uipc_socket2.c revision 1.1.1.2 1 /*
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 * @(#)uipc_socket2.c 8.1 (Berkeley) 6/10/93
34 */
35
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/proc.h>
39 #include <sys/file.h>
40 #include <sys/buf.h>
41 #include <sys/malloc.h>
42 #include <sys/mbuf.h>
43 #include <sys/protosw.h>
44 #include <sys/socket.h>
45 #include <sys/socketvar.h>
46
47 /*
48 * Primitive routines for operating on sockets and socket buffers
49 */
50
51 /* strings for sleep message: */
52 char netio[] = "netio";
53 char netcon[] = "netcon";
54 char netcls[] = "netcls";
55
56 u_long sb_max = SB_MAX; /* patchable */
57
58 /*
59 * Procedures to manipulate state flags of socket
60 * and do appropriate wakeups. Normal sequence from the
61 * active (originating) side is that soisconnecting() is
62 * called during processing of connect() call,
63 * resulting in an eventual call to soisconnected() if/when the
64 * connection is established. When the connection is torn down
65 * soisdisconnecting() is called during processing of disconnect() call,
66 * and soisdisconnected() is called when the connection to the peer
67 * is totally severed. The semantics of these routines are such that
68 * connectionless protocols can call soisconnected() and soisdisconnected()
69 * only, bypassing the in-progress calls when setting up a ``connection''
70 * takes no time.
71 *
72 * From the passive side, a socket is created with
73 * two queues of sockets: so_q0 for connections in progress
74 * and so_q for connections already made and awaiting user acceptance.
75 * As a protocol is preparing incoming connections, it creates a socket
76 * structure queued on so_q0 by calling sonewconn(). When the connection
77 * is established, soisconnected() is called, and transfers the
78 * socket structure to so_q, making it available to accept().
79 *
80 * If a socket is closed with sockets on either
81 * so_q0 or so_q, these sockets are dropped.
82 *
83 * If higher level protocols are implemented in
84 * the kernel, the wakeups done here will sometimes
85 * cause software-interrupt process scheduling.
86 */
87
88 soisconnecting(so)
89 register struct socket *so;
90 {
91
92 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
93 so->so_state |= SS_ISCONNECTING;
94 }
95
96 soisconnected(so)
97 register struct socket *so;
98 {
99 register struct socket *head = so->so_head;
100
101 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
102 so->so_state |= SS_ISCONNECTED;
103 if (head && soqremque(so, 0)) {
104 soqinsque(head, so, 1);
105 sorwakeup(head);
106 wakeup((caddr_t)&head->so_timeo);
107 } else {
108 wakeup((caddr_t)&so->so_timeo);
109 sorwakeup(so);
110 sowwakeup(so);
111 }
112 }
113
114 soisdisconnecting(so)
115 register struct socket *so;
116 {
117
118 so->so_state &= ~SS_ISCONNECTING;
119 so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
120 wakeup((caddr_t)&so->so_timeo);
121 sowwakeup(so);
122 sorwakeup(so);
123 }
124
125 soisdisconnected(so)
126 register struct socket *so;
127 {
128
129 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
130 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE);
131 wakeup((caddr_t)&so->so_timeo);
132 sowwakeup(so);
133 sorwakeup(so);
134 }
135
136 /*
137 * When an attempt at a new connection is noted on a socket
138 * which accepts connections, sonewconn is called. If the
139 * connection is possible (subject to space constraints, etc.)
140 * then we allocate a new structure, propoerly linked into the
141 * data structure of the original socket, and return this.
142 * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
143 *
144 * Currently, sonewconn() is defined as sonewconn1() in socketvar.h
145 * to catch calls that are missing the (new) second parameter.
