will be sent on the
    374   1.1       cgd  * socket; it would normally be applied to a socket when the user
    375   1.1       cgd  * informs the system that no more data is to be sent, by the protocol
    376   1.1       cgd  * code (in case PRU_SHUTDOWN).  Socantrcvmore indicates that no more data
    377   1.1       cgd  * will be received, and will normally be applied to the socket by a
    378   1.1       cgd  * protocol when it detects that the peer will send no more data.
    379   1.1       cgd  * Data queued for reading in the socket may yet be read.
    380   1.1       cgd  */
    381   1.1       cgd 
    382   1.4    andrew void
    383  1.37     lukem socantsendmore(struct socket *so)
    384   1.1       cgd {
    385   1.1       cgd 
    386  1.91        ad 	KASSERT(solocked(so));
    387  1.91        ad 
    388   1.1       cgd 	so->so_state |= SS_CANTSENDMORE;
    389   1.1       cgd 	sowwakeup(so);
    390   1.1       cgd }
    391   1.1       cgd 
    392   1.4    andrew void
    393  1.37     lukem socantrcvmore(struct socket *so)
    394   1.1       cgd {
    395   1.1       cgd 
    396  1.91        ad 	KASSERT(solocked(so));
    397  1.91        ad 
    398   1.1       cgd 	so->so_state |= SS_CANTRCVMORE;
    399   1.1       cgd 	sorwakeup(so);
    400   1.1       cgd }
    401   1.1       cgd 
    402   1.1       cgd /*
    403   1.1       cgd  * Wait for data to arrive at/drain from a socket buffer.
    404   1.1       cgd  */
    405   1.7   mycroft int
    406  1.37     lukem sbwait(struct sockbuf *sb)
    407   1.1       cgd {
    408  1.91        ad 	struct socket *so;
    409  1.91        ad 	kmutex_t *lock;
    410  1.91        ad 	int error;
    411   1.1       cgd 
    412  1.91        ad 	so = sb->sb_so;
    413   1.1       cgd 
    414  1.91        ad 	KASSERT(solocked(so));
    415   1.1       cgd 
    416  1.91        ad 	sb->sb_flags |= SB_NOTIFY;
    417  1.91        ad 	lock = so->so_lock;
    418  1.91        ad 	if ((sb->sb_flags & SB_NOINTR) != 0)
    419  1.91        ad 		error = cv_timedwait(&sb->sb_cv, lock, sb->sb_timeo);
    420  1.91        ad 	else
    421  1.91        ad 		error = cv_timedwait_sig(&sb->sb_cv, lock, sb->sb_timeo);
    422  1.91        ad 	if (__predict_false(lock != so->so_lock))
    423  1.91        ad 		solockretry(so, lock);
    424  1.91        ad 	return error;
    425   1.1       cgd }
    426   1.1       cgd 
    427   1.1       cgd /*
    428   1.1       cgd  * Wakeup processes waiting on a socket buffer.
    429   1.1       cgd  * Do asynchronous notification via SIGIO
    430  1.39      manu  * if the socket buffer has the SB_ASYNC flag set.
    431   1.1       cgd  */
    432   1.7   mycroft void
    433  1.55  christos sowakeup(struct socket *so, struct sockbuf *sb, int code)
    434   1.1       cgd {
    435  1.90     rmind 	int band;
    436  1.90     rmind 
    437  1.91        ad 	KASSERT(solocked(so));
    438  1.91        ad 	KASSERT(sb->sb_so == so);
    439  1.91        ad 
    440  1.90     rmind 	if (code == POLL_IN)
    441  1.90     rmind 		band = POLLIN|POLLRDNORM;
    442  1.90     rmind 	else
    443  1.90     rmind 		band = POLLOUT|POLLWRNORM;
    444  1.91        ad 	sb->sb_flags &= ~SB_NOTIFY;
    445  1.91        ad 	selnotify(&sb->sb_sel, band, NOTE_SUBMIT);
    446  1.91        ad 	cv_broadcast(&sb->sb_cv);
    447  1.90     rmind 	if (sb->sb_flags & SB_ASYNC)
    448  1.57  christos 		fownsignal(so->so_pgid, SIGIO, code, band, so);
    449  1.24      matt 	if (sb->sb_flags & SB_UPCALL)
    450  1.24      matt 		(*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT);
    451   1.1       cgd }
    452   1.1       cgd 
    453   1.1       cgd /*
    454   1.1       cgd  * Socket buffer (struct sockbuf) utility routines.
    455   1.1       cgd  *
    456   1.1       cgd  * Each socket contains two socket buffers: one for sending data and
    457   1.1       cgd  * one for receiving data.  Each buffer contains a queue of mbufs,
    458   1.1       cgd  * information about the number of mbufs and amount of data in the
    459  1.13   mycroft  * queue, and other fields allowing poll() statements and notification
    460   1.1       cgd  * on data availability to be implemented.
    461   1.1       cgd  *
    462   1.1       cgd  * Data stored in a socket buffer is maintained as a list of records.
    463   1.1       cgd  * Each record is a list of mbufs chained together with the m_next
    464   1.1       cgd  * field.  Records are chained together with the m_nextpkt field. The upper
    465   1.1       cgd  * level routine soreceive() expects the following conventions to be
    466   1.1       cgd  * observed when placing information in the receive buffer:
    467   1.1       cgd  *
    468   1.1       cgd  * 1. If the protocol requires each message be preceded by the sender's
    469   1.1       cgd  *    name, then a record containing that name must be present before
    470   1.1       cgd  *    any associated data (mbuf's must be of type MT_SONAME).
    471   1.1       cgd  * 2. If the protocol supports the exchange of ``access rights'' (really
    472   1.1       cgd  *    just additional data associated with the message), and there are
    473   1.1       cgd  *    ``rights'' to be received, then a record containing this data
    474  1.10   mycroft  *    should be present (mbuf's must be of type MT_CONTROL).
    475   1.1       cgd  * 3. If a name or rights record exists, then it must be followed by
    476   1.1       cgd  *    a data record, perhaps of zero length.
    477   1.1       cgd  *
    478   1.1       cgd  * Before using a new socket structure it is first necessary to reserve
    479   1.1       cgd  * buffer space to the socket, by calling sbreserve().  This should commit
    480   1.1       cgd  * some of the available buffer space in the system buffer pool for the
    481   1.1       cgd  * socket (currently, it does nothing but enforce limits).  The space
    482   1.1       cgd  * should be released by calling sbrelease() when the socket is destroyed.
    483   1.1       cgd  */
    484   1.1       cgd 
    485   1.7   mycroft int
    486  1.58   thorpej sb_max_set(u_long new_sbmax)
    487  1.58   thorpej {
    488  1.58   thorpej 	int s;
    489  1.58   thorpej 
    490  1.58   thorpej 	if (new_sbmax < (16 * 1024))
    491  1.58   thorpej 		return (EINVAL);
    492  1.58   thorpej 
    493  1.58   thorpej 	s = splsoftnet();
    494  1.58   thorpej 	sb_max = new_sbmax;
    495  1.58   thorpej 	sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
    496  1.58   thorpej 	splx(s);
    497  1.58   thorpej 
    498  1.58   thorpej 	return (0);
    499  1.58   thorpej }
    500  1.58   thorpej 
    501  1.58   thorpej int
    502  1.37     lukem soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
    503   1.1       cgd {
    504  1.91        ad 
    505  1.91        ad 	KASSERT(so->so_lock == NULL || solocked(so));
    506  1.91        ad 
    507  1.74  christos 	/*
    508  1.74  christos 	 * there's at least one application (a configure script of screen)
    509  1.74  christos 	 * which expects a fifo is writable even if it has "some" bytes
    510  1.74  christos 	 * in its buffer.
