Home | History | Annotate | Line # | Download | only in kern
uipc_socket2.c revision 1.100
      1 /*	$NetBSD: uipc_socket2.c,v 1.100 2008/10/24 22:23:20 dyoung Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26  * POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 /*
     30  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     31  *	The Regents of the University of California.  All rights reserved.
     32  *
     33  * Redistribution and use in source and binary forms, with or without
     34  * modification, are permitted provided that the following conditions
     35  * are met:
     36  * 1. Redistributions of source code must retain the above copyright
     37  *    notice, this list of conditions and the following disclaimer.
     38  * 2. Redistributions in binary form must reproduce the above copyright
     39  *    notice, this list of conditions and the following disclaimer in the
     40  *    documentation and/or other materials provided with the distribution.
     41  * 3. Neither the name of the University nor the names of its contributors
     42  *    may be used to endorse or promote products derived from this software
     43  *    without specific prior written permission.
     44  *
     45  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     46  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     47  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     48  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     49  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     50  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     51  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     52  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     53  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     54  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     55  * SUCH DAMAGE.
     56  *
     57  *	@(#)uipc_socket2.c	8.2 (Berkeley) 2/14/95
     58  */
     59 
     60 #include <sys/cdefs.h>
     61 __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.100 2008/10/24 22:23:20 dyoung Exp $");
     62 
     63 #include "opt_mbuftrace.h"
     64 #include "opt_sb_max.h"
     65 
     66 #include <sys/param.h>
     67 #include <sys/systm.h>
     68 #include <sys/proc.h>
     69 #include <sys/file.h>
     70 #include <sys/buf.h>
     71 #include <sys/malloc.h>
     72 #include <sys/mbuf.h>
     73 #include <sys/protosw.h>
     74 #include <sys/domain.h>
     75 #include <sys/poll.h>
     76 #include <sys/socket.h>
     77 #include <sys/socketvar.h>
     78 #include <sys/signalvar.h>
     79 #include <sys/kauth.h>
     80 #include <sys/pool.h>
     81 #include <sys/uidinfo.h>
     82 
     83 /*
     84  * Primitive routines for operating on sockets and socket buffers.
     85  *
     86  * Locking rules and assumptions:
     87  *
     88  * o socket::so_lock can change on the fly.  The low level routines used
     89  *   to lock sockets are aware of this.  When so_lock is acquired, the
     90  *   routine locking must check to see if so_lock still points to the
     91  *   lock that was acquired.  If so_lock has changed in the meantime, the
     92  *   now irellevant lock that was acquired must be dropped and the lock
     93  *   operation retried.  Although not proven here, this is completely safe
     94  *   on a multiprocessor system, even with relaxed memory ordering, given
     95  *   the next two rules:
     96  *
     97  * o In order to mutate so_lock, the lock pointed to by the current value
     98  *   of so_lock must be held: i.e., the socket must be held locked by the
     99  *   changing thread.  The thread must issue membar_exit() to prevent
    100  *   memory accesses being reordered, and can set so_lock to the desired
    101  *   value.  If the lock pointed to by the new value of so_lock is not
    102  *   held by the changing thread, the socket must then be considered
    103  *   unlocked.
    104  *
    105  * o If so_lock is mutated, and the previous lock referred to by so_lock
    106  *   could still be visible to other threads in the system (e.g. via file
    107  *   descriptor or protocol-internal reference), then the old lock must
    108  *   remain valid until the socket and/or protocol control block has been
    109  *   torn down.
    110  *
    111  * o If a socket has a non-NULL so_head value (i.e. is in the process of
    112  *   connecting), then locking the socket must also lock the socket pointed
    113  *   to by so_head: their lock pointers must match.
    114  *
    115  * o If a socket has connections in progress (so_q, so_q0 not empty) then
    116  *   locking the socket must also lock the sockets attached to both queues.
    117  *   Again, their lock pointers must match.
    118  *
    119  * o Beyond the initial lock assigment in socreate(), assigning locks to
    120  *   sockets is the responsibility of the individual protocols / protocol
    121  *   domains.
    122  */
    123 
    124 static pool_cache_t socket_cache;
    125 
    126 u_long	sb_max = SB_MAX;	/* maximum socket buffer size */
    127 static u_long sb_max_adj;	/* adjusted sb_max */
    128 
    129 /*
    130  * Procedures to manipulate state flags of socket
    131  * and do appropriate wakeups.  Normal sequence from the
    132  * active (originating) side is that soisconnecting() is
    133  * called during processing of connect() call,
    134  * resulting in an eventual call to soisconnected() if/when the
    135  * connection is established.  When the connection is torn down
    136  * soisdisconnecting() is called during processing of disconnect() call,
    137  * and soisdisconnected() is called when the connection to the peer
    138  * is totally severed.  The semantics of these routines are such that
    139  * connectionless protocols can call soisconnected() and soisdisconnected()
    140  * only, bypassing the in-progress calls when setting up a ``connection''
    141  * takes no time.