146 */
147 struct socket *
148 sonewconn1(head, connstatus)
149 register struct socket *head;
150 int connstatus;
151 {
152 register struct socket *so;
153 int soqueue = connstatus ? 1 : 0;
154
155 if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
156 return ((struct socket *)0);
157 MALLOC(so, struct socket *, sizeof(*so), M_SOCKET, M_DONTWAIT);
158 if (so == NULL)
159 return ((struct socket *)0);
160 bzero((caddr_t)so, sizeof(*so));
161 so->so_type = head->so_type;
162 so->so_options = head->so_options &~ SO_ACCEPTCONN;
163 so->so_linger = head->so_linger;
164 so->so_state = head->so_state | SS_NOFDREF;
165 so->so_proto = head->so_proto;
166 so->so_timeo = head->so_timeo;
167 so->so_pgid = head->so_pgid;
168 (void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
169 soqinsque(head, so, soqueue);
170 if ((*so->so_proto->pr_usrreq)(so, PRU_ATTACH,
171 (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0)) {
172 (void) soqremque(so, soqueue);
173 (void) free((caddr_t)so, M_SOCKET);
174 return ((struct socket *)0);
175 }
176 if (connstatus) {
177 sorwakeup(head);
178 wakeup((caddr_t)&head->so_timeo);
179 so->so_state |= connstatus;
180 }
181 return (so);
182 }
183
184 soqinsque(head, so, q)
185 register struct socket *head, *so;
186 int q;
187 {
188
189 register struct socket **prev;
190 so->so_head = head;
191 if (q == 0) {
192 head->so_q0len++;
193 so->so_q0 = 0;
194 for (prev = &(head->so_q0); *prev; )
195 prev = &((*prev)->so_q0);
196 } else {
197 head->so_qlen++;
198 so->so_q = 0;
199 for (prev = &(head->so_q); *prev; )
200 prev = &((*prev)->so_q);
201 }
202 *prev = so;
203 }
204
205 soqremque(so, q)
206 register struct socket *so;
207 int q;
208 {
209 register struct socket *head, *prev, *next;
210
211 head = so->so_head;
212 prev = head;
213 for (;;) {
214 next = q ? prev->so_q : prev->so_q0;
215 if (next == so)
216 break;
217 if (next == 0)
218 return (0);
219 prev = next;
220 }
221 if (q == 0) {
222 prev->so_q0 = next->so_q0;
223 head->so_q0len--;
224 } else {
225 prev->so_q = next->so_q;
226 head->so_qlen--;
227 }
228 next->so_q0 = next->so_q = 0;
229 next->so_head = 0;
230 return (1);
231 }
232
233 /*
234 * Socantsendmore indicates that no more data will be sent on the
235 * socket; it would normally be applied to a socket when the user
236 * informs the system that no more data is to be sent, by the protocol
237 * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data
238 * will be received, and will normally be applied to the socket by a
239 * protocol when it detects that the peer will send no more data.
240 * Data queued for reading in the socket may yet be read.
241 */
242
243 socantsendmore(so)
244 struct socket *so;
245 {
246
247 so->so_state |= SS_CANTSENDMORE;
248 sowwakeup(so);
249 }
250
251 socantrcvmore(so)
252 struct socket *so;
253 {
254
255 so->so_state |= SS_CANTRCVMORE;
256 sorwakeup(so);
257 }
258
259 /*
260 * Wait for data to arrive at/drain from a socket buffer.
261 */
262 sbwait(sb)
263 struct sockbuf *sb;
264 {
265
266 sb->sb_flags |= SB_WAIT;
267 return (tsleep((caddr_t)&sb->sb_cc,
268 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, netio,
269 sb->sb_timeo));
270 }
271
272 /*
273 * Lock a sockbuf already known to be locked;
274 * return any error returned from sleep (EINTR).
275 */
276 sb_lock(sb)
277 register struct sockbuf *sb;
278 {
279 int error;
280
281 while (sb->sb_flags & SB_LOCK) {
282 sb->sb_flags |= SB_WANT;
283 if (error = tsleep((caddr_t)&sb->sb_flags,
284 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK|PCATCH,
285 netio, 0))
286 return (error);
287 }
288 sb->sb_flags |= SB_LOCK;
289 return (0);
290 }
291
292 /*
293 * Wakeup processes waiting on a socket buffer.
294 * Do asynchronous notification via SIGIO
295 * if the socket has the SS_ASYNC flag set.
296 */
297 sowakeup(so, sb)
298 register struct socket *so;
299 register struct sockbuf *sb;
300 {
301 struct proc *p;
302
303 selwakeup(&sb->sb_sel);
304 sb->sb_flags &= ~SB_SEL;
305 if (sb->sb_flags & SB_WAIT) {
306 sb->sb_flags &= ~SB_WAIT;
307 wakeup((caddr_t)&sb->sb_cc);
308 }
309 if (so->so_state & SS_ASYNC) {
310 if (so->so_pgid < 0)
311 gsignal(-so->so_pgid, SIGIO);
312 else if (so->so_pgid > 0 && (p = pfind(so->so_pgid)) != 0)
313 psignal(p, SIGIO);
314 }
315 }
316
317 /*
318 * Socket buffer (struct sockbuf) utility routines.
319 *
320 * Each socket contains two socket buffers: one for sending data and
321 * one for receiving data. Each buffer contains a queue of mbufs,
322 * information about the number of mbufs and amount of data in the
323 * queue, and other fields allowing select() statements and notification
324 * on data availability to be implemented.