    511  1.74  christos 	 * so we want to make sure (hiwat - lowat) >= (some bytes).
    512  1.74  christos 	 *
    513  1.74  christos 	 * PIPE_BUF here is an arbitrary value chosen as (some bytes) above.
    514  1.74  christos 	 * we expect it's large enough for such applications.
    515  1.74  christos 	 */
    516  1.74  christos 	u_long  lowat = MAX(sock_loan_thresh, MCLBYTES);
    517  1.74  christos 	u_long  hiwat = lowat + PIPE_BUF;
    518   1.1       cgd 
    519  1.74  christos 	if (sndcc < hiwat)
    520  1.74  christos 		sndcc = hiwat;
    521  1.59  christos 	if (sbreserve(&so->so_snd, sndcc, so) == 0)
    522   1.1       cgd 		goto bad;
    523  1.59  christos 	if (sbreserve(&so->so_rcv, rcvcc, so) == 0)
    524   1.1       cgd 		goto bad2;
    525   1.1       cgd 	if (so->so_rcv.sb_lowat == 0)
    526   1.1       cgd 		so->so_rcv.sb_lowat = 1;
    527   1.1       cgd 	if (so->so_snd.sb_lowat == 0)
    528  1.74  christos 		so->so_snd.sb_lowat = lowat;
    529   1.1       cgd 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
    530   1.1       cgd 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
    531   1.1       cgd 	return (0);
    532  1.37     lukem  bad2:
    533  1.59  christos 	sbrelease(&so->so_snd, so);
    534  1.37     lukem  bad:
    535   1.1       cgd 	return (ENOBUFS);
    536   1.1       cgd }
    537   1.1       cgd 
    538   1.1       cgd /*
    539   1.1       cgd  * Allot mbufs to a sockbuf.
    540   1.1       cgd  * Attempt to scale mbmax so that mbcnt doesn't become limiting
    541   1.1       cgd  * if buffering efficiency is near the normal case.
    542   1.1       cgd  */
    543   1.7   mycroft int
    544  1.59  christos sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
    545   1.1       cgd {
    546  1.75        ad 	struct lwp *l = curlwp; /* XXX */
    547  1.62  christos 	rlim_t maxcc;
    548  1.67  christos 	struct uidinfo *uidinfo;
    549   1.1       cgd 
    550  1.91        ad 	KASSERT(so->so_lock == NULL || solocked(so));
    551  1.91        ad 	KASSERT(sb->sb_so == so);
    552  1.91        ad 	KASSERT(sb_max_adj != 0);
    553  1.91        ad 
    554  1.58   thorpej 	if (cc == 0 || cc > sb_max_adj)
    555   1.1       cgd 		return (0);
    556  1.93  christos 
    557  1.93  christos 	if (kauth_cred_geteuid(l->l_cred) == so->so_uidinfo->ui_uid)
    558  1.93  christos 		maxcc = l->l_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur;
    559  1.93  christos 	else
    560  1.62  christos 		maxcc = RLIM_INFINITY;
    561  1.93  christos 
    562  1.93  christos 	uidinfo = so->so_uidinfo;
    563  1.67  christos 	if (!chgsbsize(uidinfo, &sb->sb_hiwat, cc, maxcc))
    564  1.62  christos 		return 0;
    565   1.1       cgd 	sb->sb_mbmax = min(cc * 2, sb_max);
    566   1.1       cgd 	if (sb->sb_lowat > sb->sb_hiwat)
    567   1.1       cgd 		sb->sb_lowat = sb->sb_hiwat;
    568   1.1       cgd 	return (1);
    569   1.1       cgd }
    570   1.1       cgd 
    571   1.1       cgd /*
    572  1.91        ad  * Free mbufs held by a socket, and reserved mbuf space.  We do not assert
    573  1.91        ad  * that the socket is held locked here: see sorflush().
    574   1.1       cgd  */
    575   1.7   mycroft void
    576  1.59  christos sbrelease(struct sockbuf *sb, struct socket *so)
    577   1.1       cgd {
    578   1.1       cgd 
    579  1.91        ad 	KASSERT(sb->sb_so == so);
    580  1.91        ad 
    581   1.1       cgd 	sbflush(sb);
    582  1.87      yamt 	(void)chgsbsize(so->so_uidinfo, &sb->sb_hiwat, 0, RLIM_INFINITY);
    583  1.59  christos 	sb->sb_mbmax = 0;
    584   1.1       cgd }
    585   1.1       cgd 
    586   1.1       cgd /*
    587   1.1       cgd  * Routines to add and remove
    588   1.1       cgd  * data from an mbuf queue.
    589   1.1       cgd  *
    590   1.1       cgd  * The routines sbappend() or sbappendrecord() are normally called to
    591   1.1       cgd  * append new mbufs to a socket buffer, after checking that adequate
    592   1.1       cgd  * space is available, comparing the function sbspace() with the amount
    593   1.1       cgd  * of data to be added.  sbappendrecord() differs from sbappend() in
    594   1.1       cgd  * that data supplied is treated as the beginning of a new record.
    595   1.1       cgd  * To place a sender's address, optional access rights, and data in a
    596   1.1       cgd  * socket receive buffer, sbappendaddr() should be used.  To place
    597   1.1       cgd  * access rights and data in a socket receive buffer, sbappendrights()
    598   1.1       cgd  * should be used.  In either case, the new data begins a new record.
    599   1.1       cgd  * Note that unlike sbappend() and sbappendrecord(), these routines check
    600   1.1       cgd  * for the caller that there will be enough space to store the data.
    601   1.1       cgd  * Each fails if there is not enough space, or if it cannot find mbufs
    602   1.1       cgd  * to store additional information in.
    603   1.1       cgd  *
    604   1.1       cgd  * Reliable protocols may use the socket send buffer to hold data
    605   1.1       cgd  * awaiting acknowledgement.  Data is normally copied from a socket
    606   1.1       cgd  * send buffer in a protocol with m_copy for output to a peer,
    607   1.1       cgd  * and then removing the data from the socket buffer with sbdrop()
    608   1.1       cgd  * or sbdroprecord() when the data is acknowledged by the peer.