    142  *
    143  * From the passive side, a socket is created with
    144  * two queues of sockets: so_q0 for connections in progress
    145  * and so_q for connections already made and awaiting user acceptance.
    146  * As a protocol is preparing incoming connections, it creates a socket
    147  * structure queued on so_q0 by calling sonewconn().  When the connection
    148  * is established, soisconnected() is called, and transfers the
    149  * socket structure to so_q, making it available to accept().
    150  *
    151  * If a socket is closed with sockets on either
    152  * so_q0 or so_q, these sockets are dropped.
    153  *
    154  * If higher level protocols are implemented in
    155  * the kernel, the wakeups done here will sometimes
    156  * cause software-interrupt process scheduling.
    157  */
    158 
    159 void
    160 soisconnecting(struct socket *so)
    161 {
    162 
    163 	KASSERT(solocked(so));
    164 
    165 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
    166 	so->so_state |= SS_ISCONNECTING;
    167 }
    168 
    169 void
    170 soisconnected(struct socket *so)
    171 {
    172 	struct socket	*head;
    173 
    174 	head = so->so_head;
    175 
    176 	KASSERT(solocked(so));
    177 	KASSERT(head == NULL || solocked2(so, head));
    178 
    179 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
    180 	so->so_state |= SS_ISCONNECTED;
    181 	if (head && so->so_onq == &head->so_q0) {
    182 		if ((so->so_options & SO_ACCEPTFILTER) == 0) {
    183 			soqremque(so, 0);
    184 			soqinsque(head, so, 1);
    185 			sorwakeup(head);
    186 			cv_broadcast(&head->so_cv);
    187 		} else {
    188 			so->so_upcall =
    189 			    head->so_accf->so_accept_filter->accf_callback;
    190 			so->so_upcallarg = head->so_accf->so_accept_filter_arg;
    191 			so->so_rcv.sb_flags |= SB_UPCALL;
    192 			so->so_options &= ~SO_ACCEPTFILTER;
    193 			(*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT);		}
    194 	} else {
    195 		cv_broadcast(&so->so_cv);
    196 		sorwakeup(so);
    197 		sowwakeup(so);
    198 	}
    199 }
    200 
    201 void
    202 soisdisconnecting(struct socket *so)
    203 {
    204 
    205 	KASSERT(solocked(so));
    206 
    207 	so->so_state &= ~SS_ISCONNECTING;
    208 	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
    209 	cv_broadcast(&so->so_cv);
    210 	sowwakeup(so);
    211 	sorwakeup(so);
    212 }
    213 
    214 void
    215 soisdisconnected(struct socket *so)
    216 {
    217 
    218 	KASSERT(solocked(so));
    219 
    220 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
    221 	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
    222 	cv_broadcast(&so->so_cv);
    223 	sowwakeup(so);
    224 	sorwakeup(so);
    225 }
    226 
    227 void
    228 soinit2(void)
    229 {
    230 
    231 	socket_cache = pool_cache_init(sizeof(struct socket), 0, 0, 0,
    232 	    "socket", NULL, IPL_SOFTNET, NULL, NULL, NULL);
    233 }
    234 
    235 /*
    236  * When an attempt at a new connection is noted on a socket
    237  * which accepts connections, sonewconn is called.  If the
    238  * connection is possible (subject to space constraints, etc.)
    239  * then we allocate a new structure, propoerly linked into the
    240  * data structure of the original socket, and return this.
    241  * Connstatus may be 0, SS_ISCONFIRMING, or SS_ISCONNECTED.
