uipc_socket2.c revision 1.94.2.1 1 1.94.2.1 simonb /* $NetBSD: uipc_socket2.c,v 1.94.2.1 2008/06/18 16:33:35 simonb Exp $ */
2 1.91 ad
3 1.91 ad /*-
4 1.91 ad * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 1.91 ad * All rights reserved.
6 1.91 ad *
7 1.91 ad * Redistribution and use in source and binary forms, with or without
8 1.91 ad * modification, are permitted provided that the following conditions
9 1.91 ad * are met:
10 1.91 ad * 1. Redistributions of source code must retain the above copyright
11 1.91 ad * notice, this list of conditions and the following disclaimer.
12 1.91 ad * 2. Redistributions in binary form must reproduce the above copyright
13 1.91 ad * notice, this list of conditions and the following disclaimer in the
14 1.91 ad * documentation and/or other materials provided with the distribution.
15 1.91 ad *
16 1.91 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 1.91 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 1.91 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 1.91 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 1.91 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 1.91 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 1.91 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 1.91 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 1.91 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 1.91 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 1.91 ad * POSSIBILITY OF SUCH DAMAGE.
27 1.91 ad */
28 1.9 cgd
29 1.1 cgd /*
30 1.7 mycroft * Copyright (c) 1982, 1986, 1988, 1990, 1993
31 1.7 mycroft * The Regents of the University of California. All rights reserved.
32 1.1 cgd *
33 1.1 cgd * Redistribution and use in source and binary forms, with or without
34 1.1 cgd * modification, are permitted provided that the following conditions
35 1.1 cgd * are met:
36 1.1 cgd * 1. Redistributions of source code must retain the above copyright
37 1.1 cgd * notice, this list of conditions and the following disclaimer.
38 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
39 1.1 cgd * notice, this list of conditions and the following disclaimer in the
40 1.1 cgd * documentation and/or other materials provided with the distribution.
41 1.54 agc * 3. Neither the name of the University nor the names of its contributors
42 1.1 cgd * may be used to endorse or promote products derived from this software
43 1.1 cgd * without specific prior written permission.
44 1.1 cgd *
45 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
46 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
49 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 1.1 cgd * SUCH DAMAGE.
56 1.1 cgd *
57 1.23 fvdl * @(#)uipc_socket2.c 8.2 (Berkeley) 2/14/95
58 1.1 cgd */
59 1.42 lukem
60 1.42 lukem #include <sys/cdefs.h>
61 1.94.2.1 simonb __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.94.2.1 2008/06/18 16:33:35 simonb Exp $");
62 1.51 martin
63 1.51 martin #include "opt_mbuftrace.h"
64 1.58 thorpej #include "opt_sb_max.h"
65 1.1 cgd
66 1.5 mycroft #include <sys/param.h>
67 1.5 mycroft #include <sys/systm.h>
68 1.5 mycroft #include <sys/proc.h>
69 1.5 mycroft #include <sys/file.h>
70 1.5 mycroft #include <sys/buf.h>
71 1.5 mycroft #include <sys/malloc.h>
72 1.5 mycroft #include <sys/mbuf.h>
73 1.5 mycroft #include <sys/protosw.h>
74 1.91 ad #include <sys/domain.h>
75 1.55 christos #include <sys/poll.h>
76 1.5 mycroft #include <sys/socket.h>
77 1.5 mycroft #include <sys/socketvar.h>
78 1.11 christos #include <sys/signalvar.h>
79 1.71 elad #include <sys/kauth.h>
80 1.91 ad #include <sys/pool.h>
81 1.1 cgd
82 1.1 cgd /*
83 1.91 ad * Primitive routines for operating on sockets and socket buffers.
84 1.91 ad *
85 1.91 ad * Locking rules and assumptions:
86 1.91 ad *
87 1.91 ad * o socket::so_lock can change on the fly. The low level routines used
88 1.91 ad * to lock sockets are aware of this. When so_lock is acquired, the
89 1.91 ad * routine locking must check to see if so_lock still points to the
90 1.91 ad * lock that was acquired. If so_lock has changed in the meantime, the
91 1.91 ad * now irellevant lock that was acquired must be dropped and the lock
92 1.91 ad * operation retried. Although not proven here, this is completely safe
93 1.91 ad * on a multiprocessor system, even with relaxed memory ordering, given
94 1.91 ad * the next two rules:
95 1.91 ad *
96 1.91 ad * o In order to mutate so_lock, the lock pointed to by the current value
97 1.91 ad * of so_lock must be held: i.e., the socket must be held locked by the
98 1.91 ad * changing thread. The thread must issue membar_exit() to prevent
99 1.91 ad * memory accesses being reordered, and can set so_lock to the desired
100 1.91 ad * value. If the lock pointed to by the new value of so_lock is not
101 1.91 ad * held by the changing thread, the socket must then be considered
102 1.91 ad * unlocked.
103 1.91 ad *
104 1.91 ad * o If so_lock is mutated, and the previous lock referred to by so_lock
105 1.91 ad * could still be visible to other threads in the system (e.g. via file
106 1.91 ad * descriptor or protocol-internal reference), then the old lock must
107 1.91 ad * remain valid until the socket and/or protocol control block has been
108 1.91 ad * torn down.
109 1.91 ad *
110 1.91 ad * o If a socket has a non-NULL so_head value (i.e. is in the process of
111 1.91 ad * connecting), then locking the socket must also lock the socket pointed
112 1.91 ad * to by so_head: their lock pointers must match.
113 1.91 ad *
114 1.91 ad * o If a socket has connections in progress (so_q, so_q0 not empty) then
115 1.91 ad * locking the socket must also lock the sockets attached to both queues.
116 1.91 ad * Again, their lock pointers must match.
117 1.91 ad *
118 1.91 ad * o Beyond the initial lock assigment in socreate(), assigning locks to
119 1.91 ad * sockets is the responsibility of the individual protocols / protocol
120 1.91 ad * domains.
121 1.1 cgd */
122 1.1 cgd
123 1.94 ad static pool_cache_t socket_cache;
124 1.1 cgd
125 1.58 thorpej u_long sb_max = SB_MAX; /* maximum socket buffer size */
126 1.58 thorpej static u_long sb_max_adj; /* adjusted sb_max */
127 1.58 thorpej
128 1.1 cgd /*
129 1.1 cgd * Procedures to manipulate state flags of socket
130 1.1 cgd * and do appropriate wakeups. Normal sequence from the
131 1.1 cgd * active (originating) side is that soisconnecting() is
132 1.1 cgd * called during processing of connect() call,
133 1.1 cgd * resulting in an eventual call to soisconnected() if/when the
134 1.1 cgd * connection is established. When the connection is torn down
135 1.1 cgd * soisdisconnecting() is called during processing of disconnect() call,
136 1.1 cgd * and soisdisconnected() is called when the connection to the peer
137 1.1 cgd * is totally severed. The semantics of these routines are such that
138 1.1 cgd * connectionless protocols can call soisconnected() and soisdisconnected()
139 1.1 cgd * only, bypassing the in-progress calls when setting up a ``connection''
140 1.1 cgd * takes no time.
141 1.1 cgd *
142 1.1 cgd * From the passive side, a socket is created with
143 1.1 cgd * two queues of sockets: so_q0 for connections in progress
144 1.1 cgd * and so_q for connections already made and awaiting user acceptance.
145 1.1 cgd * As a protocol is preparing incoming connections, it creates a socket
146 1.1 cgd * structure queued on so_q0 by calling sonewconn(). When the connection
147 1.1 cgd * is established, soisconnected() is called, and transfers the
148 1.1 cgd * socket structure to so_q, making it available to accept().
149 1.66 perry *
150 1.1 cgd * If a socket is closed with sockets on either
151 1.1 cgd * so_q0 or so_q, these sockets are dropped.
152 1.1 cgd *
153 1.1 cgd * If higher level protocols are implemented in
154 1.1 cgd * the kernel, the wakeups done here will sometimes
155 1.1 cgd * cause software-interrupt process scheduling.