    609   1.1       cgd  */
    610   1.1       cgd 
    611  1.43   thorpej #ifdef SOCKBUF_DEBUG
    612  1.43   thorpej void
    613  1.43   thorpej sblastrecordchk(struct sockbuf *sb, const char *where)
    614  1.43   thorpej {
    615  1.43   thorpej 	struct mbuf *m = sb->sb_mb;
    616  1.43   thorpej 
    617  1.91        ad 	KASSERT(solocked(sb->sb_so));
    618  1.91        ad 
    619  1.43   thorpej 	while (m && m->m_nextpkt)
    620  1.43   thorpej 		m = m->m_nextpkt;
    621  1.43   thorpej 
    622  1.43   thorpej 	if (m != sb->sb_lastrecord) {
    623  1.43   thorpej 		printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
    624  1.43   thorpej 		    sb->sb_mb, sb->sb_lastrecord, m);
    625  1.43   thorpej 		printf("packet chain:\n");
    626  1.43   thorpej 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
    627  1.43   thorpej 			printf("\t%p\n", m);
    628  1.47    provos 		panic("sblastrecordchk from %s", where);
    629  1.43   thorpej 	}
    630  1.43   thorpej }
    631  1.43   thorpej 
    632  1.43   thorpej void
    633  1.43   thorpej sblastmbufchk(struct sockbuf *sb, const char *where)
    634  1.43   thorpej {
    635  1.43   thorpej 	struct mbuf *m = sb->sb_mb;
    636  1.43   thorpej 	struct mbuf *n;
    637  1.43   thorpej 
    638  1.91        ad 	KASSERT(solocked(sb->sb_so));
    639  1.91        ad 
    640  1.43   thorpej 	while (m && m->m_nextpkt)
    641  1.43   thorpej 		m = m->m_nextpkt;
    642  1.43   thorpej 
    643  1.43   thorpej 	while (m && m->m_next)
    644  1.43   thorpej 		m = m->m_next;
    645  1.43   thorpej 
    646  1.43   thorpej 	if (m != sb->sb_mbtail) {
    647  1.43   thorpej 		printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
    648  1.43   thorpej 		    sb->sb_mb, sb->sb_mbtail, m);
    649  1.43   thorpej 		printf("packet tree:\n");
    650  1.43   thorpej 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
    651  1.43   thorpej 			printf("\t");
    652  1.43   thorpej 			for (n = m; n != NULL; n = n->m_next)
    653  1.43   thorpej 				printf("%p ", n);
    654  1.43   thorpej 			printf("\n");
    655  1.43   thorpej 		}
    656  1.43   thorpej 		panic("sblastmbufchk from %s", where);
    657  1.43   thorpej 	}
    658  1.43   thorpej }
    659  1.43   thorpej #endif /* SOCKBUF_DEBUG */
    660  1.43   thorpej 
    661  1.63  jonathan /*
    662  1.63  jonathan  * Link a chain of records onto a socket buffer
    663  1.63  jonathan  */
    664  1.63  jonathan #define	SBLINKRECORDCHAIN(sb, m0, mlast)				\
    665  1.43   thorpej do {									\
    666  1.43   thorpej 	if ((sb)->sb_lastrecord != NULL)				\
    667  1.43   thorpej 		(sb)->sb_lastrecord->m_nextpkt = (m0);			\
    668  1.43   thorpej 	else								\
    669  1.43   thorpej 		(sb)->sb_mb = (m0);					\
    670  1.63  jonathan 	(sb)->sb_lastrecord = (mlast);					\
    671  1.43   thorpej } while (/*CONSTCOND*/0)
    672  1.43   thorpej 
    673  1.63  jonathan 
    674  1.63  jonathan #define	SBLINKRECORD(sb, m0)						\
    675  1.63  jonathan     SBLINKRECORDCHAIN(sb, m0, m0)
    676  1.63  jonathan 
    677   1.1       cgd /*
    678   1.1       cgd  * Append mbuf chain m to the last record in the
    679   1.1       cgd  * socket buffer sb.  The additional space associated
    680   1.1       cgd  * the mbuf chain is recorded in sb.  Empty mbufs are
    681   1.1       cgd  * discarded and mbufs are compacted where possible.
    682   1.1       cgd  */
    683   1.7   mycroft void
    684  1.37     lukem sbappend(struct sockbuf *sb, struct mbuf *m)
    685   1.1       cgd {
    686  1.37     lukem 	struct mbuf	*n;
    687   1.1       cgd 
    688  1.91        ad 	KASSERT(solocked(sb->sb_so));
    689  1.91        ad 
    690   1.1       cgd 	if (m == 0)
    691   1.1       cgd 		return;
    692  1.43   thorpej 
    693  1.49      matt #ifdef MBUFTRACE
    694  1.65  jonathan 	m_claimm(m, sb->sb_mowner);
    695  1.49      matt #endif
    696  1.49      matt 
    697  1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappend 1");
    698  1.43   thorpej 
    699  1.43   thorpej 	if ((n = sb->sb_lastrecord) != NULL) {
    700  1.43   thorpej 		/*
    701  1.43   thorpej 		 * XXX Would like to simply use sb_mbtail here, but
    702  1.43   thorpej 		 * XXX I need to verify that I won't miss an EOR that
    703  1.43   thorpej 		 * XXX way.
    704  1.43   thorpej 		 */
    705   1.1       cgd 		do {
    706   1.1       cgd 			if (n->m_flags & M_EOR) {
    707   1.1       cgd 				sbappendrecord(sb, m); /* XXXXXX!!!! */
    708   1.1       cgd 				return;
    709   1.1       cgd 			}
    710   1.1       cgd 		} while (n->m_next && (n = n->m_next));
    711  1.43   thorpej 	} else {
    712  1.43   thorpej 		/*
    713  1.43   thorpej 		 * If this is the first record in the socket buffer, it's
    714  1.43   thorpej 		 * also the last record.
    715  1.43   thorpej 		 */
    716  1.43   thorpej 		sb->sb_lastrecord = m;
    717   1.1       cgd 	}
    718   1.1       cgd 	sbcompress(sb, m, n);
    719  1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappend 2");
    720  1.43   thorpej }
    721  1.43   thorpej 
    722  1.43   thorpej /*
    723  1.43   thorpej  * This version of sbappend() should only be used when the caller
    724  1.43   thorpej  * absolutely knows that there will never be more than one record
    725  1.43   thorpej  * in the socket buffer, that is, a stream protocol (such as TCP).