    242  */
    243 struct socket *
    244 sonewconn(struct socket *head, int connstatus)
    245 {
    246 	struct socket	*so;
    247 	int		soqueue, error;
    248 
    249 	KASSERT(solocked(head));
    250 
    251 	if ((head->so_options & SO_ACCEPTFILTER) != 0)
    252 		connstatus = 0;
    253 	soqueue = connstatus ? 1 : 0;
    254 	if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
    255 		return NULL;
    256 	so = soget(false);
    257 	if (so == NULL)
    258 		return NULL;
    259 	mutex_obj_hold(head->so_lock);
    260 	so->so_lock = head->so_lock;
    261 	so->so_type = head->so_type;
    262 	so->so_options = head->so_options &~ SO_ACCEPTCONN;
    263 	so->so_linger = head->so_linger;
    264 	so->so_state = head->so_state | SS_NOFDREF;
    265 	so->so_nbio = head->so_nbio;
    266 	so->so_proto = head->so_proto;
    267 	so->so_timeo = head->so_timeo;
    268 	so->so_pgid = head->so_pgid;
    269 	so->so_send = head->so_send;
    270 	so->so_receive = head->so_receive;
    271 	so->so_uidinfo = head->so_uidinfo;
    272 	so->so_egid = head->so_egid;
    273 	so->so_cpid = head->so_cpid;
    274 #ifdef MBUFTRACE
    275 	so->so_mowner = head->so_mowner;
    276 	so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
    277 	so->so_snd.sb_mowner = head->so_snd.sb_mowner;
    278 #endif
    279 	(void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
    280 	so->so_snd.sb_lowat = head->so_snd.sb_lowat;
    281 	so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
    282 	so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
    283 	so->so_snd.sb_timeo = head->so_snd.sb_timeo;
    284 	so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE;
    285 	so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE;
    286 	soqinsque(head, so, soqueue);
    287 	error = (*so->so_proto->pr_usrreq)(so, PRU_ATTACH, NULL, NULL,
    288 	    NULL, NULL);
    289 	KASSERT(solocked(so));
    290 	if (error != 0) {
    291 		(void) soqremque(so, soqueue);
    292 		/*
    293 		 * Remove acccept filter if one is present.
    294 		 * XXX Is this really needed?
    295 		 */
    296 		if (so->so_accf != NULL)
    297 			(void)accept_filt_clear(so);
    298 		soput(so);
    299 		return NULL;
    300 	}
    301 	if (connstatus) {
    302 		sorwakeup(head);
    303 		cv_broadcast(&head->so_cv);
    304 		so->so_state |= connstatus;
    305 	}
    306 	return so;
    307 }
    308 
    309 struct socket *
    310 soget(bool waitok)
    311 {
    312 	struct socket *so;
    313 
    314 	so = pool_cache_get(socket_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
    315 	if (__predict_false(so == NULL))
    316 		return (NULL);
    317 	memset(so, 0, sizeof(*so));
    318 	TAILQ_INIT(&so->so_q0);
    319 	TAILQ_INIT(&so->so_q);
    320 	cv_init(&so->so_cv, "socket");
    321 	cv_init(&so->so_rcv.sb_cv, "netio");
    322 	cv_init(&so->so_snd.sb_cv, "netio");
    323 	selinit(&so->so_rcv.sb_sel);
    324 	selinit(&so->so_snd.sb_sel);
    325 	so->so_rcv.sb_so = so;
    326 	so->so_snd.sb_so = so;
    327 	return so;
    328 }
    329 
    330 void
    331 soput(struct socket *so)
    332 {
    333 
    334 	KASSERT(!cv_has_waiters(&so->so_cv));
    335 	KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
    336 	KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
    337 	seldestroy(&so->so_rcv.sb_sel);
    338 	seldestroy(&so->so_snd.sb_sel);
    339 	mutex_obj_free(so->so_lock);
    340 	cv_destroy(&so->so_cv);
    341 	cv_destroy(&so->so_rcv.sb_cv);
    342 	cv_destroy(&so->so_snd.sb_cv);
    343 	pool_cache_put(socket_cache, so);
    344 }
    345 
    346 void
    347 soqinsque(struct socket *head, struct socket *so, int q)
    348 {
    349 
    350 	KASSERT(solocked2(head, so));
    351 
    352 #ifdef DIAGNOSTIC
    353 	if (so->so_onq != NULL)
    354 		panic("soqinsque");
    355 #endif
    356 
    357 	so->so_head = head;
    358 	if (q == 0) {
    359 		head->so_q0len++;
    360 		so->so_onq = &head->so_q0;
    361 	} else {
    362 		head->so_qlen++;
    363 		so->so_onq = &head->so_q;
    364 	}
    365 	TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
    366 }
    367 
    368 int
    369 soqremque(struct socket *so, int q)
    370 {
    371 	struct socket	*head;
    372 
    373 	head = so->so_head;
    374 
    375 	KASSERT(solocked(so));
    376 	if (q == 0) {
    377 		if (so->so_onq != &head->so_q0)
    378 			return (0);
    379 		head->so_q0len--;
    380 	} else {
    381 		if (so->so_onq != &head->so_q)
    382 			return (0);
    383 		head->so_qlen--;
    384 	}
    385 	KASSERT(solocked2(so, head));
    386 	TAILQ_REMOVE(so->so_onq, so, so_qe);
    387 	so->so_onq = NULL;
    388 	so->so_head = NULL;
    389 	return (1);
    390 }
    391 
    392 /*
    393  * Socantsendmore indicates that no more data will be sent on the
    394  * socket; it would normally be applied to a socket when the user
    395  * informs the system that no more data is to be sent, by the protocol
    396  * code (in case PRU_SHUTDOWN).  Socantrcvmore indicates that no more data
    397  * will be received, and will normally be applied to the socket by a
    398  * protocol when it detects that the peer will send no more data.
