Home | History | Annotate | Line # | Download | only in kern
uipc_socket2.c revision 1.1.1.3
      1 /*
      2  * Copyright (c) 1982, 1986, 1988, 1990, 1993
      3  *	The Regents of the University of California.  All rights reserved.
      4  *
      5  * Redistribution and use in source and binary forms, with or without
      6  * modification, are permitted provided that the following conditions
      7  * are met:
      8  * 1. Redistributions of source code must retain the above copyright
      9  *    notice, this list of conditions and the following disclaimer.
     10  * 2. Redistributions in binary form must reproduce the above copyright
     11  *    notice, this list of conditions and the following disclaimer in the
     12  *    documentation and/or other materials provided with the distribution.
     13  * 3. All advertising materials mentioning features or use of this software
     14  *    must display the following acknowledgement:
     15  *	This product includes software developed by the University of
     16  *	California, Berkeley and its contributors.
     17  * 4. Neither the name of the University nor the names of its contributors
     18  *    may be used to endorse or promote products derived from this software
     19  *    without specific prior written permission.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     31  * SUCH DAMAGE.
     32  *
     33  *	@(#)uipc_socket2.c	8.2 (Berkeley) 2/14/95
     34  */
     35 
     36 #include <sys/param.h>
     37 #include <sys/systm.h>
     38 #include <sys/proc.h>
     39 #include <sys/file.h>
     40 #include <sys/buf.h>
     41 #include <sys/malloc.h>
     42 #include <sys/mbuf.h>
     43 #include <sys/protosw.h>
     44 #include <sys/socket.h>
     45 #include <sys/socketvar.h>
     46 
     47 /*
     48  * Primitive routines for operating on sockets and socket buffers
     49  */
     50 
     51 /* strings for sleep message: */
     52 char	netio[] = "netio";
     53 char	netcon[] = "netcon";
     54 char	netcls[] = "netcls";
     55 
     56 u_long	sb_max = SB_MAX;		/* patchable */
     57 
     58 /*
     59  * Procedures to manipulate state flags of socket
     60  * and do appropriate wakeups.  Normal sequence from the
     61  * active (originating) side is that soisconnecting() is
     62  * called during processing of connect() call,
     63  * resulting in an eventual call to soisconnected() if/when the
     64  * connection is established.  When the connection is torn down
     65  * soisdisconnecting() is called during processing of disconnect() call,
     66  * and soisdisconnected() is called when the connection to the peer
     67  * is totally severed.  The semantics of these routines are such that
     68  * connectionless protocols can call soisconnected() and soisdisconnected()
     69  * only, bypassing the in-progress calls when setting up a ``connection''
     70  * takes no time.
     71  *
     72  * From the passive side, a socket is created with
     73  * two queues of sockets: so_q0 for connections in progress
     74  * and so_q for connections already made and awaiting user acceptance.
     75  * As a protocol is preparing incoming connections, it creates a socket
     76  * structure queued on so_q0 by calling sonewconn().  When the connection
     77  * is established, soisconnected() is called, and transfers the
     78  * socket structure to so_q, making it available to accept().
     79  *
     80  * If a socket is closed with sockets on either
     81  * so_q0 or so_q, these sockets are dropped.
     82  *
     83  * If higher level protocols are implemented in
     84  * the kernel, the wakeups done here will sometimes
     85  * cause software-interrupt process scheduling.