    726  1.43   thorpej  */
    727  1.43   thorpej void
    728  1.44   thorpej sbappendstream(struct sockbuf *sb, struct mbuf *m)
    729  1.43   thorpej {
    730  1.43   thorpej 
    731  1.91        ad 	KASSERT(solocked(sb->sb_so));
    732  1.43   thorpej 	KDASSERT(m->m_nextpkt == NULL);
    733  1.43   thorpej 	KASSERT(sb->sb_mb == sb->sb_lastrecord);
    734  1.43   thorpej 
    735  1.43   thorpej 	SBLASTMBUFCHK(sb, __func__);
    736  1.43   thorpej 
    737  1.49      matt #ifdef MBUFTRACE
    738  1.65  jonathan 	m_claimm(m, sb->sb_mowner);
    739  1.49      matt #endif
    740  1.49      matt 
    741  1.43   thorpej 	sbcompress(sb, m, sb->sb_mbtail);
    742  1.43   thorpej 
    743  1.43   thorpej 	sb->sb_lastrecord = sb->sb_mb;
    744  1.43   thorpej 	SBLASTRECORDCHK(sb, __func__);
    745   1.1       cgd }
    746   1.1       cgd 
    747   1.1       cgd #ifdef SOCKBUF_DEBUG
    748   1.7   mycroft void
    749  1.37     lukem sbcheck(struct sockbuf *sb)
    750   1.1       cgd {
    751  1.91        ad 	struct mbuf	*m, *m2;
    752  1.43   thorpej 	u_long		len, mbcnt;
    753   1.1       cgd 
    754  1.91        ad 	KASSERT(solocked(sb->sb_so));
    755  1.91        ad 
    756  1.37     lukem 	len = 0;
    757  1.37     lukem 	mbcnt = 0;
    758  1.91        ad 	for (m = sb->sb_mb; m; m = m->m_nextpkt) {
    759  1.91        ad 		for (m2 = m; m2 != NULL; m2 = m2->m_next) {
    760  1.91        ad 			len += m2->m_len;
    761  1.91        ad 			mbcnt += MSIZE;
    762  1.91        ad 			if (m2->m_flags & M_EXT)
    763  1.91        ad 				mbcnt += m2->m_ext.ext_size;
    764  1.91        ad 			if (m2->m_nextpkt != NULL)
    765  1.91        ad 				panic("sbcheck nextpkt");
    766  1.91        ad 		}
    767   1.1       cgd 	}
    768   1.1       cgd 	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
    769  1.43   thorpej 		printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
    770   1.1       cgd 		    mbcnt, sb->sb_mbcnt);
    771   1.1       cgd 		panic("sbcheck");
    772   1.1       cgd 	}
    773   1.1       cgd }
    774   1.1       cgd #endif
    775   1.1       cgd 
    776   1.1       cgd /*
    777   1.1       cgd  * As above, except the mbuf chain
    778   1.1       cgd  * begins a new record.
    779   1.1       cgd  */
    780   1.7   mycroft void
    781  1.37     lukem sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
    782   1.1       cgd {
    783  1.37     lukem 	struct mbuf	*m;
    784   1.1       cgd 
    785  1.91        ad 	KASSERT(solocked(sb->sb_so));
    786  1.91        ad 
    787   1.1       cgd 	if (m0 == 0)
    788   1.1       cgd 		return;
    789  1.43   thorpej 
    790  1.49      matt #ifdef MBUFTRACE
    791  1.65  jonathan 	m_claimm(m0, sb->sb_mowner);
    792  1.49      matt #endif
    793   1.1       cgd 	/*
    794   1.1       cgd 	 * Put the first mbuf on the queue.
    795   1.1       cgd 	 * Note this permits zero length records.
    796   1.1       cgd 	 */
    797   1.1       cgd 	sballoc(sb, m0);
    798  1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappendrecord 1");
    799  1.43   thorpej 	SBLINKRECORD(sb, m0);
    800   1.1       cgd 	m = m0->m_next;
    801   1.1       cgd 	m0->m_next = 0;
    802   1.1       cgd 	if (m && (m0->m_flags & M_EOR)) {
    803   1.1       cgd 		m0->m_flags &= ~M_EOR;
    804   1.1       cgd 		m->m_flags |= M_EOR;
    805   1.1       cgd 	}
    806   1.1       cgd 	sbcompress(sb, m, m0);
    807  1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappendrecord 2");
    808   1.1       cgd }
    809   1.1       cgd 
    810   1.1       cgd /*
    811   1.1       cgd  * As above except that OOB data
    812   1.1       cgd  * is inserted at the beginning of the sockbuf,
    813   1.1       cgd  * but after any other OOB data.
    814   1.1       cgd  */
    815   1.7   mycroft void
    816  1.37     lukem sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
    817   1.1       cgd {
    818  1.37     lukem 	struct mbuf	*m, **mp;
    819   1.1       cgd 
    820  1.91        ad 	KASSERT(solocked(sb->sb_so));
    821  1.91        ad 
    822   1.1       cgd 	if (m0 == 0)
    823   1.1       cgd 		return;
    824  1.43   thorpej 
    825  1.43   thorpej 	SBLASTRECORDCHK(sb, "sbinsertoob 1");
    826  1.43   thorpej 
    827  1.11  christos 	for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
    828   1.1       cgd 	    again:
    829   1.1       cgd 		switch (m->m_type) {
    830   1.1       cgd 
    831   1.1       cgd 		case MT_OOBDATA:
    832   1.1       cgd 			continue;		/* WANT next train */
    833   1.1       cgd 
    834   1.1       cgd 		case MT_CONTROL:
    835  1.11  christos 			if ((m = m->m_next) != NULL)
    836   1.1       cgd 				goto again;	/* inspect THIS train further */
    837   1.1       cgd 		}
    838   1.1       cgd 		break;
    839   1.1       cgd 	}
    840   1.1       cgd 	/*
    841   1.1       cgd 	 * Put the first mbuf on the queue.
    842   1.1       cgd 	 * Note this permits zero length records.
    843   1.1       cgd 	 */
    844   1.1       cgd 	sballoc(sb, m0);
    845   1.1       cgd 	m0->m_nextpkt = *mp;
    846  1.43   thorpej 	if (*mp == NULL) {
    847  1.43   thorpej 		/* m0 is actually the new tail */
    848  1.43   thorpej 		sb->sb_lastrecord = m0;
    849  1.43   thorpej 	}
    850   1.1       cgd 	*mp = m0;
    851   1.1       cgd 	m = m0->m_next;
    852   1.1       cgd 	m0->m_next = 0;
    853   1.1       cgd 	if (m && (m0->m_flags & M_EOR)) {
    854   1.1       cgd 		m0->m_flags &= ~M_EOR;
    855   1.1       cgd 		m->m_flags |= M_EOR;
    856   1.1       cgd 	}
    857   1.1       cgd 	sbcompress(sb, m, m0);
    858  1.43   thorpej 	SBLASTRECORDCHK(sb, "sbinsertoob 2");
    859   1.1       cgd }
    860   1.1       cgd 
    861   1.1       cgd /*
    862   1.1       cgd  * Append address and data, and optionally, control (ancillary) data
    863   1.1       cgd  * to the receive queue of a socket.  If present,
    864   1.1       cgd  * m0 must include a packet header with total length.
    865   1.1       cgd  * Returns 0 if no space in sockbuf or insufficient mbufs.
    866   1.1       cgd  */
    867   1.7   mycroft int
    868  1.61      matt sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0,
    869  1.37     lukem 	struct mbuf *control)
    870   1.1       cgd {
    871  1.43   thorpej 	struct mbuf	*m, *n, *nlast;
    872  1.50      fvdl 	int		space, len;
    873   1.1       cgd 
    874  1.91        ad 	KASSERT(solocked(sb->sb_so));
    875  1.91        ad 
    876  1.37     lukem 	space = asa->sa_len;
    877  1.37     lukem 
    878  1.49      matt 	if (m0 != NULL) {
    879  1.49      matt 		if ((m0->m_flags & M_PKTHDR) == 0)
    880  1.49      matt 			panic("sbappendaddr");
    881   1.1       cgd 		space += m0->m_pkthdr.len;
    882  1.49      matt #ifdef MBUFTRACE
    883  1.65  jonathan 		m_claimm(m0, sb->sb_mowner);
    884  1.49      matt #endif
    885  1.49      matt 	}
    886   1.1       cgd 	for (n = control; n; n = n->m_next) {
    887   1.1       cgd 		space += n->m_len;
    888  1.49      matt 		MCLAIM(n, sb->sb_mowner);
    889   1.1       cgd 		if (n->m_next == 0)	/* keep pointer to last control buf */
    890   1.1       cgd 			break;
    891   1.1       cgd 	}
    892   1.1       cgd 	if (space > sbspace(sb))
    893   1.1       cgd 		return (0);
    894   1.1       cgd 	MGET(m, M_DONTWAIT, MT_SONAME);
    895   1.1       cgd 	if (m == 0)
    896   1.1       cgd 		return (0);
    897  1.49      matt 	MCLAIM(m, sb->sb_mowner);
    898  1.50      fvdl 	/*
    899  1.50      fvdl 	 * XXX avoid 'comparison always true' warning which isn't easily
    900  1.50      fvdl 	 * avoided.