    399  * Data queued for reading in the socket may yet be read.
    400  */
    401 
    402 void
    403 socantsendmore(struct socket *so)
    404 {
    405 
    406 	KASSERT(solocked(so));
    407 
    408 	so->so_state |= SS_CANTSENDMORE;
    409 	sowwakeup(so);
    410 }
    411 
    412 void
    413 socantrcvmore(struct socket *so)
    414 {
    415 
    416 	KASSERT(solocked(so));
    417 
    418 	so->so_state |= SS_CANTRCVMORE;
    419 	sorwakeup(so);
    420 }
    421 
    422 /*
    423  * Wait for data to arrive at/drain from a socket buffer.
    424  */
    425 int
    426 sbwait(struct sockbuf *sb)
    427 {
    428 	struct socket *so;
    429 	kmutex_t *lock;
    430 	int error;
    431 
    432 	so = sb->sb_so;
    433 
    434 	KASSERT(solocked(so));
    435 
    436 	sb->sb_flags |= SB_NOTIFY;
    437 	lock = so->so_lock;
    438 	if ((sb->sb_flags & SB_NOINTR) != 0)
    439 		error = cv_timedwait(&sb->sb_cv, lock, sb->sb_timeo);
    440 	else
    441 		error = cv_timedwait_sig(&sb->sb_cv, lock, sb->sb_timeo);
    442 	if (__predict_false(lock != so->so_lock))
    443 		solockretry(so, lock);
    444 	return error;
    445 }
    446 
    447 /*
    448  * Wakeup processes waiting on a socket buffer.
    449  * Do asynchronous notification via SIGIO
    450  * if the socket buffer has the SB_ASYNC flag set.
    451  */
    452 void
    453 sowakeup(struct socket *so, struct sockbuf *sb, int code)
    454 {
    455 	int band;
    456 
    457 	KASSERT(solocked(so));
    458 	KASSERT(sb->sb_so == so);
    459 
    460 	if (code == POLL_IN)
    461 		band = POLLIN|POLLRDNORM;
    462 	else
    463 		band = POLLOUT|POLLWRNORM;
    464 	sb->sb_flags &= ~SB_NOTIFY;
    465 	selnotify(&sb->sb_sel, band, NOTE_SUBMIT);
    466 	cv_broadcast(&sb->sb_cv);
    467 	if (sb->sb_flags & SB_ASYNC)
    468 		fownsignal(so->so_pgid, SIGIO, code, band, so);
    469 	if (sb->sb_flags & SB_UPCALL)
    470 		(*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT);
    471 }
    472 
    473 /*
    474  * Reset a socket's lock pointer.  Wake all threads waiting on the
    475  * socket's condition variables so that they can restart their waits
    476  * using the new lock.  The existing lock must be held.
    477  */
    478 void
    479 solockreset(struct socket *so, kmutex_t *lock)
    480 {
    481 
    482 	KASSERT(solocked(so));
    483 
    484 	so->so_lock = lock;
    485 	cv_broadcast(&so->so_snd.sb_cv);
    486 	cv_broadcast(&so->so_rcv.sb_cv);
    487 	cv_broadcast(&so->so_cv);
    488 }
    489 
    490 /*
    491  * Socket buffer (struct sockbuf) utility routines.
    492  *
    493  * Each socket contains two socket buffers: one for sending data and
    494  * one for receiving data.  Each buffer contains a queue of mbufs,
    495  * information about the number of mbufs and amount of data in the
    496  * queue, and other fields allowing poll() statements and notification
    497  * on data availability to be implemented.
    498  *
    499  * Data stored in a socket buffer is maintained as a list of records.