     86  */
     87 
     88 void
     89 soisconnecting(so)
     90 	register struct socket *so;
     91 {
     92 
     93 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
     94 	so->so_state |= SS_ISCONNECTING;
     95 }
     96 
     97 void
     98 soisconnected(so)
     99 	register struct socket *so;
    100 {
    101 	register struct socket *head = so->so_head;
    102 
    103 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
    104 	so->so_state |= SS_ISCONNECTED;
    105 	if (head && soqremque(so, 0)) {
    106 		soqinsque(head, so, 1);
    107 		sorwakeup(head);
    108 		wakeup((caddr_t)&head->so_timeo);
    109 	} else {
    110 		wakeup((caddr_t)&so->so_timeo);
    111 		sorwakeup(so);
    112 		sowwakeup(so);
    113 	}
    114 }
    115 
    116 void
    117 soisdisconnecting(so)
    118 	register struct socket *so;
    119 {
    120 
    121 	so->so_state &= ~SS_ISCONNECTING;
    122 	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
    123 	wakeup((caddr_t)&so->so_timeo);
    124 	sowwakeup(so);
    125 	sorwakeup(so);
    126 }
    127 
    128 void
    129 soisdisconnected(so)
    130 	register struct socket *so;
    131 {
    132 
    133 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
    134 	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE);
    135 	wakeup((caddr_t)&so->so_timeo);
    136 	sowwakeup(so);
    137 	sorwakeup(so);
    138 }
    139 
    140 /*
    141  * When an attempt at a new connection is noted on a socket
    142  * which accepts connections, sonewconn is called.  If the
    143  * connection is possible (subject to space constraints, etc.)
    144  * then we allocate a new structure, propoerly linked into the
    145  * data structure of the original socket, and return this.
    146  * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
    147  *
    148  * Currently, sonewconn() is defined as sonewconn1() in socketvar.h
    149  * to catch calls that are missing the (new) second parameter.
    150  */
    151 struct socket *
    152 sonewconn1(head, connstatus)
    153 	register struct socket *head;
    154 	int connstatus;
    155 {
    156 	register struct socket *so;
    157 	int soqueue = connstatus ? 1 : 0;
    158 
    159 	if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
    160 		return ((struct socket *)0);
    161 	MALLOC(so, struct socket *, sizeof(*so), M_SOCKET, M_DONTWAIT);
    162 	if (so == NULL)
    163 		return ((struct socket *)0);
    164 	bzero((caddr_t)so, sizeof(*so));
    165 	so->so_type = head->so_type;
    166 	so->so_options = head->so_options &~ SO_ACCEPTCONN;
    167 	so->so_linger = head->so_linger;
    168 	so->so_state = head->so_state | SS_NOFDREF;
    169 	so->so_proto = head->so_proto;
    170 	so->so_timeo = head->so_timeo;
    171 	so->so_pgid = head->so_pgid;
    172 	(void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
    173 	soqinsque(head, so, soqueue);
    174 	if ((*so->so_proto->pr_usrreq)(so, PRU_ATTACH,
    175 	    (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0)) {
    176 		(void) soqremque(so, soqueue);
    177 		(void) free((caddr_t)so, M_SOCKET);
    178 		return ((struct socket *)0);
    179 	}
    180 	if (connstatus) {
    181 		sorwakeup(head);
    182 		wakeup((caddr_t)&head->so_timeo);
    183 		so->so_state |= connstatus;
    184 	}
    185 	return (so);
    186 }
    187 
    188 void
    189 soqinsque(head, so, q)
    190 	register struct socket *head, *so;
    191 	int q;
    192 {
    193 
    194 	register struct socket **prev;
    195 	so->so_head = head;
    196 	if (q == 0) {
    197 		head->so_q0len++;
    198 		so->so_q0 = 0;
    199 		for (prev = &(head->so_q0); *prev; )
    200 			prev = &((*prev)->so_q0);
    201 	} else {
    202 		head->so_qlen++;
    203 		so->so_q = 0;
    204 		for (prev = &(head->so_q); *prev; )
    205 			prev = &((*prev)->so_q);
    206 	}
    207 	*prev = so;
    208 }
    209 
    210 int
    211 soqremque(so, q)
    212 	register struct socket *so;
    213 	int q;
    214 {
    215 	register struct socket *head, *prev, *next;
    216 
    217 	head = so->so_head;
    218 	prev = head;
    219 	for (;;) {
    220 		next = q ? prev->so_q : prev->so_q0;
    221 		if (next == so)
    222 			break;
    223 		if (next == 0)
    224 			return (0);
    225 		prev = next;
    226 	}
    227 	if (q == 0) {
    228 		prev->so_q0 = next->so_q0;
    229 		head->so_q0len--;
    230 	} else {
    231 		prev->so_q = next->so_q;
    232 		head->so_qlen--;
    233 	}
    234 	next->so_q0 = next->so_q = 0;
    235 	next->so_head = 0;
    236 	return (1);
    237 }
    238 
    239 /*
    240  * Socantsendmore indicates that no more data will be sent on the
    241  * socket; it would normally be applied to a socket when the user
    242  * informs the system that no more data is to be sent, by the protocol
    243  * code (in case PRU_SHUTDOWN).  Socantrcvmore indicates that no more data
    244  * will be received, and will normally be applied to the socket by a
    245  * protocol when it detects that the peer will send no more data.