156 1.1 cgd */
157 1.1 cgd
158 1.7 mycroft void
159 1.37 lukem soisconnecting(struct socket *so)
160 1.1 cgd {
161 1.1 cgd
162 1.91 ad KASSERT(solocked(so));
163 1.91 ad
164 1.1 cgd so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
165 1.1 cgd so->so_state |= SS_ISCONNECTING;
166 1.1 cgd }
167 1.1 cgd
168 1.7 mycroft void
169 1.37 lukem soisconnected(struct socket *so)
170 1.1 cgd {
171 1.37 lukem struct socket *head;
172 1.1 cgd
173 1.37 lukem head = so->so_head;
174 1.91 ad
175 1.91 ad KASSERT(solocked(so));
176 1.91 ad KASSERT(head == NULL || solocked2(so, head));
177 1.91 ad
178 1.1 cgd so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
179 1.1 cgd so->so_state |= SS_ISCONNECTED;
180 1.1 cgd if (head && soqremque(so, 0)) {
181 1.1 cgd soqinsque(head, so, 1);
182 1.1 cgd sorwakeup(head);
183 1.91 ad cv_broadcast(&head->so_cv);
184 1.1 cgd } else {
185 1.91 ad cv_broadcast(&so->so_cv);
186 1.1 cgd sorwakeup(so);
187 1.1 cgd sowwakeup(so);
188 1.1 cgd }
189 1.1 cgd }
190 1.1 cgd
191 1.7 mycroft void
192 1.37 lukem soisdisconnecting(struct socket *so)
193 1.1 cgd {
194 1.1 cgd
195 1.91 ad KASSERT(solocked(so));
196 1.91 ad
197 1.1 cgd so->so_state &= ~SS_ISCONNECTING;
198 1.1 cgd so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
199 1.91 ad cv_broadcast(&so->so_cv);
200 1.1 cgd sowwakeup(so);
201 1.1 cgd sorwakeup(so);
202 1.1 cgd }
203 1.1 cgd
204 1.7 mycroft void
205 1.37 lukem soisdisconnected(struct socket *so)
206 1.1 cgd {
207 1.1 cgd
208 1.91 ad KASSERT(solocked(so));
209 1.91 ad
210 1.1 cgd so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
211 1.27 mycroft so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
212 1.91 ad cv_broadcast(&so->so_cv);
213 1.1 cgd sowwakeup(so);
214 1.1 cgd sorwakeup(so);
215 1.1 cgd }
216 1.1 cgd
217 1.94 ad void
218 1.94 ad soinit2(void)
219 1.94 ad {
220 1.94 ad
221 1.94 ad socket_cache = pool_cache_init(sizeof(struct socket), 0, 0, 0,
222 1.94 ad "socket", NULL, IPL_SOFTNET, NULL, NULL, NULL);
223 1.94 ad }
224 1.94 ad
225 1.1 cgd /*
226 1.1 cgd * When an attempt at a new connection is noted on a socket
227 1.1 cgd * which accepts connections, sonewconn is called. If the
228 1.1 cgd * connection is possible (subject to space constraints, etc.)
229 1.1 cgd * then we allocate a new structure, propoerly linked into the
230 1.1 cgd * data structure of the original socket, and return this.
231 1.77 plunky * Connstatus may be 0, SS_ISCONFIRMING, or SS_ISCONNECTED.
232 1.1 cgd */
233 1.1 cgd struct socket *
234 1.76 plunky sonewconn(struct socket *head, int connstatus)
235 1.1 cgd {
236 1.37 lukem struct socket *so;
237 1.91 ad int soqueue, error;
238 1.91 ad
239 1.91 ad KASSERT(solocked(head));
240 1.1 cgd
241 1.37 lukem soqueue = connstatus ? 1 : 0;
242 1.1 cgd if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
243 1.1 cgd return ((struct socket *)0);
244 1.91 ad so = soget(false);
245 1.66 perry if (so == NULL)
246 1.25 thorpej return (NULL);
247 1.91 ad mutex_obj_hold(head->so_lock);
248 1.91 ad so->so_lock = head->so_lock;
249 1.1 cgd so->so_type = head->so_type;
250 1.1 cgd so->so_options = head->so_options &~ SO_ACCEPTCONN;
251 1.1 cgd so->so_linger = head->so_linger;
252 1.1 cgd so->so_state = head->so_state | SS_NOFDREF;
253 1.89 ad so->so_nbio = head->so_nbio;
254 1.1 cgd so->so_proto = head->so_proto;
255 1.1 cgd so->so_timeo = head->so_timeo;
256 1.1 cgd so->so_pgid = head->so_pgid;
257 1.24 matt so->so_send = head->so_send;
258 1.24 matt so->so_receive = head->so_receive;
259 1.67 christos so->so_uidinfo = head->so_uidinfo;
260 1.94.2.1 simonb so->so_egid = head->so_egid;
261 1.94.2.1 simonb so->so_cpid = head->so_cpid;
262 1.49 matt #ifdef MBUFTRACE
263 1.49 matt so->so_mowner = head->so_mowner;
264 1.49 matt so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
265 1.49 matt so->so_snd.sb_mowner = head->so_snd.sb_mowner;
266 1.49 matt #endif
267 1.1 cgd (void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
268 1.83 tls so->so_snd.sb_lowat = head->so_snd.sb_lowat;
269 1.83 tls so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
270 1.84 tls so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
271 1.84 tls so->so_snd.sb_timeo = head->so_snd.sb_timeo;
272 1.85 rmind so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE;
273 1.85 rmind so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE;
274 1.1 cgd soqinsque(head, so, soqueue);
275 1.91 ad error = (*so->so_proto->pr_usrreq)(so, PRU_ATTACH, NULL, NULL,
276 1.91 ad NULL, NULL);
277 1.91 ad KASSERT(solocked(so));
278 1.91 ad if (error != 0) {
279 1.1 cgd (void) soqremque(so, soqueue);
280 1.91 ad soput(so);
281 1.25 thorpej return (NULL);
282 1.1 cgd }
283 1.1 cgd if (connstatus) {
284 1.1 cgd sorwakeup(head);
285 1.91 ad cv_broadcast(&head->so_cv);
286 1.1 cgd so->so_state |= connstatus;
287 1.1 cgd }
288 1.1 cgd return (so);
289 1.1 cgd }
290 1.1 cgd
291 1.91 ad struct socket *
292 1.91 ad soget(bool waitok)
293 1.91 ad {
294 1.91 ad struct socket *so;
295 1.91 ad
296 1.94 ad so = pool_cache_get(socket_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
297 1.91 ad if (__predict_false(so == NULL))
298 1.91 ad return (NULL);
299 1.91 ad memset(so, 0, sizeof(*so));
300 1.91 ad TAILQ_INIT(&so->so_q0);
301 1.91 ad TAILQ_INIT(&so->so_q);
302 1.91 ad cv_init(&so->so_cv, "socket");
303 1.91 ad cv_init(&so->so_rcv.sb_cv, "netio");
304 1.91 ad cv_init(&so->so_snd.sb_cv, "netio");
305 1.91 ad selinit(&so->so_rcv.sb_sel);
306 1.91 ad selinit(&so->so_snd.sb_sel);
307 1.91 ad so->so_rcv.sb_so = so;
308 1.91 ad so->so_snd.sb_so = so;
309 1.91 ad return so;
310 1.91 ad }
311 1.91 ad
312 1.91 ad void
313 1.91 ad soput(struct socket *so)
314 1.91 ad {
315 1.91 ad
316 1.91 ad KASSERT(!cv_has_waiters(&so->so_cv));
317 1.91 ad KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
318 1.91 ad KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
319 1.91 ad seldestroy(&so->so_rcv.sb_sel);
320 1.91 ad seldestroy(&so->so_snd.sb_sel);
321 1.91 ad mutex_obj_free(so->so_lock);
322 1.91 ad cv_destroy(&so->so_cv);
323 1.91 ad cv_destroy(&so->so_rcv.sb_cv);
324 1.91 ad cv_destroy(&so->so_snd.sb_cv);
325 1.94 ad pool_cache_put(socket_cache, so);
326 1.91 ad }
327 1.91 ad
328 1.7 mycroft void
329 1.37 lukem soqinsque(struct socket *head, struct socket *so, int q)
330 1.1 cgd {
331 1.1 cgd
332 1.91 ad KASSERT(solocked2(head, so));
333 1.91 ad
334 1.22 thorpej #ifdef DIAGNOSTIC
335 1.22 thorpej if (so->so_onq != NULL)
336 1.22 thorpej panic("soqinsque");
337 1.22 thorpej #endif
338 1.22 thorpej
339 1.1 cgd so->so_head = head;
340 1.1 cgd if (q == 0) {
341 1.1 cgd head->so_q0len++;
342 1.22 thorpej so->so_onq = &head->so_q0;
343 1.1 cgd } else {
344 1.1 cgd head->so_qlen++;
345 1.22 thorpej so->so_onq = &head->so_q;
346 1.1 cgd }
347 1.22 thorpej TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
348 1.1 cgd }
349 1.1 cgd
350 1.7 mycroft int
351 1.37 lukem soqremque(struct socket *so, int q)
352 1.1 cgd {
353 1.37 lukem struct socket *head;
354 1.1 cgd
355 1.37 lukem head = so->so_head;
356 1.91 ad
357 1.91 ad KASSERT(solocked(so));
358 1.22 thorpej if (q == 0) {
359 1.22 thorpej if (so->so_onq != &head->so_q0)
360 1.17 thorpej return (0);
361 1.1 cgd head->so_q0len--;
362 1.1 cgd } else {
363 1.22 thorpej if (so->so_onq != &head->so_q)
364 1.22 thorpej return (0);
365 1.1 cgd head->so_qlen--;
366 1.1 cgd }
367 1.91 ad KASSERT(solocked2(so, head));
368 1.22 thorpej TAILQ_REMOVE(so->so_onq, so, so_qe);
369 1.22 thorpej so->so_onq = NULL;
370 1.22 thorpej so->so_head = NULL;
371 1.1 cgd return (1);
372 1.1 cgd }
373 1.1 cgd
374 1.1 cgd /*
375 1.1 cgd * Socantsendmore indicates that no more data will be sent on the
376 1.1 cgd * socket; it would normally be applied to a socket when the user
377 1.1 cgd * informs the system that no more data is to be sent, by the protocol
378 1.1 cgd * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data
379 1.1 cgd * will be received, and will normally be applied to the socket by a
380 1.1 cgd * protocol when it detects that the peer will send no more data.