    500  * Each record is a list of mbufs chained together with the m_next
    501  * field.  Records are chained together with the m_nextpkt field. The upper
    502  * level routine soreceive() expects the following conventions to be
    503  * observed when placing information in the receive buffer:
    504  *
    505  * 1. If the protocol requires each message be preceded by the sender's
    506  *    name, then a record containing that name must be present before
    507  *    any associated data (mbuf's must be of type MT_SONAME).
    508  * 2. If the protocol supports the exchange of ``access rights'' (really
    509  *    just additional data associated with the message), and there are
    510  *    ``rights'' to be received, then a record containing this data
    511  *    should be present (mbuf's must be of type MT_CONTROL).
    512  * 3. If a name or rights record exists, then it must be followed by
    513  *    a data record, perhaps of zero length.
    514  *
    515  * Before using a new socket structure it is first necessary to reserve
    516  * buffer space to the socket, by calling sbreserve().  This should commit
    517  * some of the available buffer space in the system buffer pool for the
    518  * socket (currently, it does nothing but enforce limits).  The space
    519  * should be released by calling sbrelease() when the socket is destroyed.
    520  */
    521 
    522 int
    523 sb_max_set(u_long new_sbmax)
    524 {
    525 	int s;
    526 
    527 	if (new_sbmax < (16 * 1024))
    528 		return (EINVAL);
    529 
    530 	s = splsoftnet();
    531 	sb_max = new_sbmax;
    532 	sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
    533 	splx(s);
    534 
    535 	return (0);
    536 }
    537 
    538 int
    539 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
    540 {
    541 
    542 	KASSERT(so->so_lock == NULL || solocked(so));
    543 
    544 	/*
    545 	 * there's at least one application (a configure script of screen)
    546 	 * which expects a fifo is writable even if it has "some" bytes
    547 	 * in its buffer.
    548 	 * so we want to make sure (hiwat - lowat) >= (some bytes).
    549 	 *
    550 	 * PIPE_BUF here is an arbitrary value chosen as (some bytes) above.
    551 	 * we expect it's large enough for such applications.
    552 	 */
    553 	u_long  lowat = MAX(sock_loan_thresh, MCLBYTES);
    554 	u_long  hiwat = lowat + PIPE_BUF;
    555 
    556 	if (sndcc < hiwat)
    557 		sndcc = hiwat;
    558 	if (sbreserve(&so->so_snd, sndcc, so) == 0)
    559 		goto bad;
    560 	if (sbreserve(&so->so_rcv, rcvcc, so) == 0)
    561 		goto bad2;
    562 	if (so->so_rcv.sb_lowat == 0)
    563 		so->so_rcv.sb_lowat = 1;
    564 	if (so->so_snd.sb_lowat == 0)
    565 		so->so_snd.sb_lowat = lowat;
    566 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
    567 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
    568 	return (0);
    569  bad2:
    570 	sbrelease(&so->so_snd, so);
    571  bad:
    572 	return (ENOBUFS);
    573 }
    574 
    575 /*
    576  * Allot mbufs to a sockbuf.
    577  * Attempt to scale mbmax so that mbcnt doesn't become limiting
    578  * if buffering efficiency is near the normal case.
    579  */
    580 int
    581 sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
    582 {
    583 	struct lwp *l = curlwp; /* XXX */
    584 	rlim_t maxcc;
    585 	struct uidinfo *uidinfo;
    586 
    587 	KASSERT(so->so_lock == NULL || solocked(so));
    588 	KASSERT(sb->sb_so == so);
    589 	KASSERT(sb_max_adj != 0);
    590 
    591 	if (cc == 0 || cc > sb_max_adj)
    592 		return (0);
    593 
    594 	if (kauth_cred_geteuid(l->l_cred) == so->so_uidinfo->ui_uid)
    595 		maxcc = l->l_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur;
    596 	else
    597 		maxcc = RLIM_INFINITY;
    598 
    599 	uidinfo = so->so_uidinfo;
    600 	if (!chgsbsize(uidinfo, &sb->sb_hiwat, cc, maxcc))
    601 		return 0;
    602 	sb->sb_mbmax = min(cc * 2, sb_max);
    603 	if (sb->sb_lowat > sb->sb_hiwat)
    604 		sb->sb_lowat = sb->sb_hiwat;
    605 	return (1);
    606 }
    607 
    608 /*
    609  * Free mbufs held by a socket, and reserved mbuf space.  We do not assert
    610  * that the socket is held locked here: see sorflush().
    611  */
    612 void
    613 sbrelease(struct sockbuf *sb, struct socket *so)
    614 {
    615 
    616 	KASSERT(sb->sb_so == so);
    617 
    618 	sbflush(sb);
    619 	(void)chgsbsize(so->so_uidinfo, &sb->sb_hiwat, 0, RLIM_INFINITY);
    620 	sb->sb_mbmax = 0;
    621 }
    622 
    623 /*
    624  * Routines to add and remove
    625  * data from an mbuf queue.