    246  * Data queued for reading in the socket may yet be read.
    247  */
    248 
    249 void
    250 socantsendmore(so)
    251 	struct socket *so;
    252 {
    253 
    254 	so->so_state |= SS_CANTSENDMORE;
    255 	sowwakeup(so);
    256 }
    257 
    258 void
    259 socantrcvmore(so)
    260 	struct socket *so;
    261 {
    262 
    263 	so->so_state |= SS_CANTRCVMORE;
    264 	sorwakeup(so);
    265 }
    266 
    267 /*
    268  * Wait for data to arrive at/drain from a socket buffer.
    269  */
    270 int
    271 sbwait(sb)
    272 	struct sockbuf *sb;
    273 {
    274 
    275 	sb->sb_flags |= SB_WAIT;
    276 	return (tsleep((caddr_t)&sb->sb_cc,
    277 	    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, netio,
    278 	    sb->sb_timeo));
    279 }
    280 
    281 /*
    282  * Lock a sockbuf already known to be locked;
    283  * return any error returned from sleep (EINTR).
    284  */
    285 int
    286 sb_lock(sb)
    287 	register struct sockbuf *sb;
    288 {
    289 	int error;
    290 
    291 	while (sb->sb_flags & SB_LOCK) {
    292 		sb->sb_flags |= SB_WANT;
    293 		if (error = tsleep((caddr_t)&sb->sb_flags,
    294 		    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK|PCATCH,
    295 		    netio, 0))
    296 			return (error);
    297 	}
    298 	sb->sb_flags |= SB_LOCK;
    299 	return (0);
    300 }
    301 
    302 /*
    303  * Wakeup processes waiting on a socket buffer.
    304  * Do asynchronous notification via SIGIO
    305  * if the socket has the SS_ASYNC flag set.
    306  */
    307 void
    308 sowakeup(so, sb)
    309 	register struct socket *so;
    310 	register struct sockbuf *sb;
    311 {
    312 	struct proc *p;
    313 
    314 	selwakeup(&sb->sb_sel);
    315 	sb->sb_flags &= ~SB_SEL;
    316 	if (sb->sb_flags & SB_WAIT) {
    317 		sb->sb_flags &= ~SB_WAIT;
    318 		wakeup((caddr_t)&sb->sb_cc);
    319 	}
    320 	if (so->so_state & SS_ASYNC) {
    321 		if (so->so_pgid < 0)
    322 			gsignal(-so->so_pgid, SIGIO);
    323 		else if (so->so_pgid > 0 && (p = pfind(so->so_pgid)) != 0)
    324 			psignal(p, SIGIO);
    325 	}
    326 }
    327 
    328 /*
    329  * Socket buffer (struct sockbuf) utility routines.
    330  *
    331  * Each socket contains two socket buffers: one for sending data and
    332  * one for receiving data.  Each buffer contains a queue of mbufs,
    333  * information about the number of mbufs and amount of data in the
    334  * queue, and other fields allowing select() statements and notification
    335  * on data availability to be implemented.
    336  *
    337  * Data stored in a socket buffer is maintained as a list of records.