325 *
326 * Data stored in a socket buffer is maintained as a list of records.
327 * Each record is a list of mbufs chained together with the m_next
328 * field. Records are chained together with the m_nextpkt field. The upper
329 * level routine soreceive() expects the following conventions to be
330 * observed when placing information in the receive buffer:
331 *
332 * 1. If the protocol requires each message be preceded by the sender's
333 * name, then a record containing that name must be present before
334 * any associated data (mbuf's must be of type MT_SONAME).
335 * 2. If the protocol supports the exchange of ``access rights'' (really
336 * just additional data associated with the message), and there are
337 * ``rights'' to be received, then a record containing this data
338 * should be present (mbuf's must be of type MT_RIGHTS).
339 * 3. If a name or rights record exists, then it must be followed by
340 * a data record, perhaps of zero length.
341 *
342 * Before using a new socket structure it is first necessary to reserve
343 * buffer space to the socket, by calling sbreserve(). This should commit
344 * some of the available buffer space in the system buffer pool for the
345 * socket (currently, it does nothing but enforce limits). The space
346 * should be released by calling sbrelease() when the socket is destroyed.
347 */
348
349 soreserve(so, sndcc, rcvcc)
350 register struct socket *so;
351 u_long sndcc, rcvcc;
352 {
353
354 if (sbreserve(&so->so_snd, sndcc) == 0)
355 goto bad;
356 if (sbreserve(&so->so_rcv, rcvcc) == 0)
357 goto bad2;
358 if (so->so_rcv.sb_lowat == 0)
359 so->so_rcv.sb_lowat = 1;
360 if (so->so_snd.sb_lowat == 0)
361 so->so_snd.sb_lowat = MCLBYTES;
362 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
363 so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
364 return (0);
365 bad2:
366 sbrelease(&so->so_snd);
367 bad:
368 return (ENOBUFS);
369 }
370
371 /*
372 * Allot mbufs to a sockbuf.
373 * Attempt to scale mbmax so that mbcnt doesn't become limiting
374 * if buffering efficiency is near the normal case.
375 */
376 sbreserve(sb, cc)
377 struct sockbuf *sb;
378 u_long cc;
379 {
380
381 if (cc > sb_max * MCLBYTES / (MSIZE + MCLBYTES))
382 return (0);
383 sb->sb_hiwat = cc;
384 sb->sb_mbmax = min(cc * 2, sb_max);
385 if (sb->sb_lowat > sb->sb_hiwat)
386 sb->sb_lowat = sb->sb_hiwat;
387 return (1);
388 }
389
390 /*
391 * Free mbufs held by a socket, and reserved mbuf space.
392 */
393 sbrelease(sb)
394 struct sockbuf *sb;
395 {
396
397 sbflush(sb);
398 sb->sb_hiwat = sb->sb_mbmax = 0;
399 }
400
401 /*
402 * Routines to add and remove
403 * data from an mbuf queue.
404 *
405 * The routines sbappend() or sbappendrecord() are normally called to
406 * append new mbufs to a socket buffer, after checking that adequate
407 * space is available, comparing the function sbspace() with the amount
408 * of data to be added. sbappendrecord() differs from sbappend() in
409 * that data supplied is treated as the beginning of a new record.
410 * To place a sender's address, optional access rights, and data in a
411 * socket receive buffer, sbappendaddr() should be used. To place
412 * access rights and data in a socket receive buffer, sbappendrights()
413 * should be used. In either case, the new data begins a new record.
414 * Note that unlike sbappend() and sbappendrecord(), these routines check
415 * for the caller that there will be enough space to store the data.
416 * Each fails if there is not enough space, or if it cannot find mbufs
417 * to store additional information in.
418 *
419 * Reliable protocols may use the socket send buffer to hold data
420 * awaiting acknowledgement. Data is normally copied from a socket
421 * send buffer in a protocol with m_copy for output to a peer,
422 * and then removing the data from the socket buffer with sbdrop()
423 * or sbdroprecord() when the data is acknowledged by the peer.
424 */
425
426 /*
427 * Append mbuf chain m to the last record in the
428 * socket buffer sb. The additional space associated
429 * the mbuf chain is recorded in sb. Empty mbufs are
430 * discarded and mbufs are compacted where possible.