    901  1.50      fvdl 	 */
    902  1.50      fvdl 	len = asa->sa_len;
    903  1.50      fvdl 	if (len > MLEN) {
    904  1.20   thorpej 		MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
    905  1.20   thorpej 		if ((m->m_flags & M_EXT) == 0) {
    906  1.20   thorpej 			m_free(m);
    907  1.20   thorpej 			return (0);
    908  1.20   thorpej 		}
    909  1.20   thorpej 	}
    910   1.1       cgd 	m->m_len = asa->sa_len;
    911  1.82  christos 	memcpy(mtod(m, void *), asa, asa->sa_len);
    912   1.1       cgd 	if (n)
    913   1.1       cgd 		n->m_next = m0;		/* concatenate data to control */
    914   1.1       cgd 	else
    915   1.1       cgd 		control = m0;
    916   1.1       cgd 	m->m_next = control;
    917  1.43   thorpej 
    918  1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappendaddr 1");
    919  1.43   thorpej 
    920  1.43   thorpej 	for (n = m; n->m_next != NULL; n = n->m_next)
    921   1.1       cgd 		sballoc(sb, n);
    922  1.43   thorpej 	sballoc(sb, n);
    923  1.43   thorpej 	nlast = n;
    924  1.43   thorpej 	SBLINKRECORD(sb, m);
    925  1.43   thorpej 
    926  1.43   thorpej 	sb->sb_mbtail = nlast;
    927  1.43   thorpej 	SBLASTMBUFCHK(sb, "sbappendaddr");
    928  1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappendaddr 2");
    929  1.43   thorpej 
    930   1.1       cgd 	return (1);
    931   1.1       cgd }
    932   1.1       cgd 
    933  1.63  jonathan /*
    934  1.63  jonathan  * Helper for sbappendchainaddr: prepend a struct sockaddr* to
    935  1.63  jonathan  * an mbuf chain.
    936  1.63  jonathan  */
    937  1.70     perry static inline struct mbuf *
    938  1.81      yamt m_prepend_sockaddr(struct sockbuf *sb, struct mbuf *m0,
    939  1.64  jonathan 		   const struct sockaddr *asa)
    940  1.63  jonathan {
    941  1.63  jonathan 	struct mbuf *m;
    942  1.64  jonathan 	const int salen = asa->sa_len;
    943  1.63  jonathan 
    944  1.91        ad 	KASSERT(solocked(sb->sb_so));
    945  1.91        ad 
    946  1.63  jonathan 	/* only the first in each chain need be a pkthdr */
    947  1.63  jonathan 	MGETHDR(m, M_DONTWAIT, MT_SONAME);
    948  1.63  jonathan 	if (m == 0)
    949  1.63  jonathan 		return (0);
    950  1.63  jonathan 	MCLAIM(m, sb->sb_mowner);
    951  1.64  jonathan #ifdef notyet
    952  1.64  jonathan 	if (salen > MHLEN) {
    953  1.64  jonathan 		MEXTMALLOC(m, salen, M_NOWAIT);
    954  1.64  jonathan 		if ((m->m_flags & M_EXT) == 0) {
    955  1.64  jonathan 			m_free(m);
    956  1.64  jonathan 			return (0);
    957  1.64  jonathan 		}
    958  1.64  jonathan 	}
    959  1.64  jonathan #else
    960  1.64  jonathan 	KASSERT(salen <= MHLEN);
    961  1.64  jonathan #endif
    962  1.64  jonathan 	m->m_len = salen;
    963  1.82  christos 	memcpy(mtod(m, void *), asa, salen);
    964  1.63  jonathan 	m->m_next = m0;
    965  1.64  jonathan 	m->m_pkthdr.len = salen + m0->m_pkthdr.len;
    966  1.63  jonathan 
    967  1.63  jonathan 	return m;
    968  1.63  jonathan }
    969  1.63  jonathan 
    970  1.63  jonathan int
    971  1.63  jonathan sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa,
    972  1.63  jonathan 		  struct mbuf *m0, int sbprio)
    973  1.63  jonathan {
    974  1.63  jonathan 	int space;
    975  1.63  jonathan 	struct mbuf *m, *n, *n0, *nlast;
    976  1.63  jonathan 	int error;
    977  1.63  jonathan 
    978  1.91        ad 	KASSERT(solocked(sb->sb_so));
    979  1.91        ad 
    980  1.63  jonathan 	/*
    981  1.63  jonathan 	 * XXX sbprio reserved for encoding priority of this* request:
    982  1.63  jonathan 	 *  SB_PRIO_NONE --> honour normal sb limits
    983  1.63  jonathan 	 *  SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space,
    984  1.63  jonathan 	 *	take whole chain. Intended for large requests
    985  1.63  jonathan 	 *      that should be delivered atomically (all, or none).
    986  1.63  jonathan 	 * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow
    987  1.63  jonathan 	 *       over normal socket limits, for messages indicating
    988  1.63  jonathan 	 *       buffer overflow in earlier normal/lower-priority messages
    989  1.63  jonathan 	 * SB_PRIO_BESTEFFORT -->  ignore limits entirely.
    990  1.63  jonathan 	 *       Intended for  kernel-generated messages only.
    991  1.63  jonathan 	 *        Up to generator to avoid total mbuf resource exhaustion.
    992  1.63  jonathan 	 */
    993  1.63  jonathan 	(void)sbprio;
    994  1.63  jonathan 
    995  1.63  jonathan 	if (m0 && (m0->m_flags & M_PKTHDR) == 0)
    996  1.63  jonathan 		panic("sbappendaddrchain");
    997  1.63  jonathan 
    998  1.63  jonathan 	space = sbspace(sb);
    999  1.66     perry 
   1000  1.63  jonathan #ifdef notyet
   1001  1.66     perry 	/*
   1002  1.63  jonathan 	 * Enforce SB_PRIO_* limits as described above.