    338  * Each record is a list of mbufs chained together with the m_next
    339  * field.  Records are chained together with the m_nextpkt field. The upper
    340  * level routine soreceive() expects the following conventions to be
    341  * observed when placing information in the receive buffer:
    342  *
    343  * 1. If the protocol requires each message be preceded by the sender's
    344  *    name, then a record containing that name must be present before
    345  *    any associated data (mbuf's must be of type MT_SONAME).
    346  * 2. If the protocol supports the exchange of ``access rights'' (really
    347  *    just additional data associated with the message), and there are
    348  *    ``rights'' to be received, then a record containing this data
    349  *    should be present (mbuf's must be of type MT_RIGHTS).
    350  * 3. If a name or rights record exists, then it must be followed by
    351  *    a data record, perhaps of zero length.
    352  *
    353  * Before using a new socket structure it is first necessary to reserve
    354  * buffer space to the socket, by calling sbreserve().  This should commit
    355  * some of the available buffer space in the system buffer pool for the
    356  * socket (currently, it does nothing but enforce limits).  The space
    357  * should be released by calling sbrelease() when the socket is destroyed.
    358  */
    359 
    360 int
    361 soreserve(so, sndcc, rcvcc)
    362 	register struct socket *so;
    363 	u_long sndcc, rcvcc;
    364 {
    365 
    366 	if (sbreserve(&so->so_snd, sndcc) == 0)
    367 		goto bad;
    368 	if (sbreserve(&so->so_rcv, rcvcc) == 0)
    369 		goto bad2;
    370 	if (so->so_rcv.sb_lowat == 0)
    371 		so->so_rcv.sb_lowat = 1;
    372 	if (so->so_snd.sb_lowat == 0)
    373 		so->so_snd.sb_lowat = MCLBYTES;
    374 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
    375 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
    376 	return (0);
    377 bad2:
    378 	sbrelease(&so->so_snd);
    379 bad:
    380 	return (ENOBUFS);
    381 }
    382 
    383 /*
    384  * Allot mbufs to a sockbuf.
    385  * Attempt to scale mbmax so that mbcnt doesn't become limiting
    386  * if buffering efficiency is near the normal case.
    387  */
    388 int
    389 sbreserve(sb, cc)
    390 	struct sockbuf *sb;
    391 	u_long cc;
    392 {
    393 
    394 	if (cc > sb_max * MCLBYTES / (MSIZE + MCLBYTES))
    395 		return (0);
    396 	sb->sb_hiwat = cc;
    397 	sb->sb_mbmax = min(cc * 2, sb_max);
    398 	if (sb->sb_lowat > sb->sb_hiwat)
    399 		sb->sb_lowat = sb->sb_hiwat;
    400 	return (1);
    401 }
    402 
    403 /*
    404  * Free mbufs held by a socket, and reserved mbuf space.
    405  */
    406 void
    407 sbrelease(sb)
    408 	struct sockbuf *sb;
    409 {
    410 
    411 	sbflush(sb);
    412 	sb->sb_hiwat = sb->sb_mbmax = 0;
    413 }
    414 
    415 /*
    416  * Routines to add and remove
    417  * data from an mbuf queue.
    418  *
    419  * The routines sbappend() or sbappendrecord() are normally called to
    420  * append new mbufs to a socket buffer, after checking that adequate
    421  * space is available, comparing the function sbspace() with the amount
    422  * of data to be added.  sbappendrecord() differs from sbappend() in
    423  * that data supplied is treated as the beginning of a new record.
    424  * To place a sender's address, optional access rights, and data in a
    425  * socket receive buffer, sbappendaddr() should be used.  To place
    426  * access rights and data in a socket receive buffer, sbappendrights()
    427  * should be used.  In either case, the new data begins a new record.
    428  * Note that unlike sbappend() and sbappendrecord(), these routines check
    429  * for the caller that there will be enough space to store the data.
    430  * Each fails if there is not enough space, or if it cannot find mbufs
    431  * to store additional information in.