    626  *
    627  * The routines sbappend() or sbappendrecord() are normally called to
    628  * append new mbufs to a socket buffer, after checking that adequate
    629  * space is available, comparing the function sbspace() with the amount
    630  * of data to be added.  sbappendrecord() differs from sbappend() in
    631  * that data supplied is treated as the beginning of a new record.
    632  * To place a sender's address, optional access rights, and data in a
    633  * socket receive buffer, sbappendaddr() should be used.  To place
    634  * access rights and data in a socket receive buffer, sbappendrights()
    635  * should be used.  In either case, the new data begins a new record.
    636  * Note that unlike sbappend() and sbappendrecord(), these routines check
    637  * for the caller that there will be enough space to store the data.
    638  * Each fails if there is not enough space, or if it cannot find mbufs
    639  * to store additional information in.
    640  *
    641  * Reliable protocols may use the socket send buffer to hold data
    642  * awaiting acknowledgement.  Data is normally copied from a socket
    643  * send buffer in a protocol with m_copy for output to a peer,
    644  * and then removing the data from the socket buffer with sbdrop()
    645  * or sbdroprecord() when the data is acknowledged by the peer.
    646  */
    647 
    648 #ifdef SOCKBUF_DEBUG
    649 void
    650 sblastrecordchk(struct sockbuf *sb, const char *where)
    651 {
    652 	struct mbuf *m = sb->sb_mb;
    653 
    654 	KASSERT(solocked(sb->sb_so));
    655 
    656 	while (m && m->m_nextpkt)
    657 		m = m->m_nextpkt;
    658 
    659 	if (m != sb->sb_lastrecord) {
    660 		printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
    661 		    sb->sb_mb, sb->sb_lastrecord, m);
    662 		printf("packet chain:\n");
    663 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
    664 			printf("\t%p\n", m);
    665 		panic("sblastrecordchk from %s", where);
    666 	}
    667 }
    668 
    669 void
    670 sblastmbufchk(struct sockbuf *sb, const char *where)
    671 {
    672 	struct mbuf *m = sb->sb_mb;
    673 	struct mbuf *n;
    674 
    675 	KASSERT(solocked(sb->sb_so));
    676 
    677 	while (m && m->m_nextpkt)
    678 		m = m->m_nextpkt;
    679 
    680 	while (m && m->m_next)
    681 		m = m->m_next;
    682 
    683 	if (m != sb->sb_mbtail) {
    684 		printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
    685 		    sb->sb_mb, sb->sb_mbtail, m);
    686 		printf("packet tree:\n");
    687 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
    688 			printf("\t");
    689 			for (n = m; n != NULL; n = n->m_next)
    690 				printf("%p ", n);
    691 			printf("\n");
    692 		}
    693 		panic("sblastmbufchk from %s", where);
    694 	}
    695 }
    696 #endif /* SOCKBUF_DEBUG */
    697 
    698 /*
    699  * Link a chain of records onto a socket buffer
    700  */
    701 #define	SBLINKRECORDCHAIN(sb, m0, mlast)				\
    702 do {									\
    703 	if ((sb)->sb_lastrecord != NULL)				\
    704 		(sb)->sb_lastrecord->m_nextpkt = (m0);			\
    705 	else								\
    706 		(sb)->sb_mb = (m0);					\
    707 	(sb)->sb_lastrecord = (mlast);					\
    708 } while (/*CONSTCOND*/0)
    709 
    710 
    711 #define	SBLINKRECORD(sb, m0)						\
    712     SBLINKRECORDCHAIN(sb, m0, m0)
    713 
    714 /*
    715  * Append mbuf chain m to the last record in the
    716  * socket buffer sb.  The additional space associated
    717  * the mbuf chain is recorded in sb.  Empty mbufs are
    718  * discarded and mbufs are compacted where possible.
    719  */
    720 void
    721 sbappend(struct sockbuf *sb, struct mbuf *m)
    722 {
    723 	struct mbuf	*n;
    724 
    725 	KASSERT(solocked(sb->sb_so));
    726 
    727 	if (m == 0)
    728 		return;
    729 
    730 #ifdef MBUFTRACE
    731 	m_claimm(m, sb->sb_mowner);
    732 #endif
    733 
    734 	SBLASTRECORDCHK(sb, "sbappend 1");
    735 
    736 	if ((n = sb->sb_lastrecord) != NULL) {
    737 		/*
    738 		 * XXX Would like to simply use sb_mbtail here, but
    739 		 * XXX I need to verify that I won't miss an EOR that
    740 		 * XXX way.