   1003  1.63  jonathan 	 */
   1004  1.63  jonathan #endif
   1005  1.63  jonathan 
   1006  1.63  jonathan 	n0 = NULL;
   1007  1.63  jonathan 	nlast = NULL;
   1008  1.63  jonathan 	for (m = m0; m; m = m->m_nextpkt) {
   1009  1.63  jonathan 		struct mbuf *np;
   1010  1.63  jonathan 
   1011  1.64  jonathan #ifdef MBUFTRACE
   1012  1.65  jonathan 		m_claimm(m, sb->sb_mowner);
   1013  1.64  jonathan #endif
   1014  1.64  jonathan 
   1015  1.63  jonathan 		/* Prepend sockaddr to this record (m) of input chain m0 */
   1016  1.64  jonathan 	  	n = m_prepend_sockaddr(sb, m, asa);
   1017  1.63  jonathan 		if (n == NULL) {
   1018  1.63  jonathan 			error = ENOBUFS;
   1019  1.63  jonathan 			goto bad;
   1020  1.63  jonathan 		}
   1021  1.63  jonathan 
   1022  1.63  jonathan 		/* Append record (asa+m) to end of new chain n0 */
   1023  1.63  jonathan 		if (n0 == NULL) {
   1024  1.63  jonathan 			n0 = n;
   1025  1.63  jonathan 		} else {
   1026  1.63  jonathan 			nlast->m_nextpkt = n;
   1027  1.63  jonathan 		}
   1028  1.63  jonathan 		/* Keep track of last record on new chain */
   1029  1.63  jonathan 		nlast = n;
   1030  1.63  jonathan 
   1031  1.63  jonathan 		for (np = n; np; np = np->m_next)
   1032  1.63  jonathan 			sballoc(sb, np);
   1033  1.63  jonathan 	}
   1034  1.63  jonathan 
   1035  1.64  jonathan 	SBLASTRECORDCHK(sb, "sbappendaddrchain 1");
   1036  1.64  jonathan 
   1037  1.63  jonathan 	/* Drop the entire chain of (asa+m) records onto the socket */
   1038  1.63  jonathan 	SBLINKRECORDCHAIN(sb, n0, nlast);
   1039  1.64  jonathan 
   1040  1.64  jonathan 	SBLASTRECORDCHK(sb, "sbappendaddrchain 2");
   1041  1.64  jonathan 
   1042  1.63  jonathan 	for (m = nlast; m->m_next; m = m->m_next)
   1043  1.63  jonathan 		;
   1044  1.63  jonathan 	sb->sb_mbtail = m;
   1045  1.64  jonathan 	SBLASTMBUFCHK(sb, "sbappendaddrchain");
   1046  1.64  jonathan 
   1047  1.63  jonathan 	return (1);
   1048  1.63  jonathan 
   1049  1.63  jonathan bad:
   1050  1.64  jonathan 	/*
   1051  1.64  jonathan 	 * On error, free the prepended addreseses. For consistency
   1052  1.64  jonathan 	 * with sbappendaddr(), leave it to our caller to free
   1053  1.64  jonathan 	 * the input record chain passed to us as m0.
   1054  1.64  jonathan 	 */
   1055  1.64  jonathan 	while ((n = n0) != NULL) {
   1056  1.64  jonathan 	  	struct mbuf *np;
   1057  1.64  jonathan 
   1058  1.64  jonathan 		/* Undo the sballoc() of this record */
   1059  1.64  jonathan 		for (np = n; np; np = np->m_next)
   1060  1.64  jonathan 			sbfree(sb, np);
   1061  1.64  jonathan 
   1062  1.64  jonathan 		n0 = n->m_nextpkt;	/* iterate at next prepended address */
   1063  1.64  jonathan 		MFREE(n, np);		/* free prepended address (not data) */
   1064  1.64  jonathan 	}
   1065  1.66     perry 	return 0;
   1066  1.63  jonathan }
   1067  1.63  jonathan 
   1068  1.63  jonathan 
   1069   1.7   mycroft int
   1070  1.37     lukem sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
   1071   1.1       cgd {
   1072  1.43   thorpej 	struct mbuf	*m, *mlast, *n;
   1073  1.37     lukem 	int		space;
   1074   1.1       cgd 
   1075  1.91        ad 	KASSERT(solocked(sb->sb_so));
   1076  1.91        ad 
   1077  1.37     lukem 	space = 0;
   1078   1.1       cgd 	if (control == 0)
   1079   1.1       cgd 		panic("sbappendcontrol");
   1080   1.1       cgd 	for (m = control; ; m = m->m_next) {
   1081   1.1       cgd 		space += m->m_len;
   1082  1.49      matt 		MCLAIM(m, sb->sb_mowner);
   1083   1.1       cgd 		if (m->m_next == 0)
   1084   1.1       cgd 			break;
   1085   1.1       cgd 	}
   1086   1.1       cgd 	n = m;			/* save pointer to last control buffer */
   1087  1.49      matt 	for (m = m0; m; m = m->m_next) {
   1088  1.49      matt 		MCLAIM(m, sb->sb_mowner);
   1089   1.1       cgd 		space += m->m_len;
   1090  1.49      matt 	}
   1091   1.1       cgd 	if (space > sbspace(sb))
   1092   1.1       cgd 		return (0);
   1093   1.1       cgd 	n->m_next = m0;			/* concatenate data to control */
   1094  1.43   thorpej 
   1095  1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappendcontrol 1");
   1096  1.43   thorpej 
   1097  1.43   thorpej 	for (m = control; m->m_next != NULL; m = m->m_next)
   1098   1.1       cgd 		sballoc(sb, m);
   1099  1.43   thorpej 	sballoc(sb, m);
   1100  1.43   thorpej 	mlast = m;
   1101  1.43   thorpej 	SBLINKRECORD(sb, control);
   1102  1.43   thorpej 
   1103  1.43   thorpej 	sb->sb_mbtail = mlast;
   1104  1.43   thorpej 	SBLASTMBUFCHK(sb, "sbappendcontrol");
   1105  1.43   thorpej 	SBLASTRECORDCHK(sb, "sbappendcontrol 2");
   1106  1.43   thorpej 
   1107   1.1       cgd 	return (1);
   1108   1.1       cgd }
   1109   1.1       cgd 
   1110   1.1       cgd /*
   1111   1.1       cgd  * Compress mbuf chain m into the socket
   1112   1.1       cgd  * buffer sb following mbuf n.  If n
   1113   1.1       cgd  * is null, the buffer is presumed empty.