    432  *
    433  * Reliable protocols may use the socket send buffer to hold data
    434  * awaiting acknowledgement.  Data is normally copied from a socket
    435  * send buffer in a protocol with m_copy for output to a peer,
    436  * and then removing the data from the socket buffer with sbdrop()
    437  * or sbdroprecord() when the data is acknowledged by the peer.
    438  */
    439 
    440 /*
    441  * Append mbuf chain m to the last record in the
    442  * socket buffer sb.  The additional space associated
    443  * the mbuf chain is recorded in sb.  Empty mbufs are
    444  * discarded and mbufs are compacted where possible.
    445  */
    446 void
    447 sbappend(sb, m)
    448 	struct sockbuf *sb;
    449 	struct mbuf *m;
    450 {
    451 	register struct mbuf *n;
    452 
    453 	if (m == 0)
    454 		return;
    455 	if (n = sb->sb_mb) {
    456 		while (n->m_nextpkt)
    457 			n = n->m_nextpkt;
    458 		do {
    459 			if (n->m_flags & M_EOR) {
    460 				sbappendrecord(sb, m); /* XXXXXX!!!! */
    461 				return;
    462 			}
    463 		} while (n->m_next && (n = n->m_next));
    464 	}
    465 	sbcompress(sb, m, n);
    466 }
    467 
    468 #ifdef SOCKBUF_DEBUG
    469 void
    470 sbcheck(sb)
    471 	register struct sockbuf *sb;
    472 {
    473 	register struct mbuf *m;
    474 	register int len = 0, mbcnt = 0;
    475 
    476 	for (m = sb->sb_mb; m; m = m->m_next) {
    477 		len += m->m_len;
    478 		mbcnt += MSIZE;
    479 		if (m->m_flags & M_EXT)
    480 			mbcnt += m->m_ext.ext_size;
    481 		if (m->m_nextpkt)
    482 			panic("sbcheck nextpkt");
    483 	}
    484 	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
    485 		printf("cc %d != %d || mbcnt %d != %d\n", len, sb->sb_cc,
    486 		    mbcnt, sb->sb_mbcnt);
    487 		panic("sbcheck");
    488 	}
    489 }
    490 #endif
    491 
    492 /*
    493  * As above, except the mbuf chain
    494  * begins a new record.
    495  */
    496 void
    497 sbappendrecord(sb, m0)
    498 	register struct sockbuf *sb;
    499 	register struct mbuf *m0;
    500 {
    501 	register struct mbuf *m;
    502 
    503 	if (m0 == 0)
    504 		return;
    505 	if (m = sb->sb_mb)
    506 		while (m->m_nextpkt)
    507 			m = m->m_nextpkt;
    508 	/*
    509 	 * Put the first mbuf on the queue.
    510 	 * Note this permits zero length records.
    511 	 */
    512 	sballoc(sb, m0);
    513 	if (m)
    514 		m->m_nextpkt = m0;
    515 	else
    516 		sb->sb_mb = m0;
    517 	m = m0->m_next;
    518 	m0->m_next = 0;
    519 	if (m && (m0->m_flags & M_EOR)) {
    520 		m0->m_flags &= ~M_EOR;
    521 		m->m_flags |= M_EOR;
    522 	}
    523 	sbcompress(sb, m, m0);
    524 }
    525 
    526 /*
    527  * As above except that OOB data
    528  * is inserted at the beginning of the sockbuf,
    529  * but after any other OOB data.
    530  */
    531 void
    532 sbinsertoob(sb, m0)
    533 	register struct sockbuf *sb;
    534 	register struct mbuf *m0;
    535 {
    536 	register struct mbuf *m;
    537 	register struct mbuf **mp;
    538 
    539 	if (m0 == 0)
    540 		return;
    541 	for (mp = &sb->sb_mb; m = *mp; mp = &((*mp)->m_nextpkt)) {
    542 	    again:
    543 		switch (m->m_type) {
    544 
    545 		case MT_OOBDATA:
    546 			continue;		/* WANT next train */
    547 
    548 		case MT_CONTROL:
    549 			if (m = m->m_next)
    550 				goto again;	/* inspect THIS train further */
    551 		}
    552 		break;
    553 	}
    554 	/*
    555 	 * Put the first mbuf on the queue.