    741 		 */
    742 		do {
    743 			if (n->m_flags & M_EOR) {
    744 				sbappendrecord(sb, m); /* XXXXXX!!!! */
    745 				return;
    746 			}
    747 		} while (n->m_next && (n = n->m_next));
    748 	} else {
    749 		/*
    750 		 * If this is the first record in the socket buffer, it's
    751 		 * also the last record.
    752 		 */
    753 		sb->sb_lastrecord = m;
    754 	}
    755 	sbcompress(sb, m, n);
    756 	SBLASTRECORDCHK(sb, "sbappend 2");
    757 }
    758 
    759 /*
    760  * This version of sbappend() should only be used when the caller
    761  * absolutely knows that there will never be more than one record
    762  * in the socket buffer, that is, a stream protocol (such as TCP).
    763  */
    764 void
    765 sbappendstream(struct sockbuf *sb, struct mbuf *m)
    766 {
    767 
    768 	KASSERT(solocked(sb->sb_so));
    769 	KDASSERT(m->m_nextpkt == NULL);
    770 	KASSERT(sb->sb_mb == sb->sb_lastrecord);
    771 
    772 	SBLASTMBUFCHK(sb, __func__);
    773 
    774 #ifdef MBUFTRACE
    775 	m_claimm(m, sb->sb_mowner);
    776 #endif
    777 
    778 	sbcompress(sb, m, sb->sb_mbtail);
    779 
    780 	sb->sb_lastrecord = sb->sb_mb;
    781 	SBLASTRECORDCHK(sb, __func__);
    782 }
    783 
    784 #ifdef SOCKBUF_DEBUG
    785 void
    786 sbcheck(struct sockbuf *sb)
    787 {
    788 	struct mbuf	*m, *m2;
    789 	u_long		len, mbcnt;
    790 
    791 	KASSERT(solocked(sb->sb_so));
    792 
    793 	len = 0;
    794 	mbcnt = 0;
    795 	for (m = sb->sb_mb; m; m = m->m_nextpkt) {
    796 		for (m2 = m; m2 != NULL; m2 = m2->m_next) {
    797 			len += m2->m_len;
    798 			mbcnt += MSIZE;
    799 			if (m2->m_flags & M_EXT)
    800 				mbcnt += m2->m_ext.ext_size;
    801 			if (m2->m_nextpkt != NULL)
    802 				panic("sbcheck nextpkt");
    803 		}
    804 	}
    805 	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
    806 		printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
    807 		    mbcnt, sb->sb_mbcnt);
    808 		panic("sbcheck");
    809 	}
    810 }
    811 #endif
    812 
    813 /*
    814  * As above, except the mbuf chain
    815  * begins a new record.
    816  */
    817 void
    818 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
    819 {
    820 	struct mbuf	*m;
    821 
    822 	KASSERT(solocked(sb->sb_so));
    823 
    824 	if (m0 == 0)
    825 		return;
    826 
    827 #ifdef MBUFTRACE
    828 	m_claimm(m0, sb->sb_mowner);
    829 #endif
    830 	/*
    831 	 * Put the first mbuf on the queue.
    832 	 * Note this permits zero length records.
    833 	 */
    834 	sballoc(sb, m0);
    835 	SBLASTRECORDCHK(sb, "sbappendrecord 1");
    836 	SBLINKRECORD(sb, m0);
    837 	m = m0->m_next;
    838 	m0->m_next = 0;
    839 	if (m && (m0->m_flags & M_EOR)) {
    840 		m0->m_flags &= ~M_EOR;
    841 		m->m_flags |= M_EOR;
    842 	}
    843 	sbcompress(sb, m, m0);
    844 	SBLASTRECORDCHK(sb, "sbappendrecord 2");
    845 }
    846 
    847 /*
    848  * As above except that OOB data
    849  * is inserted at the beginning of the sockbuf,
    850  * but after any other OOB data.
    851  */
    852 void
    853 sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
    854 {
    855 	struct mbuf	*m, **mp;
    856 
    857 	KASSERT(solocked(sb->sb_so));
    858 
    859 	if (m0 == 0)
    860 		return;
    861 
    862 	SBLASTRECORDCHK(sb, "sbinsertoob 1");
    863 
    864 	for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
    865 	    again:
    866 		switch (m->m_type) {
    867 
    868 		case MT_OOBDATA:
    869 			continue;		/* WANT next train */
    870 
    871 		case MT_CONTROL:
    872 			if ((m = m->m_next) != NULL)
    873 				goto again;	/* inspect THIS train further */
    874 		}
    875 		break;
    876 	}
    877 	/*
    878 	 * Put the first mbuf on the queue.