   1114   1.1       cgd  */
   1115   1.7   mycroft void
   1116  1.37     lukem sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
   1117   1.1       cgd {
   1118  1.37     lukem 	int		eor;
   1119  1.37     lukem 	struct mbuf	*o;
   1120   1.1       cgd 
   1121  1.91        ad 	KASSERT(solocked(sb->sb_so));
   1122  1.91        ad 
   1123  1.37     lukem 	eor = 0;
   1124   1.1       cgd 	while (m) {
   1125   1.1       cgd 		eor |= m->m_flags & M_EOR;
   1126   1.1       cgd 		if (m->m_len == 0 &&
   1127   1.1       cgd 		    (eor == 0 ||
   1128   1.1       cgd 		     (((o = m->m_next) || (o = n)) &&
   1129   1.1       cgd 		      o->m_type == m->m_type))) {
   1130  1.46   thorpej 			if (sb->sb_lastrecord == m)
   1131  1.46   thorpej 				sb->sb_lastrecord = m->m_next;
   1132   1.1       cgd 			m = m_free(m);
   1133   1.1       cgd 			continue;
   1134   1.1       cgd 		}
   1135  1.40   thorpej 		if (n && (n->m_flags & M_EOR) == 0 &&
   1136  1.40   thorpej 		    /* M_TRAILINGSPACE() checks buffer writeability */
   1137  1.40   thorpej 		    m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
   1138  1.40   thorpej 		    m->m_len <= M_TRAILINGSPACE(n) &&
   1139  1.40   thorpej 		    n->m_type == m->m_type) {
   1140  1.82  christos 			memcpy(mtod(n, char *) + n->m_len, mtod(m, void *),
   1141   1.1       cgd 			    (unsigned)m->m_len);
   1142   1.1       cgd 			n->m_len += m->m_len;
   1143   1.1       cgd 			sb->sb_cc += m->m_len;
   1144   1.1       cgd 			m = m_free(m);
   1145   1.1       cgd 			continue;
   1146   1.1       cgd 		}
   1147   1.1       cgd 		if (n)
   1148   1.1       cgd 			n->m_next = m;
   1149   1.1       cgd 		else
   1150   1.1       cgd 			sb->sb_mb = m;
   1151  1.43   thorpej 		sb->sb_mbtail = m;
   1152   1.1       cgd 		sballoc(sb, m);
   1153   1.1       cgd 		n = m;
   1154   1.1       cgd 		m->m_flags &= ~M_EOR;
   1155   1.1       cgd 		m = m->m_next;
   1156   1.1       cgd 		n->m_next = 0;
   1157   1.1       cgd 	}
   1158   1.1       cgd 	if (eor) {
   1159   1.1       cgd 		if (n)
   1160   1.1       cgd 			n->m_flags |= eor;
   1161   1.1       cgd 		else
   1162  1.15  christos 			printf("semi-panic: sbcompress\n");
   1163   1.1       cgd 	}
   1164  1.43   thorpej 	SBLASTMBUFCHK(sb, __func__);
   1165   1.1       cgd }
   1166   1.1       cgd 
   1167   1.1       cgd /*
   1168   1.1       cgd  * Free all mbufs in a sockbuf.
   1169   1.1       cgd  * Check that all resources are reclaimed.
   1170   1.1       cgd  */
   1171   1.7   mycroft void
   1172  1.37     lukem sbflush(struct sockbuf *sb)
   1173   1.1       cgd {
   1174   1.1       cgd 
   1175  1.91        ad 	KASSERT(solocked(sb->sb_so));
   1176  1.43   thorpej 	KASSERT((sb->sb_flags & SB_LOCK) == 0);
   1177  1.43   thorpej 
   1178   1.1       cgd 	while (sb->sb_mbcnt)
   1179   1.1       cgd 		sbdrop(sb, (int)sb->sb_cc);
   1180  1.43   thorpej 
   1181  1.43   thorpej 	KASSERT(sb->sb_cc == 0);
   1182  1.43   thorpej 	KASSERT(sb->sb_mb == NULL);
   1183  1.43   thorpej 	KASSERT(sb->sb_mbtail == NULL);
   1184  1.43   thorpej 	KASSERT(sb->sb_lastrecord == NULL);
   1185   1.1       cgd }
   1186   1.1       cgd 
   1187   1.1       cgd /*
   1188   1.1       cgd  * Drop data from (the front of) a sockbuf.
   1189   1.1       cgd  */
   1190   1.7   mycroft void
   1191  1.37     lukem sbdrop(struct sockbuf *sb, int len)
   1192   1.1       cgd {
   1193  1.37     lukem 	struct mbuf	*m, *mn, *next;
   1194   1.1       cgd 
   1195  1.91        ad 	KASSERT(solocked(sb->sb_so));
   1196  1.91        ad 
   1197   1.1       cgd 	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
   1198   1.1       cgd 	while (len > 0) {
   1199   1.1       cgd 		if (m == 0) {
   1200   1.1       cgd 			if (next == 0)
   1201   1.1       cgd 				panic("sbdrop");
   1202   1.1       cgd 			m = next;
   1203   1.1       cgd 			next = m->m_nextpkt;
   1204   1.1       cgd 			continue;
   1205   1.1       cgd 		}
   1206   1.1       cgd 		if (m->m_len > len) {
   1207   1.1       cgd 			m->m_len -= len;
   1208   1.1       cgd 			m->m_data += len;
   1209   1.1       cgd 			sb->sb_cc -= len;
   1210   1.1       cgd 			break;
   1211   1.1       cgd 		}
   1212   1.1       cgd 		len -= m->m_len;
   1213   1.1       cgd 		sbfree(sb, m);
   1214   1.1       cgd 		MFREE(m, mn);
   1215   1.1       cgd 		m = mn;
   1216   1.1       cgd 	}
   1217   1.1       cgd 	while (m && m->m_len == 0) {
   1218   1.1       cgd 		sbfree(sb, m);
   1219   1.1       cgd 		MFREE(m, mn);
   1220   1.1       cgd 		m = mn;
   1221   1.1       cgd 	}
   1222   1.1       cgd 	if (m) {
   1223   1.1       cgd 		sb->sb_mb = m;
   1224   1.1       cgd 		m->m_nextpkt = next;
   1225   1.1       cgd 	} else
   1226   1.1       cgd 		sb->sb_mb = next;
   1227  1.43   thorpej 	/*
   1228  1.45   thorpej 	 * First part is an inline SB_EMPTY_FIXUP().  Second part
   1229  1.43   thorpej 	 * makes sure sb_lastrecord is up-to-date if we dropped
   1230  1.43   thorpej 	 * part of the last record.
   1231  1.43   thorpej 	 */
   1232  1.43   thorpej 	m = sb->sb_mb;
   1233  1.43   thorpej 	if (m == NULL) {
   1234  1.43   thorpej 		sb->sb_mbtail = NULL;
   1235  1.43   thorpej 		sb->sb_lastrecord = NULL;
   1236  1.43   thorpej 	} else if (m->m_nextpkt == NULL)
   1237  1.43   thorpej 		sb->sb_lastrecord = m;
   1238   1.1       cgd }
   1239   1.1       cgd 
   1240   1.1       cgd /*
   1241   1.1       cgd  * Drop a record off the front of a sockbuf
   1242   1.1       cgd  * and move the next record to the front.
   1243   1.1       cgd  */
   1244   1.7   mycroft void
   1245  1.37     lukem sbdroprecord(struct sockbuf *sb)
   1246   1.1       cgd {
   1247  1.37     lukem 	struct mbuf	*m, *mn;
   1248   1.1       cgd 
   1249  1.91        ad 	KASSERT(solocked(sb->sb_so));
   1250  1.91        ad 
   1251   1.1       cgd 	m = sb->sb_mb;
   1252   1.1       cgd 	if (m) {
   1253   1.1       cgd 		sb->sb_mb = m->m_nextpkt;
   1254   1.1       cgd 		do {
   1255   1.1       cgd 			sbfree(sb, m);
   1256   1.1       cgd 			MFREE(m, mn);
   1257  1.11  christos 		} while ((m = mn) != NULL);
   1258   1.1       cgd 	}
   1259  1.45   thorpej 	SB_EMPTY_FIXUP(sb);
   1260  1.19   thorpej }
   1261  1.19   thorpej 
   1262  1.19   thorpej /*
   1263  1.19   thorpej  * Create a "control" mbuf containing the specified data
   1264  1.19   thorpej  * with the specified type for presentation on a socket buffer.