381 1.1 cgd * Data queued for reading in the socket may yet be read.
382 1.1 cgd */
383 1.1 cgd
384 1.4 andrew void
385 1.37 lukem socantsendmore(struct socket *so)
386 1.1 cgd {
387 1.1 cgd
388 1.91 ad KASSERT(solocked(so));
389 1.91 ad
390 1.1 cgd so->so_state |= SS_CANTSENDMORE;
391 1.1 cgd sowwakeup(so);
392 1.1 cgd }
393 1.1 cgd
394 1.4 andrew void
395 1.37 lukem socantrcvmore(struct socket *so)
396 1.1 cgd {
397 1.1 cgd
398 1.91 ad KASSERT(solocked(so));
399 1.91 ad
400 1.1 cgd so->so_state |= SS_CANTRCVMORE;
401 1.1 cgd sorwakeup(so);
402 1.1 cgd }
403 1.1 cgd
404 1.1 cgd /*
405 1.1 cgd * Wait for data to arrive at/drain from a socket buffer.
406 1.1 cgd */
407 1.7 mycroft int
408 1.37 lukem sbwait(struct sockbuf *sb)
409 1.1 cgd {
410 1.91 ad struct socket *so;
411 1.91 ad kmutex_t *lock;
412 1.91 ad int error;
413 1.1 cgd
414 1.91 ad so = sb->sb_so;
415 1.1 cgd
416 1.91 ad KASSERT(solocked(so));
417 1.1 cgd
418 1.91 ad sb->sb_flags |= SB_NOTIFY;
419 1.91 ad lock = so->so_lock;
420 1.91 ad if ((sb->sb_flags & SB_NOINTR) != 0)
421 1.91 ad error = cv_timedwait(&sb->sb_cv, lock, sb->sb_timeo);
422 1.91 ad else
423 1.91 ad error = cv_timedwait_sig(&sb->sb_cv, lock, sb->sb_timeo);
424 1.91 ad if (__predict_false(lock != so->so_lock))
425 1.91 ad solockretry(so, lock);
426 1.91 ad return error;
427 1.1 cgd }
428 1.1 cgd
429 1.1 cgd /*
430 1.1 cgd * Wakeup processes waiting on a socket buffer.
431 1.1 cgd * Do asynchronous notification via SIGIO
432 1.39 manu * if the socket buffer has the SB_ASYNC flag set.
433 1.1 cgd */
434 1.7 mycroft void
435 1.55 christos sowakeup(struct socket *so, struct sockbuf *sb, int code)
436 1.1 cgd {
437 1.90 rmind int band;
438 1.90 rmind
439 1.91 ad KASSERT(solocked(so));
440 1.91 ad KASSERT(sb->sb_so == so);
441 1.91 ad
442 1.90 rmind if (code == POLL_IN)
443 1.90 rmind band = POLLIN|POLLRDNORM;
444 1.90 rmind else
445 1.90 rmind band = POLLOUT|POLLWRNORM;
446 1.91 ad sb->sb_flags &= ~SB_NOTIFY;
447 1.91 ad selnotify(&sb->sb_sel, band, NOTE_SUBMIT);
448 1.91 ad cv_broadcast(&sb->sb_cv);
449 1.90 rmind if (sb->sb_flags & SB_ASYNC)
450 1.57 christos fownsignal(so->so_pgid, SIGIO, code, band, so);
451 1.24 matt if (sb->sb_flags & SB_UPCALL)
452 1.24 matt (*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT);
453 1.1 cgd }
454 1.1 cgd
455 1.1 cgd /*
456 1.94.2.1 simonb * Reset a socket's lock pointer. Wake all threads waiting on the
457 1.94.2.1 simonb * socket's condition variables so that they can restart their waits
458 1.94.2.1 simonb * using the new lock. The existing lock must be held.
459 1.94.2.1 simonb */
460 1.94.2.1 simonb void
461 1.94.2.1 simonb solockreset(struct socket *so, kmutex_t *lock)
462 1.94.2.1 simonb {
463 1.94.2.1 simonb
464 1.94.2.1 simonb KASSERT(solocked(so));
465 1.94.2.1 simonb
466 1.94.2.1 simonb so->so_lock = lock;
467 1.94.2.1 simonb cv_broadcast(&so->so_snd.sb_cv);
468 1.94.2.1 simonb cv_broadcast(&so->so_rcv.sb_cv);
469 1.94.2.1 simonb cv_broadcast(&so->so_cv);
470 1.94.2.1 simonb }
471 1.94.2.1 simonb
472 1.94.2.1 simonb /*
473 1.1 cgd * Socket buffer (struct sockbuf) utility routines.
474 1.1 cgd *
475 1.1 cgd * Each socket contains two socket buffers: one for sending data and
476 1.1 cgd * one for receiving data. Each buffer contains a queue of mbufs,
477 1.1 cgd * information about the number of mbufs and amount of data in the
478 1.13 mycroft * queue, and other fields allowing poll() statements and notification
479 1.1 cgd * on data availability to be implemented.
480 1.1 cgd *
481 1.1 cgd * Data stored in a socket buffer is maintained as a list of records.
482 1.1 cgd * Each record is a list of mbufs chained together with the m_next
483 1.1 cgd * field. Records are chained together with the m_nextpkt field. The upper
484 1.1 cgd * level routine soreceive() expects the following conventions to be
485 1.1 cgd * observed when placing information in the receive buffer:
486 1.1 cgd *
487 1.1 cgd * 1. If the protocol requires each message be preceded by the sender's
488 1.1 cgd * name, then a record containing that name must be present before
489 1.1 cgd * any associated data (mbuf's must be of type MT_SONAME).
490 1.1 cgd * 2. If the protocol supports the exchange of ``access rights'' (really
491 1.1 cgd * just additional data associated with the message), and there are
492 1.1 cgd * ``rights'' to be received, then a record containing this data
493 1.10 mycroft * should be present (mbuf's must be of type MT_CONTROL).
494 1.1 cgd * 3. If a name or rights record exists, then it must be followed by
495 1.1 cgd * a data record, perhaps of zero length.
496 1.1 cgd *
497 1.1 cgd * Before using a new socket structure it is first necessary to reserve
498 1.1 cgd * buffer space to the socket, by calling sbreserve(). This should commit
499 1.1 cgd * some of the available buffer space in the system buffer pool for the
500 1.1 cgd * socket (currently, it does nothing but enforce limits). The space
501 1.1 cgd * should be released by calling sbrelease() when the socket is destroyed.
502 1.1 cgd */
503 1.1 cgd
504 1.7 mycroft int
505 1.58 thorpej sb_max_set(u_long new_sbmax)
506 1.58 thorpej {
507 1.58 thorpej int s;
508 1.58 thorpej
509 1.58 thorpej if (new_sbmax < (16 * 1024))
510 1.58 thorpej return (EINVAL);
511 1.58 thorpej
512 1.58 thorpej s = splsoftnet();
513 1.58 thorpej sb_max = new_sbmax;
514 1.58 thorpej sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
515 1.58 thorpej splx(s);
516 1.58 thorpej
517 1.58 thorpej return (0);
518 1.58 thorpej }
519 1.58 thorpej
520 1.58 thorpej int
521 1.37 lukem soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
522 1.1 cgd {
523 1.91 ad
524 1.91 ad KASSERT(so->so_lock == NULL || solocked(so));
525 1.91 ad
526 1.74 christos /*
527 1.74 christos * there's at least one application (a configure script of screen)
528 1.74 christos * which expects a fifo is writable even if it has "some" bytes
529 1.74 christos * in its buffer.
530 1.74 christos * so we want to make sure (hiwat - lowat) >= (some bytes).
531 1.74 christos *
532 1.74 christos * PIPE_BUF here is an arbitrary value chosen as (some bytes) above.
533 1.74 christos * we expect it's large enough for such applications.