    556 	 * Note this permits zero length records.
    557 	 */
    558 	sballoc(sb, m0);
    559 	m0->m_nextpkt = *mp;
    560 	*mp = m0;
    561 	m = m0->m_next;
    562 	m0->m_next = 0;
    563 	if (m && (m0->m_flags & M_EOR)) {
    564 		m0->m_flags &= ~M_EOR;
    565 		m->m_flags |= M_EOR;
    566 	}
    567 	sbcompress(sb, m, m0);
    568 }
    569 
    570 /*
    571  * Append address and data, and optionally, control (ancillary) data
    572  * to the receive queue of a socket.  If present,
    573  * m0 must include a packet header with total length.
    574  * Returns 0 if no space in sockbuf or insufficient mbufs.
    575  */
    576 int
    577 sbappendaddr(sb, asa, m0, control)
    578 	register struct sockbuf *sb;
    579 	struct sockaddr *asa;
    580 	struct mbuf *m0, *control;
    581 {
    582 	register struct mbuf *m, *n;
    583 	int space = asa->sa_len;
    584 
    585 if (m0 && (m0->m_flags & M_PKTHDR) == 0)
    586 panic("sbappendaddr");
    587 	if (m0)
    588 		space += m0->m_pkthdr.len;
    589 	for (n = control; n; n = n->m_next) {
    590 		space += n->m_len;
    591 		if (n->m_next == 0)	/* keep pointer to last control buf */
    592 			break;
    593 	}
    594 	if (space > sbspace(sb))
    595 		return (0);
    596 	if (asa->sa_len > MLEN)
    597 		return (0);
    598 	MGET(m, M_DONTWAIT, MT_SONAME);
    599 	if (m == 0)
    600 		return (0);
    601 	m->m_len = asa->sa_len;
    602 	bcopy((caddr_t)asa, mtod(m, caddr_t), asa->sa_len);
    603 	if (n)
    604 		n->m_next = m0;		/* concatenate data to control */
    605 	else
    606 		control = m0;
    607 	m->m_next = control;
    608 	for (n = m; n; n = n->m_next)
    609 		sballoc(sb, n);
    610 	if (n = sb->sb_mb) {
    611 		while (n->m_nextpkt)
    612 			n = n->m_nextpkt;
    613 		n->m_nextpkt = m;
    614 	} else
    615 		sb->sb_mb = m;
    616 	return (1);
    617 }
    618 
    619 int
    620 sbappendcontrol(sb, m0, control)
    621 	struct sockbuf *sb;
    622 	struct mbuf *m0, *control;
    623 {
    624 	register struct mbuf *m, *n;
    625 	int space = 0;
    626 
    627 	if (control == 0)
    628 		panic("sbappendcontrol");
    629 	for (m = control; ; m = m->m_next) {
    630 		space += m->m_len;
    631 		if (m->m_next == 0)
    632 			break;
    633 	}
    634 	n = m;			/* save pointer to last control buffer */
    635 	for (m = m0; m; m = m->m_next)
    636 		space += m->m_len;
    637 	if (space > sbspace(sb))
    638 		return (0);
    639 	n->m_next = m0;			/* concatenate data to control */
    640 	for (m = control; m; m = m->m_next)
    641 		sballoc(sb, m);
    642 	if (n = sb->sb_mb) {
    643 		while (n->m_nextpkt)
    644 			n = n->m_nextpkt;
    645 		n->m_nextpkt = control;
    646 	} else
    647 		sb->sb_mb = control;
    648 	return (1);
    649 }
    650 
    651 /*
    652  * Compress mbuf chain m into the socket
    653  * buffer sb following mbuf n.  If n
    654  * is null, the buffer is presumed empty.