431 */
432 sbappend(sb, m)
433 struct sockbuf *sb;
434 struct mbuf *m;
435 {
436 register struct mbuf *n;
437
438 if (m == 0)
439 return;
440 if (n = sb->sb_mb) {
441 while (n->m_nextpkt)
442 n = n->m_nextpkt;
443 do {
444 if (n->m_flags & M_EOR) {
445 sbappendrecord(sb, m); /* XXXXXX!!!! */
446 return;
447 }
448 } while (n->m_next && (n = n->m_next));
449 }
450 sbcompress(sb, m, n);
451 }
452
453 #ifdef SOCKBUF_DEBUG
454 sbcheck(sb)
455 register struct sockbuf *sb;
456 {
457 register struct mbuf *m;
458 register int len = 0, mbcnt = 0;
459
460 for (m = sb->sb_mb; m; m = m->m_next) {
461 len += m->m_len;
462 mbcnt += MSIZE;
463 if (m->m_flags & M_EXT)
464 mbcnt += m->m_ext.ext_size;
465 if (m->m_nextpkt)
466 panic("sbcheck nextpkt");
467 }
468 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
469 printf("cc %d != %d || mbcnt %d != %d\n", len, sb->sb_cc,
470 mbcnt, sb->sb_mbcnt);
471 panic("sbcheck");
472 }
473 }
474 #endif
475
476 /*
477 * As above, except the mbuf chain
478 * begins a new record.
479 */
480 sbappendrecord(sb, m0)
481 register struct sockbuf *sb;
482 register struct mbuf *m0;
483 {
484 register struct mbuf *m;
485
486 if (m0 == 0)
487 return;
488 if (m = sb->sb_mb)
489 while (m->m_nextpkt)
490 m = m->m_nextpkt;
491 /*
492 * Put the first mbuf on the queue.
493 * Note this permits zero length records.
494 */
495 sballoc(sb, m0);
496 if (m)
497 m->m_nextpkt = m0;
498 else
499 sb->sb_mb = m0;
500 m = m0->m_next;
501 m0->m_next = 0;
502 if (m && (m0->m_flags & M_EOR)) {
503 m0->m_flags &= ~M_EOR;
504 m->m_flags |= M_EOR;
505 }
506 sbcompress(sb, m, m0);
507 }
508
509 /*
510 * As above except that OOB data
511 * is inserted at the beginning of the sockbuf,
512 * but after any other OOB data.
513 */
514 sbinsertoob(sb, m0)
515 register struct sockbuf *sb;
516 register struct mbuf *m0;
517 {
518 register struct mbuf *m;
519 register struct mbuf **mp;
520
521 if (m0 == 0)
522 return;
523 for (mp = &sb->sb_mb; m = *mp; mp = &((*mp)->m_nextpkt)) {
524 again:
525 switch (m->m_type) {
526
527 case MT_OOBDATA:
528 continue; /* WANT next train */
529
530 case MT_CONTROL:
531 if (m = m->m_next)
532 goto again; /* inspect THIS train further */
533 }
534 break;
535 }
536 /*
537 * Put the first mbuf on the queue.
538 * Note this permits zero length records.
539 */
540 sballoc(sb, m0);
541 m0->m_nextpkt = *mp;
542 *mp = m0;
543 m = m0->m_next;
544 m0->m_next = 0;
545 if (m && (m0->m_flags & M_EOR)) {
546 m0->m_flags &= ~M_EOR;
547 m->m_flags |= M_EOR;
548 }
549 sbcompress(sb, m, m0);
550 }
551
552 /*
553 * Append address and data, and optionally, control (ancillary) data
554 * to the receive queue of a socket. If present,
555 * m0 must include a packet header with total length.
556 * Returns 0 if no space in sockbuf or insufficient mbufs.