534 1.74 christos */
535 1.74 christos u_long lowat = MAX(sock_loan_thresh, MCLBYTES);
536 1.74 christos u_long hiwat = lowat + PIPE_BUF;
537 1.1 cgd
538 1.74 christos if (sndcc < hiwat)
539 1.74 christos sndcc = hiwat;
540 1.59 christos if (sbreserve(&so->so_snd, sndcc, so) == 0)
541 1.1 cgd goto bad;
542 1.59 christos if (sbreserve(&so->so_rcv, rcvcc, so) == 0)
543 1.1 cgd goto bad2;
544 1.1 cgd if (so->so_rcv.sb_lowat == 0)
545 1.1 cgd so->so_rcv.sb_lowat = 1;
546 1.1 cgd if (so->so_snd.sb_lowat == 0)
547 1.74 christos so->so_snd.sb_lowat = lowat;
548 1.1 cgd if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
549 1.1 cgd so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
550 1.1 cgd return (0);
551 1.37 lukem bad2:
552 1.59 christos sbrelease(&so->so_snd, so);
553 1.37 lukem bad:
554 1.1 cgd return (ENOBUFS);
555 1.1 cgd }
556 1.1 cgd
557 1.1 cgd /*
558 1.1 cgd * Allot mbufs to a sockbuf.
559 1.1 cgd * Attempt to scale mbmax so that mbcnt doesn't become limiting
560 1.1 cgd * if buffering efficiency is near the normal case.
561 1.1 cgd */
562 1.7 mycroft int
563 1.59 christos sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
564 1.1 cgd {
565 1.75 ad struct lwp *l = curlwp; /* XXX */
566 1.62 christos rlim_t maxcc;
567 1.67 christos struct uidinfo *uidinfo;
568 1.1 cgd
569 1.91 ad KASSERT(so->so_lock == NULL || solocked(so));
570 1.91 ad KASSERT(sb->sb_so == so);
571 1.91 ad KASSERT(sb_max_adj != 0);
572 1.91 ad
573 1.58 thorpej if (cc == 0 || cc > sb_max_adj)
574 1.1 cgd return (0);
575 1.93 christos
576 1.93 christos if (kauth_cred_geteuid(l->l_cred) == so->so_uidinfo->ui_uid)
577 1.93 christos maxcc = l->l_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur;
578 1.93 christos else
579 1.62 christos maxcc = RLIM_INFINITY;
580 1.93 christos
581 1.93 christos uidinfo = so->so_uidinfo;
582 1.67 christos if (!chgsbsize(uidinfo, &sb->sb_hiwat, cc, maxcc))
583 1.62 christos return 0;
584 1.1 cgd sb->sb_mbmax = min(cc * 2, sb_max);
585 1.1 cgd if (sb->sb_lowat > sb->sb_hiwat)
586 1.1 cgd sb->sb_lowat = sb->sb_hiwat;
587 1.1 cgd return (1);
588 1.1 cgd }
589 1.1 cgd
590 1.1 cgd /*
591 1.91 ad * Free mbufs held by a socket, and reserved mbuf space. We do not assert
592 1.91 ad * that the socket is held locked here: see sorflush().
593 1.1 cgd */
594 1.7 mycroft void
595 1.59 christos sbrelease(struct sockbuf *sb, struct socket *so)
596 1.1 cgd {
597 1.1 cgd
598 1.91 ad KASSERT(sb->sb_so == so);
599 1.91 ad
600 1.1 cgd sbflush(sb);
601 1.87 yamt (void)chgsbsize(so->so_uidinfo, &sb->sb_hiwat, 0, RLIM_INFINITY);
602 1.59 christos sb->sb_mbmax = 0;
603 1.1 cgd }
604 1.1 cgd
605 1.1 cgd /*
606 1.1 cgd * Routines to add and remove
607 1.1 cgd * data from an mbuf queue.
608 1.1 cgd *
609 1.1 cgd * The routines sbappend() or sbappendrecord() are normally called to
610 1.1 cgd * append new mbufs to a socket buffer, after checking that adequate
611 1.1 cgd * space is available, comparing the function sbspace() with the amount
612 1.1 cgd * of data to be added. sbappendrecord() differs from sbappend() in
613 1.1 cgd * that data supplied is treated as the beginning of a new record.
614 1.1 cgd * To place a sender's address, optional access rights, and data in a
615 1.1 cgd * socket receive buffer, sbappendaddr() should be used. To place
616 1.1 cgd * access rights and data in a socket receive buffer, sbappendrights()
617 1.1 cgd * should be used. In either case, the new data begins a new record.
618 1.1 cgd * Note that unlike sbappend() and sbappendrecord(), these routines check
619 1.1 cgd * for the caller that there will be enough space to store the data.
620 1.1 cgd * Each fails if there is not enough space, or if it cannot find mbufs
621 1.1 cgd * to store additional information in.
622 1.1 cgd *
623 1.1 cgd * Reliable protocols may use the socket send buffer to hold data
624 1.1 cgd * awaiting acknowledgement. Data is normally copied from a socket
625 1.1 cgd * send buffer in a protocol with m_copy for output to a peer,
626 1.1 cgd * and then removing the data from the socket buffer with sbdrop()
627 1.1 cgd * or sbdroprecord() when the data is acknowledged by the peer.
628 1.1 cgd */
629 1.1 cgd
630 1.43 thorpej #ifdef SOCKBUF_DEBUG
631 1.43 thorpej void
632 1.43 thorpej sblastrecordchk(struct sockbuf *sb, const char *where)
633 1.43 thorpej {
634 1.43 thorpej struct mbuf *m = sb->sb_mb;
635 1.43 thorpej
636 1.91 ad KASSERT(solocked(sb->sb_so));
637 1.91 ad
638 1.43 thorpej while (m && m->m_nextpkt)
639 1.43 thorpej m = m->m_nextpkt;
640 1.43 thorpej
641 1.43 thorpej if (m != sb->sb_lastrecord) {
642 1.43 thorpej printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
643 1.43 thorpej sb->sb_mb, sb->sb_lastrecord, m);
644 1.43 thorpej printf("packet chain:\n");
645 1.43 thorpej for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
646 1.43 thorpej printf("\t%p\n", m);
647 1.47 provos panic("sblastrecordchk from %s", where);
648 1.43 thorpej }
649 1.43 thorpej }
650 1.43 thorpej
651 1.43 thorpej void
652 1.43 thorpej sblastmbufchk(struct sockbuf *sb, const char *where)
653 1.43 thorpej {
654 1.43 thorpej struct mbuf *m = sb->sb_mb;
655 1.43 thorpej struct mbuf *n;
656 1.43 thorpej
657 1.91 ad KASSERT(solocked(sb->sb_so));
658 1.91 ad
659 1.43 thorpej while (m && m->m_nextpkt)
660 1.43 thorpej m = m->m_nextpkt;
661 1.43 thorpej
662 1.43 thorpej while (m && m->m_next)
663 1.43 thorpej m = m->m_next;
664 1.43 thorpej
665 1.43 thorpej if (m != sb->sb_mbtail) {
666 1.43 thorpej printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
667 1.43 thorpej sb->sb_mb, sb->sb_mbtail, m);
668 1.43 thorpej printf("packet tree:\n");
669 1.43 thorpej for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
670 1.43 thorpej printf("\t");
671 1.43 thorpej for (n = m; n != NULL; n = n->m_next)
672 1.43 thorpej printf("%p ", n);
673 1.43 thorpej printf("\n");
674 1.43 thorpej }
675 1.43 thorpej panic("sblastmbufchk from %s", where);
676 1.43 thorpej }
677 1.43 thorpej }
678 1.43 thorpej #endif /* SOCKBUF_DEBUG */
679 1.43 thorpej
680 1.63 jonathan /*
681 1.63 jonathan * Link a chain of records onto a socket buffer
682 1.63 jonathan */
683 1.63 jonathan #define SBLINKRECORDCHAIN(sb, m0, mlast) \
684 1.43 thorpej do { \
685 1.43 thorpej if ((sb)->sb_lastrecord != NULL) \
686 1.43 thorpej (sb)->sb_lastrecord->m_nextpkt = (m0); \
687 1.43 thorpej else \
688 1.43 thorpej (sb)->sb_mb = (m0); \
689 1.63 jonathan (sb)->sb_lastrecord = (mlast); \
690 1.43 thorpej } while (/*CONSTCOND*/0)
691 1.43 thorpej
692 1.63 jonathan
693 1.63 jonathan #define SBLINKRECORD(sb, m0) \
694 1.63 jonathan SBLINKRECORDCHAIN(sb, m0, m0)
695 1.63 jonathan
696 1.1 cgd /*
697 1.1 cgd * Append mbuf chain m to the last record in the
698 1.1 cgd * socket buffer sb. The additional space associated
699 1.1 cgd * the mbuf chain is recorded in sb. Empty mbufs are
700 1.1 cgd * discarded and mbufs are compacted where possible.