    655  */
    656 void
    657 sbcompress(sb, m, n)
    658 	register struct sockbuf *sb;
    659 	register struct mbuf *m, *n;
    660 {
    661 	register int eor = 0;
    662 	register struct mbuf *o;
    663 
    664 	while (m) {
    665 		eor |= m->m_flags & M_EOR;
    666 		if (m->m_len == 0 &&
    667 		    (eor == 0 ||
    668 		     (((o = m->m_next) || (o = n)) &&
    669 		      o->m_type == m->m_type))) {
    670 			m = m_free(m);
    671 			continue;
    672 		}
    673 		if (n && (n->m_flags & (M_EXT | M_EOR)) == 0 &&
    674 		    (n->m_data + n->m_len + m->m_len) < &n->m_dat[MLEN] &&
    675 		    n->m_type == m->m_type) {
    676 			bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len,
    677 			    (unsigned)m->m_len);
    678 			n->m_len += m->m_len;
    679 			sb->sb_cc += m->m_len;
    680 			m = m_free(m);
    681 			continue;
    682 		}
    683 		if (n)
    684 			n->m_next = m;
    685 		else
    686 			sb->sb_mb = m;
    687 		sballoc(sb, m);
    688 		n = m;
    689 		m->m_flags &= ~M_EOR;
    690 		m = m->m_next;
    691 		n->m_next = 0;
    692 	}
    693 	if (eor) {
    694 		if (n)
    695 			n->m_flags |= eor;
    696 		else
    697 			printf("semi-panic: sbcompress\n");
    698 	}
    699 }
    700 
    701 /*
    702  * Free all mbufs in a sockbuf.
    703  * Check that all resources are reclaimed.
    704  */
    705 void
    706 sbflush(sb)
    707 	register struct sockbuf *sb;
    708 {
    709 
    710 	if (sb->sb_flags & SB_LOCK)
    711 		panic("sbflush");
    712 	while (sb->sb_mbcnt)
    713 		sbdrop(sb, (int)sb->sb_cc);
    714 	if (sb->sb_cc || sb->sb_mb)
    715 		panic("sbflush 2");
    716 }
    717 
    718 /*
    719  * Drop data from (the front of) a sockbuf.
    720  */
    721 void
    722 sbdrop(sb, len)
    723 	register struct sockbuf *sb;
    724 	register int len;
    725 {
    726 	register struct mbuf *m, *mn;
    727 	struct mbuf *next;
    728 
    729 	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
    730 	while (len > 0) {
    731 		if (m == 0) {
    732 			if (next == 0)
    733 				panic("sbdrop");
    734 			m = next;
    735 			next = m->m_nextpkt;
    736 			continue;
    737 		}
    738 		if (m->m_len > len) {
    739 			m->m_len -= len;
    740 			m->m_data += len;
    741 			sb->sb_cc -= len;
    742 			break;
    743 		}
    744 		len -= m->m_len;
    745 		sbfree(sb, m);
    746 		MFREE(m, mn);
    747 		m = mn;
    748 	}
    749 	while (m && m->m_len == 0) {
    750 		sbfree(sb, m);
    751 		MFREE(m, mn);
    752 		m = mn;
    753 	}
    754 	if (m) {
    755 		sb->sb_mb = m;
    756 		m->m_nextpkt = next;
    757 	} else
    758 		sb->sb_mb = next;
    759 }
    760 
    761 /*
    762  * Drop a record off the front of a sockbuf
    763  * and move the next record to the front.
    764  */
    765 void
    766 sbdroprecord(sb)
    767 	register struct sockbuf *sb;
    768 {
    769 	register struct mbuf *m, *mn;
    770 
    771 	m = sb->sb_mb;
    772 	if (m) {
    773 		sb->sb_mb = m->m_nextpkt;
    774 		do {
    775 			sbfree(sb, m);
    776 			MFREE(m, mn);
    777 		} while (m = mn);
    778 	}
    779 }
    780