   1265  1.19   thorpej  */
   1266  1.19   thorpej struct mbuf *
   1267  1.82  christos sbcreatecontrol(void *p, int size, int type, int level)
   1268  1.19   thorpej {
   1269  1.37     lukem 	struct cmsghdr	*cp;
   1270  1.37     lukem 	struct mbuf	*m;
   1271  1.19   thorpej 
   1272  1.35    itojun 	if (CMSG_SPACE(size) > MCLBYTES) {
   1273  1.30    itojun 		printf("sbcreatecontrol: message too large %d\n", size);
   1274  1.30    itojun 		return NULL;
   1275  1.30    itojun 	}
   1276  1.30    itojun 
   1277  1.19   thorpej 	if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
   1278  1.19   thorpej 		return ((struct mbuf *) NULL);
   1279  1.35    itojun 	if (CMSG_SPACE(size) > MLEN) {
   1280  1.30    itojun 		MCLGET(m, M_DONTWAIT);
   1281  1.30    itojun 		if ((m->m_flags & M_EXT) == 0) {
   1282  1.30    itojun 			m_free(m);
   1283  1.30    itojun 			return NULL;
   1284  1.30    itojun 		}
   1285  1.30    itojun 	}
   1286  1.19   thorpej 	cp = mtod(m, struct cmsghdr *);
   1287  1.26     perry 	memcpy(CMSG_DATA(cp), p, size);
   1288  1.35    itojun 	m->m_len = CMSG_SPACE(size);
   1289  1.35    itojun 	cp->cmsg_len = CMSG_LEN(size);
   1290  1.19   thorpej 	cp->cmsg_level = level;
   1291  1.19   thorpej 	cp->cmsg_type = type;
   1292  1.19   thorpej 	return (m);
   1293   1.1       cgd }
   1294  1.91        ad 
   1295  1.91        ad void
   1296  1.91        ad solockretry(struct socket *so, kmutex_t *lock)
   1297  1.91        ad {
   1298  1.91        ad 
   1299  1.91        ad 	while (lock != so->so_lock) {
   1300  1.91        ad 		mutex_exit(lock);
   1301  1.91        ad 		lock = so->so_lock;
   1302  1.91        ad 		mutex_enter(lock);
   1303  1.91        ad 	}
   1304  1.91        ad }
   1305  1.91        ad 
   1306  1.91        ad bool
   1307  1.91        ad solocked(struct socket *so)
   1308  1.91        ad {
   1309  1.91        ad 
   1310  1.91        ad 	return mutex_owned(so->so_lock);
   1311  1.91        ad }
   1312  1.91        ad 
   1313  1.91        ad bool
   1314  1.91        ad solocked2(struct socket *so1, struct socket *so2)
   1315  1.91        ad {
   1316  1.91        ad 	kmutex_t *lock;
   1317  1.91        ad 
   1318  1.91        ad 	lock = so1->so_lock;
   1319  1.91        ad 	if (lock != so2->so_lock)
   1320  1.91        ad 		return false;
   1321  1.91        ad 	return mutex_owned(lock);
   1322  1.91        ad }
   1323  1.91        ad 
   1324  1.91        ad /*
   1325  1.91        ad  * Assign a default lock to a new socket.  For PRU_ATTACH, and done by
   1326  1.91        ad  * protocols that do not have special locking requirements.
   1327  1.91        ad  */
   1328  1.91        ad void
   1329  1.91        ad sosetlock(struct socket *so)
   1330  1.91        ad {
   1331  1.91        ad 	kmutex_t *lock;
   1332  1.91        ad 
   1333  1.91        ad 	if (so->so_lock == NULL) {
   1334  1.91        ad 		lock = softnet_lock;
   1335  1.91        ad 		so->so_lock = lock;
   1336  1.91        ad 		mutex_obj_hold(lock);
   1337  1.91        ad 		mutex_enter(lock);
   1338  1.91        ad 	}
   1339  1.91        ad 
   1340  1.91        ad 	/* In all cases, lock must be held on return from PRU_ATTACH. */
   1341  1.91        ad 	KASSERT(solocked(so));
   1342  1.91        ad }
   1343  1.91        ad 
   1344  1.91        ad /*
   1345  1.91        ad  * Set lock on sockbuf sb; sleep if lock is already held.
   1346  1.91        ad  * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
   1347  1.91        ad  * Returns error without lock if sleep is interrupted.
   1348  1.91        ad  */
   1349  1.91        ad int
   1350  1.91        ad sblock(struct sockbuf *sb, int wf)
   1351  1.91        ad {
   1352  1.91        ad 	struct socket *so;
   1353  1.91        ad 	kmutex_t *lock;
   1354  1.91        ad 	int error;
   1355  1.91        ad 
   1356  1.91        ad 	KASSERT(solocked(sb->sb_so));
   1357  1.91        ad 
   1358  1.91        ad 	for (;;) {
   1359  1.91        ad 		if (__predict_true((sb->sb_flags & SB_LOCK) == 0)) {
   1360  1.91        ad 			sb->sb_flags |= SB_LOCK;
   1361  1.91        ad 			return 0;
   1362  1.91        ad 		}
   1363  1.91        ad 		if (wf != M_WAITOK)
   1364  1.91        ad 			return EWOULDBLOCK;
   1365  1.91        ad 		so = sb->sb_so;
   1366  1.91        ad 		lock = so->so_lock;
   1367  1.91        ad 		if ((sb->sb_flags & SB_NOINTR) != 0) {
   1368  1.91        ad 			cv_wait(&so->so_cv, lock);
   1369  1.91        ad 			error = 0;
   1370  1.91        ad 		} else
   1371  1.91        ad 			error = cv_wait_sig(&so->so_cv, lock);
   1372  1.91        ad 		if (__predict_false(lock != so->so_lock))
   1373  1.91        ad 			solockretry(so, lock);
   1374  1.91        ad 		if (error != 0)
   1375  1.91        ad 			return error;
   1376  1.91        ad 	}
   1377  1.91        ad }
   1378  1.91        ad 
   1379  1.91        ad void
   1380  1.91        ad sbunlock(struct sockbuf *sb)
   1381  1.91        ad {
   1382  1.91        ad 	struct socket *so;
   1383  1.91        ad 
   1384  1.91        ad 	so = sb->sb_so;
   1385  1.91        ad 
   1386  1.91        ad 	KASSERT(solocked(so));
   1387  1.91        ad 	KASSERT((sb->sb_flags & SB_LOCK) != 0);
   1388  1.91        ad 
   1389  1.91        ad 	sb->sb_flags &= ~SB_LOCK;
   1390  1.91        ad 	cv_broadcast(&so->so_cv);
   1391  1.91        ad }
   1392  1.91        ad 
   1393  1.91        ad int
   1394  1.91        ad sowait(struct socket *so, int timo)
   1395  1.91        ad {
   1396  1.91        ad 	kmutex_t *lock;
   1397  1.91        ad 	int error;
   1398  1.91        ad 
   1399  1.91        ad 	KASSERT(solocked(so));
   1400  1.91        ad 
   1401  1.91        ad 	lock = so->so_lock;
   1402  1.91        ad 	error = cv_timedwait_sig(&so->so_cv, lock, timo);
   1403  1.91        ad 	if (__predict_false(lock != so->so_lock))
   1404  1.91        ad 		solockretry(so, lock);
   1405  1.91        ad 	return error;
   1406  1.91        ad }
   1407