701 1.1 cgd */
702 1.7 mycroft void
703 1.37 lukem sbappend(struct sockbuf *sb, struct mbuf *m)
704 1.1 cgd {
705 1.37 lukem struct mbuf *n;
706 1.1 cgd
707 1.91 ad KASSERT(solocked(sb->sb_so));
708 1.91 ad
709 1.1 cgd if (m == 0)
710 1.1 cgd return;
711 1.43 thorpej
712 1.49 matt #ifdef MBUFTRACE
713 1.65 jonathan m_claimm(m, sb->sb_mowner);
714 1.49 matt #endif
715 1.49 matt
716 1.43 thorpej SBLASTRECORDCHK(sb, "sbappend 1");
717 1.43 thorpej
718 1.43 thorpej if ((n = sb->sb_lastrecord) != NULL) {
719 1.43 thorpej /*
720 1.43 thorpej * XXX Would like to simply use sb_mbtail here, but
721 1.43 thorpej * XXX I need to verify that I won't miss an EOR that
722 1.43 thorpej * XXX way.
723 1.43 thorpej */
724 1.1 cgd do {
725 1.1 cgd if (n->m_flags & M_EOR) {
726 1.1 cgd sbappendrecord(sb, m); /* XXXXXX!!!! */
727 1.1 cgd return;
728 1.1 cgd }
729 1.1 cgd } while (n->m_next && (n = n->m_next));
730 1.43 thorpej } else {
731 1.43 thorpej /*
732 1.43 thorpej * If this is the first record in the socket buffer, it's
733 1.43 thorpej * also the last record.
734 1.43 thorpej */
735 1.43 thorpej sb->sb_lastrecord = m;
736 1.1 cgd }
737 1.1 cgd sbcompress(sb, m, n);
738 1.43 thorpej SBLASTRECORDCHK(sb, "sbappend 2");
739 1.43 thorpej }
740 1.43 thorpej
741 1.43 thorpej /*
742 1.43 thorpej * This version of sbappend() should only be used when the caller
743 1.43 thorpej * absolutely knows that there will never be more than one record
744 1.43 thorpej * in the socket buffer, that is, a stream protocol (such as TCP).
745 1.43 thorpej */
746 1.43 thorpej void
747 1.44 thorpej sbappendstream(struct sockbuf *sb, struct mbuf *m)
748 1.43 thorpej {
749 1.43 thorpej
750 1.91 ad KASSERT(solocked(sb->sb_so));
751 1.43 thorpej KDASSERT(m->m_nextpkt == NULL);
752 1.43 thorpej KASSERT(sb->sb_mb == sb->sb_lastrecord);
753 1.43 thorpej
754 1.43 thorpej SBLASTMBUFCHK(sb, __func__);
755 1.43 thorpej
756 1.49 matt #ifdef MBUFTRACE
757 1.65 jonathan m_claimm(m, sb->sb_mowner);
758 1.49 matt #endif
759 1.49 matt
760 1.43 thorpej sbcompress(sb, m, sb->sb_mbtail);
761 1.43 thorpej
762 1.43 thorpej sb->sb_lastrecord = sb->sb_mb;
763 1.43 thorpej SBLASTRECORDCHK(sb, __func__);
764 1.1 cgd }
765 1.1 cgd
766 1.1 cgd #ifdef SOCKBUF_DEBUG
767 1.7 mycroft void
768 1.37 lukem sbcheck(struct sockbuf *sb)
769 1.1 cgd {
770 1.91 ad struct mbuf *m, *m2;
771 1.43 thorpej u_long len, mbcnt;
772 1.1 cgd
773 1.91 ad KASSERT(solocked(sb->sb_so));
774 1.91 ad
775 1.37 lukem len = 0;
776 1.37 lukem mbcnt = 0;
777 1.91 ad for (m = sb->sb_mb; m; m = m->m_nextpkt) {
778 1.91 ad for (m2 = m; m2 != NULL; m2 = m2->m_next) {
779 1.91 ad len += m2->m_len;
780 1.91 ad mbcnt += MSIZE;
781 1.91 ad if (m2->m_flags & M_EXT)
782 1.91 ad mbcnt += m2->m_ext.ext_size;
783 1.91 ad if (m2->m_nextpkt != NULL)
784 1.91 ad panic("sbcheck nextpkt");
785 1.91 ad }
786 1.1 cgd }
787 1.1 cgd if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
788 1.43 thorpej printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
789 1.1 cgd mbcnt, sb->sb_mbcnt);
790 1.1 cgd panic("sbcheck");
791 1.1 cgd }
792 1.1 cgd }
793 1.1 cgd #endif
794 1.1 cgd
795 1.1 cgd /*
796 1.1 cgd * As above, except the mbuf chain
797 1.1 cgd * begins a new record.
798 1.1 cgd */
799 1.7 mycroft void
800 1.37 lukem sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
801 1.1 cgd {
802 1.37 lukem struct mbuf *m;
803 1.1 cgd
804 1.91 ad KASSERT(solocked(sb->sb_so));
805 1.91 ad
806 1.1 cgd if (m0 == 0)
807 1.1 cgd return;
808 1.43 thorpej
809 1.49 matt #ifdef MBUFTRACE
810 1.65 jonathan m_claimm(m0, sb->sb_mowner);
811 1.49 matt #endif
812 1.1 cgd /*
813 1.1 cgd * Put the first mbuf on the queue.
814 1.1 cgd * Note this permits zero length records.
815 1.1 cgd */
816 1.1 cgd sballoc(sb, m0);
817 1.43 thorpej SBLASTRECORDCHK(sb, "sbappendrecord 1");
818 1.43 thorpej SBLINKRECORD(sb, m0);
819 1.1 cgd m = m0->m_next;
820 1.1 cgd m0->m_next = 0;
821 1.1 cgd if (m && (m0->m_flags & M_EOR)) {
822 1.1 cgd m0->m_flags &= ~M_EOR;
823 1.1 cgd m->m_flags |= M_EOR;
824 1.1 cgd }
825 1.1 cgd sbcompress(sb, m, m0);
826 1.43 thorpej SBLASTRECORDCHK(sb, "sbappendrecord 2");
827 1.1 cgd }
828 1.1 cgd
829 1.1 cgd /*
830 1.1 cgd * As above except that OOB data
831 1.1 cgd * is inserted at the beginning of the sockbuf,
832 1.1 cgd * but after any other OOB data.
833 1.1 cgd */
834 1.7 mycroft void
835 1.37 lukem sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
836 1.1 cgd {
837 1.37 lukem struct mbuf *m, **mp;
838 1.1 cgd
839 1.91 ad KASSERT(solocked(sb->sb_so));
840 1.91 ad
841 1.1 cgd if (m0 == 0)
842 1.1 cgd return;
843 1.43 thorpej
844 1.43 thorpej SBLASTRECORDCHK(sb, "sbinsertoob 1");
845 1.43 thorpej
846 1.11 christos for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
847 1.1 cgd again:
848 1.1 cgd switch (m->m_type) {
849 1.1 cgd
850 1.1 cgd case MT_OOBDATA:
851 1.1 cgd continue; /* WANT next train */
852 1.1 cgd
853 1.1 cgd case MT_CONTROL:
854 1.11 christos if ((m = m->m_next) != NULL)
855 1.1 cgd goto again; /* inspect THIS train further */
856 1.1 cgd }
857 1.1 cgd break;
858 1.1 cgd }
859 1.1 cgd /*
860 1.1 cgd * Put the first mbuf on the queue.
861 1.1 cgd * Note this permits zero length records.
862 1.1 cgd */
863 1.1 cgd sballoc(sb, m0);
864 1.1 cgd m0->m_nextpkt = *mp;
865 1.43 thorpej if (*mp == NULL) {
866 1.43 thorpej /* m0 is actually the new tail */
867 1.43 thorpej sb->sb_lastrecord = m0;
868 1.43 thorpej }
869 1.1 cgd *mp = m0;
870 1.1 cgd m = m0->m_next;
871 1.1 cgd m0->m_next = 0;
872 1.1 cgd if (m && (m0->m_flags & M_EOR)) {
873 1.1 cgd m0->m_flags &= ~M_EOR;
874 1.1 cgd m->m_flags |= M_EOR;
875 1.1 cgd }
876 1.1 cgd sbcompress(sb, m, m0);
877 1.43 thorpej SBLASTRECORDCHK(sb, "sbinsertoob 2");
878 1.1 cgd }
879 1.1 cgd
880 1.1 cgd /*
881 1.1 cgd * Append address and data, and optionally, control (ancillary) data
882 1.1 cgd * to the receive queue of a socket. If present,
883 1.1 cgd * m0 must include a packet header with total length.
884 1.1 cgd * Returns 0 if no space in sockbuf or insufficient mbufs.