557 */
558 sbappendaddr(sb, asa, m0, control)
559 register struct sockbuf *sb;
560 struct sockaddr *asa;
561 struct mbuf *m0, *control;
562 {
563 register struct mbuf *m, *n;
564 int space = asa->sa_len;
565
566 if (m0 && (m0->m_flags & M_PKTHDR) == 0)
567 panic("sbappendaddr");
568 if (m0)
569 space += m0->m_pkthdr.len;
570 for (n = control; n; n = n->m_next) {
571 space += n->m_len;
572 if (n->m_next == 0) /* keep pointer to last control buf */
573 break;
574 }
575 if (space > sbspace(sb))
576 return (0);
577 if (asa->sa_len > MLEN)
578 return (0);
579 MGET(m, M_DONTWAIT, MT_SONAME);
580 if (m == 0)
581 return (0);
582 m->m_len = asa->sa_len;
583 bcopy((caddr_t)asa, mtod(m, caddr_t), asa->sa_len);
584 if (n)
585 n->m_next = m0; /* concatenate data to control */
586 else
587 control = m0;
588 m->m_next = control;
589 for (n = m; n; n = n->m_next)
590 sballoc(sb, n);
591 if (n = sb->sb_mb) {
592 while (n->m_nextpkt)
593 n = n->m_nextpkt;
594 n->m_nextpkt = m;
595 } else
596 sb->sb_mb = m;
597 return (1);
598 }
599
600 sbappendcontrol(sb, m0, control)
601 struct sockbuf *sb;
602 struct mbuf *control, *m0;
603 {
604 register struct mbuf *m, *n;
605 int space = 0;
606
607 if (control == 0)
608 panic("sbappendcontrol");
609 for (m = control; ; m = m->m_next) {
610 space += m->m_len;
611 if (m->m_next == 0)
612 break;
613 }
614 n = m; /* save pointer to last control buffer */
615 for (m = m0; m; m = m->m_next)
616 space += m->m_len;
617 if (space > sbspace(sb))
618 return (0);
619 n->m_next = m0; /* concatenate data to control */
620 for (m = control; m; m = m->m_next)
621 sballoc(sb, m);
622 if (n = sb->sb_mb) {
623 while (n->m_nextpkt)
624 n = n->m_nextpkt;
625 n->m_nextpkt = control;
626 } else
627 sb->sb_mb = control;
628 return (1);
629 }
630
631 /*
632 * Compress mbuf chain m into the socket
633 * buffer sb following mbuf n. If n
634 * is null, the buffer is presumed empty.
635 */
636 sbcompress(sb, m, n)
637 register struct sockbuf *sb;
638 register struct mbuf *m, *n;
639 {
640 register int eor = 0;
641 register struct mbuf *o;
642
643 while (m) {
644 eor |= m->m_flags & M_EOR;
645 if (m->m_len == 0 &&
646 (eor == 0 ||
647 (((o = m->m_next) || (o = n)) &&
648 o->m_type == m->m_type))) {
649 m = m_free(m);
650 continue;
651 }
652 if (n && (n->m_flags & (M_EXT | M_EOR)) == 0 &&
653 (n->m_data + n->m_len + m->m_len) < &n->m_dat[MLEN] &&
654 n->m_type == m->m_type) {
655 bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len,
656 (unsigned)m->m_len);
657 n->m_len += m->m_len;
658 sb->sb_cc += m->m_len;
659 m = m_free(m);
660 continue;
661 }
662 if (n)
663 n->m_next = m;
664 else
665 sb->sb_mb = m;
666 sballoc(sb, m);
667 n = m;
668 m->m_flags &= ~M_EOR;
669 m = m->m_next;
670 n->m_next = 0;
671 }
672 if (eor) {
673 if (n)
674 n->m_flags |= eor;
675 else
676 printf("semi-panic: sbcompress\n");
677 }
678 }
679
680 /*
681 * Free all mbufs in a sockbuf.
682 * Check that all resources are reclaimed.
683 */
684 sbflush(sb)
685 register struct sockbuf *sb;
686 {
687
688 if (sb->sb_flags & SB_LOCK)
689 panic("sbflush");
690 while (sb->sb_mbcnt)
691 sbdrop(sb, (int)sb->sb_cc);
692 if (sb->sb_cc || sb->sb_mb)
693 panic("sbflush 2");
694 }
695
696 /*
697 * Drop data from (the front of) a sockbuf.
698 */
699 sbdrop(sb, len)
700 register struct sockbuf *sb;
701 register int len;
702 {
703 register struct mbuf *m, *mn;
704 struct mbuf *next;
705
706 next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
707 while (len > 0) {
708 if (m == 0) {
709 if (next == 0)
710 panic("sbdrop");
711 m = next;
712 next = m->m_nextpkt;
713 continue;
714 }
715 if (m->m_len > len) {
716 m->m_len -= len;
717 m->m_data += len;
718 sb->sb_cc -= len;
719 break;
720 }
721 len -= m->m_len;
722 sbfree(sb, m);
723 MFREE(m, mn);
724 m = mn;
725 }
726 while (m && m->m_len == 0) {
727 sbfree(sb, m);
728 MFREE(m, mn);
729 m = mn;
730 }
731 if (m) {
732 sb->sb_mb = m;
733 m->m_nextpkt = next;
734 } else
735 sb->sb_mb = next;
736 }
737
738 /*
739 * Drop a record off the front of a sockbuf
740 * and move the next record to the front.
741 */
742 sbdroprecord(sb)
743 register struct sockbuf *sb;
744 {
745 register struct mbuf *m, *mn;
746
747 m = sb->sb_mb;
748 if (m) {
749 sb->sb_mb = m->m_nextpkt;
750 do {
751 sbfree(sb, m);
752 MFREE(m, mn);
753 } while (m = mn);
754 }
755 }
756