885 1.1 cgd */
886 1.7 mycroft int
887 1.61 matt sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0,
888 1.37 lukem struct mbuf *control)
889 1.1 cgd {
890 1.43 thorpej struct mbuf *m, *n, *nlast;
891 1.50 fvdl int space, len;
892 1.1 cgd
893 1.91 ad KASSERT(solocked(sb->sb_so));
894 1.91 ad
895 1.37 lukem space = asa->sa_len;
896 1.37 lukem
897 1.49 matt if (m0 != NULL) {
898 1.49 matt if ((m0->m_flags & M_PKTHDR) == 0)
899 1.49 matt panic("sbappendaddr");
900 1.1 cgd space += m0->m_pkthdr.len;
901 1.49 matt #ifdef MBUFTRACE
902 1.65 jonathan m_claimm(m0, sb->sb_mowner);
903 1.49 matt #endif
904 1.49 matt }
905 1.1 cgd for (n = control; n; n = n->m_next) {
906 1.1 cgd space += n->m_len;
907 1.49 matt MCLAIM(n, sb->sb_mowner);
908 1.1 cgd if (n->m_next == 0) /* keep pointer to last control buf */
909 1.1 cgd break;
910 1.1 cgd }
911 1.1 cgd if (space > sbspace(sb))
912 1.1 cgd return (0);
913 1.1 cgd MGET(m, M_DONTWAIT, MT_SONAME);
914 1.1 cgd if (m == 0)
915 1.1 cgd return (0);
916 1.49 matt MCLAIM(m, sb->sb_mowner);
917 1.50 fvdl /*
918 1.50 fvdl * XXX avoid 'comparison always true' warning which isn't easily
919 1.50 fvdl * avoided.
920 1.50 fvdl */
921 1.50 fvdl len = asa->sa_len;
922 1.50 fvdl if (len > MLEN) {
923 1.20 thorpej MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
924 1.20 thorpej if ((m->m_flags & M_EXT) == 0) {
925 1.20 thorpej m_free(m);
926 1.20 thorpej return (0);
927 1.20 thorpej }
928 1.20 thorpej }
929 1.1 cgd m->m_len = asa->sa_len;
930 1.82 christos memcpy(mtod(m, void *), asa, asa->sa_len);
931 1.1 cgd if (n)
932 1.1 cgd n->m_next = m0; /* concatenate data to control */
933 1.1 cgd else
934 1.1 cgd control = m0;
935 1.1 cgd m->m_next = control;
936 1.43 thorpej
937 1.43 thorpej SBLASTRECORDCHK(sb, "sbappendaddr 1");
938 1.43 thorpej
939 1.43 thorpej for (n = m; n->m_next != NULL; n = n->m_next)
940 1.1 cgd sballoc(sb, n);
941 1.43 thorpej sballoc(sb, n);
942 1.43 thorpej nlast = n;
943 1.43 thorpej SBLINKRECORD(sb, m);
944 1.43 thorpej
945 1.43 thorpej sb->sb_mbtail = nlast;
946 1.43 thorpej SBLASTMBUFCHK(sb, "sbappendaddr");
947 1.43 thorpej SBLASTRECORDCHK(sb, "sbappendaddr 2");
948 1.43 thorpej
949 1.1 cgd return (1);
950 1.1 cgd }
951 1.1 cgd
952 1.63 jonathan /*
953 1.63 jonathan * Helper for sbappendchainaddr: prepend a struct sockaddr* to
954 1.63 jonathan * an mbuf chain.
955 1.63 jonathan */
956 1.70 perry static inline struct mbuf *
957 1.81 yamt m_prepend_sockaddr(struct sockbuf *sb, struct mbuf *m0,
958 1.64 jonathan const struct sockaddr *asa)
959 1.63 jonathan {
960 1.63 jonathan struct mbuf *m;
961 1.64 jonathan const int salen = asa->sa_len;
962 1.63 jonathan
963 1.91 ad KASSERT(solocked(sb->sb_so));
964 1.91 ad
965 1.63 jonathan /* only the first in each chain need be a pkthdr */
966 1.63 jonathan MGETHDR(m, M_DONTWAIT, MT_SONAME);
967 1.63 jonathan if (m == 0)
968 1.63 jonathan return (0);
969 1.63 jonathan MCLAIM(m, sb->sb_mowner);
970 1.64 jonathan #ifdef notyet
971 1.64 jonathan if (salen > MHLEN) {
972 1.64 jonathan MEXTMALLOC(m, salen, M_NOWAIT);
973 1.64 jonathan if ((m->m_flags & M_EXT) == 0) {
974 1.64 jonathan m_free(m);
975 1.64 jonathan return (0);
976 1.64 jonathan }
977 1.64 jonathan }
978 1.64 jonathan #else
979 1.64 jonathan KASSERT(salen <= MHLEN);
980 1.64 jonathan #endif
981 1.64 jonathan m->m_len = salen;
982 1.82 christos memcpy(mtod(m, void *), asa, salen);
983 1.63 jonathan m->m_next = m0;
984 1.64 jonathan m->m_pkthdr.len = salen + m0->m_pkthdr.len;
985 1.63 jonathan
986 1.63 jonathan return m;
987 1.63 jonathan }
988 1.63 jonathan
989 1.63 jonathan int
990 1.63 jonathan sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa,
991 1.63 jonathan struct mbuf *m0, int sbprio)
992 1.63 jonathan {
993 1.63 jonathan int space;
994 1.63 jonathan struct mbuf *m, *n, *n0, *nlast;
995 1.63 jonathan int error;
996 1.63 jonathan
997 1.91 ad KASSERT(solocked(sb->sb_so));
998 1.91 ad
999 1.63 jonathan /*
1000 1.63 jonathan * XXX sbprio reserved for encoding priority of this* request:
1001 1.63 jonathan * SB_PRIO_NONE --> honour normal sb limits
1002 1.63 jonathan * SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space,
1003 1.63 jonathan * take whole chain. Intended for large requests
1004 1.63 jonathan * that should be delivered atomically (all, or none).
1005 1.63 jonathan * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow
1006 1.63 jonathan * over normal socket limits, for messages indicating
1007 1.63 jonathan * buffer overflow in earlier normal/lower-priority messages
1008 1.63 jonathan * SB_PRIO_BESTEFFORT --> ignore limits entirely.
1009 1.63 jonathan * Intended for kernel-generated messages only.
1010 1.63 jonathan * Up to generator to avoid total mbuf resource exhaustion.
1011 1.63 jonathan */
1012 1.63 jonathan (void)sbprio;
1013 1.63 jonathan
1014 1.63 jonathan if (m0 && (m0->m_flags & M_PKTHDR) == 0)
1015 1.63 jonathan panic("sbappendaddrchain");
1016 1.63 jonathan
1017 1.63 jonathan space = sbspace(sb);
1018 1.66 perry
1019 1.63 jonathan #ifdef notyet
1020 1.66 perry /*
1021 1.63 jonathan * Enforce SB_PRIO_* limits as described above.
1022 1.63 jonathan */
1023 1.63 jonathan #endif
1024 1.63 jonathan
1025 1.63 jonathan n0 = NULL;
1026 1.63 jonathan nlast = NULL;
1027 1.63 jonathan for (m = m0; m; m = m->m_nextpkt) {
1028 1.63 jonathan struct mbuf *np;
1029 1.63 jonathan
1030 1.64 jonathan #ifdef MBUFTRACE
1031 1.65 jonathan m_claimm(m, sb->sb_mowner);
1032 1.64 jonathan #endif
1033 1.64 jonathan
1034 1.63 jonathan /* Prepend sockaddr to this record (m) of input chain m0 */
1035 1.64 jonathan n = m_prepend_sockaddr(sb, m, asa);
1036 1.63 jonathan if (n == NULL) {
1037 1.63 jonathan error = ENOBUFS;
1038 1.63 jonathan goto bad;
1039 1.63 jonathan }
1040 1.63 jonathan
1041 1.63 jonathan /* Append record (asa+m) to end of new chain n0 */
1042 1.63 jonathan if (n0 == NULL) {
1043 1.63 jonathan n0 = n;
1044 1.63 jonathan } else {
1045 1.63 jonathan nlast->m_nextpkt = n;
1046 1.63 jonathan }
1047 1.63 jonathan /* Keep track of last record on new chain */
1048 1.63 jonathan nlast = n;
1049 1.63 jonathan
1050 1.63 jonathan for (np = n; np; np = np->m_next)
1051 1.63 jonathan sballoc(sb, np);
1052 1.63 jonathan }
1053 1.63 jonathan
1054 1.64 jonathan SBLASTRECORDCHK(sb, "sbappendaddrchain 1");
1055 1.64 jonathan
1056 1.63 jonathan /* Drop the entire chain of (asa+m) records onto the socket */
1057 1.63 jonathan SBLINKRECORDCHAIN(sb, n0, nlast);
1058 1.64 jonathan
1059 1.64 jonathan SBLASTRECORDCHK(sb, "sbappendaddrchain 2");
1060 1.64 jonathan
1061 1.63 jonathan for (m = nlast; m->m_next; m = m->m_next)
1062 1.63 jonathan ;
1063 1.63 jonathan sb->sb_mbtail = m;
1064 1.64 jonathan SBLASTMBUFCHK(sb, "sbappendaddrchain");
1065 1.64 jonathan
1066 1.63 jonathan return (1);
1067 1.63 jonathan
1068 1.63 jonathan bad:
1069 1.64 jonathan /*
1070 1.64 jonathan * On error, free the prepended addreseses. For consistency
1071 1.64 jonathan * with sbappendaddr(), leave it to our caller to free
1072 1.64 jonathan * the input record chain passed to us as m0.
1073 1.64 jonathan */
1074 1.64 jonathan while ((n = n0) != NULL) {
1075 1.64 jonathan struct mbuf *np;
1076 1.64 jonathan
1077 1.64 jonathan /* Undo the sballoc() of this record */
1078 1.64 jonathan for (np = n; np; np = np->m_next)
1079 1.64 jonathan sbfree(sb, np);
1080 1.64 jonathan
1081 1.64 jonathan n0 = n->m_nextpkt; /* iterate at next prepended address */
1082 1.64 jonathan MFREE(n, np); /* free prepended address (not data) */
1083 1.64 jonathan }
1084 1.66 perry return 0;
1085 1.63 jonathan }
1086 1.63 jonathan
1087 1.63 jonathan
1088 1.7 mycroft int
1089 1.37 lukem sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
1090 1.1 cgd {
1091 1.43 thorpej struct mbuf *m, *mlast, *n;
1092 1.37 lukem int space;
1093 1.1 cgd
1094 1.91 ad KASSERT(solocked(sb->sb_so));
1095 1.91 ad
1096 1.37 lukem space = 0;
1097 1.1 cgd if (control == 0)
1098 1.1 cgd panic("sbappendcontrol");
1099 1.1 cgd for (m = control; ; m = m->m_next) {
1100 1.1 cgd space += m->m_len;
1101 1.49 matt MCLAIM(m, sb->sb_mowner);
1102 1.1 cgd if (m->m_next == 0)
1103 1.1 cgd break;
1104 1.1 cgd }
1105 1.1 cgd n = m; /* save pointer to last control buffer */
1106 1.49 matt for (m = m0; m; m = m->m_next) {
1107 1.49 matt MCLAIM(m, sb->sb_mowner);
1108 1.1 cgd space += m->m_len;
1109 1.49 matt }
1110 1.1 cgd if (space > sbspace(sb))
1111 1.1 cgd return (0);
1112 1.1 cgd n->m_next = m0; /* concatenate data to control */
1113 1.43 thorpej
1114 1.43 thorpej SBLASTRECORDCHK(sb, "sbappendcontrol 1");
1115 1.43 thorpej
1116 1.43 thorpej for (m = control; m->m_next != NULL; m = m->m_next)
1117 1.1 cgd sballoc(sb, m);
1118 1.43 thorpej sballoc(sb, m);
1119 1.43 thorpej mlast = m;
1120 1.43 thorpej SBLINKRECORD(sb, control);
1121 1.43 thorpej
1122 1.43 thorpej sb->sb_mbtail = mlast;
1123 1.43 thorpej SBLASTMBUFCHK(sb, "sbappendcontrol");
1124 1.43 thorpej SBLASTRECORDCHK(sb, "sbappendcontrol 2");
1125 1.43 thorpej
1126 1.1 cgd return (1);
1127 1.1 cgd }
1128 1.1 cgd
1129 1.1 cgd /*
1130 1.1 cgd * Compress mbuf chain m into the socket
1131 1.1 cgd * buffer sb following mbuf n. If n
1132 1.1 cgd * is null, the buffer is presumed empty.
1133 1.1 cgd */
1134 1.7 mycroft void
1135 1.37 lukem sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
1136 1.1 cgd {
1137 1.37 lukem int eor;
1138 1.37 lukem struct mbuf *o;
1139 1.1 cgd
1140 1.91 ad KASSERT(solocked(sb->sb_so));
1141 1.91 ad
1142 1.37 lukem eor = 0;
1143 1.1 cgd while (m) {
1144 1.1 cgd eor |= m->m_flags & M_EOR;
1145 1.1 cgd if (m->m_len == 0 &&
1146 1.1 cgd (eor == 0 ||
1147 1.1 cgd (((o = m->m_next) || (o = n)) &&
1148 1.1 cgd o->m_type == m->m_type))) {
1149 1.46 thorpej if (sb->sb_lastrecord == m)
1150 1.46 thorpej sb->sb_lastrecord = m->m_next;
1151 1.1 cgd m = m_free(m);
1152 1.1 cgd continue;
1153 1.1 cgd }
1154 1.40 thorpej if (n && (n->m_flags & M_EOR) == 0 &&
1155 1.40 thorpej /* M_TRAILINGSPACE() checks buffer writeability */
1156 1.40 thorpej m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
1157 1.40 thorpej m->m_len <= M_TRAILINGSPACE(n) &&
1158 1.40 thorpej n->m_type == m->m_type) {
1159 1.82 christos memcpy(mtod(n, char *) + n->m_len, mtod(m, void *),
1160 1.1 cgd (unsigned)m->m_len);
1161 1.1 cgd n->m_len += m->m_len;
1162 1.1 cgd sb->sb_cc += m->m_len;
1163 1.1 cgd m = m_free(m);
1164 1.1 cgd continue;
1165 1.1 cgd }
1166 1.1 cgd if (n)
1167 1.1 cgd n->m_next = m;
1168 1.1 cgd else
1169 1.1 cgd sb->sb_mb = m;
1170 1.43 thorpej sb->sb_mbtail = m;
1171 1.1 cgd sballoc(sb, m);
1172 1.1 cgd n = m;
1173 1.1 cgd m->m_flags &= ~M_EOR;
1174 1.1 cgd m = m->m_next;
1175 1.1 cgd n->m_next = 0;
1176 1.1 cgd }
1177 1.1 cgd if (eor) {
1178 1.1 cgd if (n)
1179 1.1 cgd n->m_flags |= eor;
1180 1.1 cgd else
1181 1.15 christos printf("semi-panic: sbcompress\n");
1182 1.1 cgd }
1183 1.43 thorpej SBLASTMBUFCHK(sb, __func__);
1184 1.1 cgd }
1185 1.1 cgd
1186 1.1 cgd /*
1187 1.1 cgd * Free all mbufs in a sockbuf.
1188 1.1 cgd * Check that all resources are reclaimed.
1189 1.1 cgd */
1190 1.7 mycroft void
1191 1.37 lukem sbflush(struct sockbuf *sb)
1192 1.1 cgd {
1193 1.1 cgd
1194 1.91 ad KASSERT(solocked(sb->sb_so));
1195 1.43 thorpej KASSERT((sb->sb_flags & SB_LOCK) == 0);
1196 1.43 thorpej
1197 1.1 cgd while (sb->sb_mbcnt)
1198 1.1 cgd sbdrop(sb, (int)sb->sb_cc);
1199 1.43 thorpej
1200 1.43 thorpej KASSERT(sb->sb_cc == 0);
1201 1.43 thorpej KASSERT(sb->sb_mb == NULL);
1202 1.43 thorpej KASSERT(sb->sb_mbtail == NULL);
1203 1.43 thorpej KASSERT(sb->sb_lastrecord == NULL);
1204 1.1 cgd }
1205 1.1 cgd
1206 1.1 cgd /*
1207 1.1 cgd * Drop data from (the front of) a sockbuf.
1208 1.1 cgd */
1209 1.7 mycroft void
1210 1.37 lukem sbdrop(struct sockbuf *sb, int len)
1211 1.1 cgd {
1212 1.37 lukem struct mbuf *m, *mn, *next;
1213 1.1 cgd
1214 1.91 ad KASSERT(solocked(sb->sb_so));
1215 1.91 ad
1216 1.1 cgd next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
1217 1.1 cgd while (len > 0) {
1218 1.1 cgd if (m == 0) {
1219 1.1 cgd if (next == 0)
1220 1.1 cgd panic("sbdrop");
1221 1.1 cgd m = next;
1222 1.1 cgd next = m->m_nextpkt;
1223 1.1 cgd continue;
1224 1.1 cgd }
1225 1.1 cgd if (m->m_len > len) {
1226 1.1 cgd m->m_len -= len;
1227 1.1 cgd m->m_data += len;
1228 1.1 cgd sb->sb_cc -= len;
1229 1.1 cgd break;
1230 1.1 cgd }
1231 1.1 cgd len -= m->m_len;
1232 1.1 cgd sbfree(sb, m);
1233 1.1 cgd MFREE(m, mn);
1234 1.1 cgd m = mn;
1235 1.1 cgd }
1236 1.1 cgd while (m && m->m_len == 0) {
1237 1.1 cgd sbfree(sb, m);
1238 1.1 cgd MFREE(m, mn);
1239 1.1 cgd m = mn;
1240 1.1 cgd }
1241 1.1 cgd if (m) {
1242 1.1 cgd sb->sb_mb = m;
1243 1.1 cgd m->m_nextpkt = next;
1244 1.1 cgd } else
1245 1.1 cgd sb->sb_mb = next;
1246 1.43 thorpej /*
1247 1.45 thorpej * First part is an inline SB_EMPTY_FIXUP(). Second part
1248 1.43 thorpej * makes sure sb_lastrecord is up-to-date if we dropped
1249 1.43 thorpej * part of the last record.
1250 1.43 thorpej */
1251 1.43 thorpej m = sb->sb_mb;
1252 1.43 thorpej if (m == NULL) {
1253 1.43 thorpej sb->sb_mbtail = NULL;
1254 1.43 thorpej sb->sb_lastrecord = NULL;
1255 1.43 thorpej } else if (m->m_nextpkt == NULL)
1256 1.43 thorpej sb->sb_lastrecord = m;
1257 1.1 cgd }
1258 1.1 cgd
1259 1.1 cgd /*
1260 1.1 cgd * Drop a record off the front of a sockbuf
1261 1.1 cgd * and move the next record to the front.
1262 1.1 cgd */
1263 1.7 mycroft void
1264 1.37 lukem sbdroprecord(struct sockbuf *sb)
1265 1.1 cgd {
1266 1.37 lukem struct mbuf *m, *mn;
1267 1.1 cgd
1268 1.91 ad KASSERT(solocked(sb->sb_so));
1269 1.91 ad
1270 1.1 cgd m = sb->sb_mb;
1271 1.1 cgd if (m) {
1272 1.1 cgd sb->sb_mb = m->m_nextpkt;
1273 1.1 cgd do {
1274 1.1 cgd sbfree(sb, m);
1275 1.1 cgd MFREE(m, mn);
1276 1.11 christos } while ((m = mn) != NULL);
1277 1.1 cgd }
1278 1.45 thorpej SB_EMPTY_FIXUP(sb);
1279 1.19 thorpej }
1280 1.19 thorpej
1281 1.19 thorpej /*
1282 1.19 thorpej * Create a "control" mbuf containing the specified data
1283 1.19 thorpej * with the specified type for presentation on a socket buffer.
1284 1.19 thorpej */
1285 1.19 thorpej struct mbuf *
1286 1.82 christos sbcreatecontrol(void *p, int size, int type, int level)
1287 1.19 thorpej {
1288 1.37 lukem struct cmsghdr *cp;
1289 1.37 lukem struct mbuf *m;
1290 1.19 thorpej
1291 1.35 itojun if (CMSG_SPACE(size) > MCLBYTES) {
1292 1.30 itojun printf("sbcreatecontrol: message too large %d\n", size);
1293 1.30 itojun return NULL;
1294 1.30 itojun }
1295 1.30 itojun
1296 1.19 thorpej if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
1297 1.19 thorpej return ((struct mbuf *) NULL);
1298 1.35 itojun if (CMSG_SPACE(size) > MLEN) {
1299 1.30 itojun MCLGET(m, M_DONTWAIT);
1300 1.30 itojun if ((m->m_flags & M_EXT) == 0) {
1301 1.30 itojun m_free(m);
1302 1.30 itojun return NULL;
1303 1.30 itojun }
1304 1.30 itojun }
1305 1.19 thorpej cp = mtod(m, struct cmsghdr *);
1306 1.26 perry memcpy(CMSG_DATA(cp), p, size);
1307 1.35 itojun m->m_len = CMSG_SPACE(size);
1308 1.35 itojun cp->cmsg_len = CMSG_LEN(size);
1309 1.19 thorpej cp->cmsg_level = level;
1310 1.19 thorpej cp->cmsg_type = type;
1311 1.19 thorpej return (m);
1312 1.1 cgd }
1313 1.91 ad
1314 1.91 ad void
1315 1.91 ad solockretry(struct socket *so, kmutex_t *lock)
1316 1.91 ad {
1317 1.91 ad
1318 1.91 ad while (lock != so->so_lock) {
1319 1.91 ad mutex_exit(lock);
1320 1.91 ad lock = so->so_lock;
1321 1.91 ad mutex_enter(lock);
1322 1.91 ad }
1323 1.91 ad }
1324 1.91 ad
1325 1.91 ad bool
1326 1.91 ad solocked(struct socket *so)
1327 1.91 ad {
1328 1.91 ad
1329 1.91 ad return mutex_owned(so->so_lock);
1330 1.91 ad }
1331 1.91 ad
1332 1.91 ad bool
1333 1.91 ad solocked2(struct socket *so1, struct socket *so2)
1334 1.91 ad {
1335 1.91 ad kmutex_t *lock;
1336 1.91 ad
1337 1.91 ad lock = so1->so_lock;
1338 1.91 ad if (lock != so2->so_lock)
1339 1.91 ad return false;
1340 1.91 ad return mutex_owned(lock);
1341 1.91 ad }
1342 1.91 ad
1343 1.91 ad /*
1344 1.91 ad * Assign a default lock to a new socket. For PRU_ATTACH, and done by
1345 1.91 ad * protocols that do not have special locking requirements.
1346 1.91 ad */
1347 1.91 ad void
1348 1.91 ad sosetlock(struct socket *so)
1349 1.91 ad {
1350 1.91 ad kmutex_t *lock;
1351 1.91 ad
1352 1.91 ad if (so->so_lock == NULL) {
1353 1.91 ad lock = softnet_lock;
1354 1.91 ad so->so_lock = lock;
1355 1.91 ad mutex_obj_hold(lock);
1356 1.91 ad mutex_enter(lock);
1357 1.91 ad }
1358 1.91 ad
1359 1.91 ad /* In all cases, lock must be held on return from PRU_ATTACH. */
1360 1.91 ad KASSERT(solocked(so));
1361 1.91 ad }
1362 1.91 ad
1363 1.91 ad /*
1364 1.91 ad * Set lock on sockbuf sb; sleep if lock is already held.
1365 1.91 ad * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
1366 1.91 ad * Returns error without lock if sleep is interrupted.
1367 1.91 ad */
1368 1.91 ad int
1369 1.91 ad sblock(struct sockbuf *sb, int wf)
1370 1.91 ad {
1371 1.91 ad struct socket *so;
1372 1.91 ad kmutex_t *lock;
1373 1.91 ad int error;
1374 1.91 ad
1375 1.91 ad KASSERT(solocked(sb->sb_so));
1376 1.91 ad
1377 1.91 ad for (;;) {
1378 1.91 ad if (__predict_true((sb->sb_flags & SB_LOCK) == 0)) {
1379 1.91 ad sb->sb_flags |= SB_LOCK;
1380 1.91 ad return 0;
1381 1.91 ad }
1382 1.91 ad if (wf != M_WAITOK)
1383 1.91 ad return EWOULDBLOCK;
1384 1.91 ad so = sb->sb_so;
1385 1.91 ad lock = so->so_lock;
1386 1.91 ad if ((sb->sb_flags & SB_NOINTR) != 0) {
1387 1.91 ad cv_wait(&so->so_cv, lock);
1388 1.91 ad error = 0;
1389 1.91 ad } else
1390 1.91 ad error = cv_wait_sig(&so->so_cv, lock);
1391 1.91 ad if (__predict_false(lock != so->so_lock))
1392 1.91 ad solockretry(so, lock);
1393 1.91 ad if (error != 0)
1394 1.91 ad return error;
1395 1.91 ad }
1396 1.91 ad }
1397 1.91 ad
1398 1.91 ad void
1399 1.91 ad sbunlock(struct sockbuf *sb)
1400 1.91 ad {
1401 1.91 ad struct socket *so;
1402 1.91 ad
1403 1.91 ad so = sb->sb_so;
1404 1.91 ad
1405 1.91 ad KASSERT(solocked(so));
1406 1.91 ad KASSERT((sb->sb_flags & SB_LOCK) != 0);
1407 1.91 ad
1408 1.91 ad sb->sb_flags &= ~SB_LOCK;
1409 1.91 ad cv_broadcast(&so->so_cv);
1410 1.91 ad }
1411 1.91 ad
1412 1.91 ad int
1413 1.91 ad sowait(struct socket *so, int timo)
1414 1.91 ad {
1415 1.91 ad kmutex_t *lock;
1416 1.91 ad int error;
1417 1.91 ad
1418 1.91 ad KASSERT(solocked(so));
1419 1.91 ad
1420 1.91 ad lock = so->so_lock;
1421 1.91 ad error = cv_timedwait_sig(&so->so_cv, lock, timo);
1422 1.91 ad if (__predict_false(lock != so->so_lock))
1423 1.91 ad solockretry(so, lock);
1424 1.91 ad return error;
1425 1.91 ad }
1426