    879 	 * Note this permits zero length records.
    880 	 */
    881 	sballoc(sb, m0);
    882 	m0->m_nextpkt = *mp;
    883 	if (*mp == NULL) {
    884 		/* m0 is actually the new tail */
    885 		sb->sb_lastrecord = m0;
    886 	}
    887 	*mp = m0;
    888 	m = m0->m_next;
    889 	m0->m_next = 0;
    890 	if (m && (m0->m_flags & M_EOR)) {
    891 		m0->m_flags &= ~M_EOR;
    892 		m->m_flags |= M_EOR;
    893 	}
    894 	sbcompress(sb, m, m0);
    895 	SBLASTRECORDCHK(sb, "sbinsertoob 2");
    896 }
    897 
    898 /*
    899  * Append address and data, and optionally, control (ancillary) data
    900  * to the receive queue of a socket.  If present,
    901  * m0 must include a packet header with total length.
    902  * Returns 0 if no space in sockbuf or insufficient mbufs.
    903  */
    904 int
    905 sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0,
    906 	struct mbuf *control)
    907 {
    908 	struct mbuf	*m, *n, *nlast;
    909 	int		space, len;
    910 
    911 	KASSERT(solocked(sb->sb_so));
    912 
    913 	space = asa->sa_len;
    914 
    915 	if (m0 != NULL) {
    916 		if ((m0->m_flags & M_PKTHDR) == 0)
    917 			panic("sbappendaddr");
    918 		space += m0->m_pkthdr.len;
    919 #ifdef MBUFTRACE
    920 		m_claimm(m0, sb->sb_mowner);
    921 #endif
    922 	}
    923 	for (n = control; n; n = n->m_next) {
    924 		space += n->m_len;
    925 		MCLAIM(n, sb->sb_mowner);
    926 		if (n->m_next == 0)	/* keep pointer to last control buf */
    927 			break;
    928 	}
    929 	if (space > sbspace(sb))
    930 		return (0);
    931 	MGET(m, M_DONTWAIT, MT_SONAME);
    932 	if (m == 0)
    933 		return (0);
    934 	MCLAIM(m, sb->sb_mowner);
    935 	/*
    936 	 * XXX avoid 'comparison always true' warning which isn't easily
    937 	 * avoided.
    938 	 */
    939 	len = asa->sa_len;
    940 	if (len > MLEN) {
    941 		MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
    942 		if ((m->m_flags & M_EXT) == 0) {
    943 			m_free(m);
    944 			return (0);
    945 		}
    946 	}
    947 	m->m_len = asa->sa_len;
    948 	memcpy(mtod(m, void *), asa, asa->sa_len);
    949 	if (n)
    950 		n->m_next = m0;		/* concatenate data to control */
    951 	else
    952 		control = m0;
    953 	m->m_next = control;
    954 
    955 	SBLASTRECORDCHK(sb, "sbappendaddr 1");
    956 
    957 	for (n = m; n->m_next != NULL; n = n->m_next)
    958 		sballoc(sb, n);
    959 	sballoc(sb, n);
    960 	nlast = n;
    961 	SBLINKRECORD(sb, m);
    962 
    963 	sb->sb_mbtail = nlast;
    964 	SBLASTMBUFCHK(sb, "sbappendaddr");
    965 	SBLASTRECORDCHK(sb, "sbappendaddr 2");
    966 
    967 	return (1);
    968 }
    969 
    970 /*
    971  * Helper for sbappendchainaddr: prepend a struct sockaddr* to
    972  * an mbuf chain.
    973  */
    974 static inline struct mbuf *
    975 m_prepend_sockaddr(struct sockbuf *sb, struct mbuf *m0,
    976 		   const struct sockaddr *asa)
    977 {
    978 	struct mbuf *m;
    979 	const int salen = asa->sa_len;
    980 
    981 	KASSERT(solocked(sb->sb_so));
    982 
    983 	/* only the first in each chain need be a pkthdr */
    984 	MGETHDR(m, M_DONTWAIT, MT_SONAME);
    985 	if (m == 0)
    986 		return (0);
    987 	MCLAIM(m, sb->sb_mowner);
    988 #ifdef notyet
    989 	if (salen > MHLEN) {
    990 		MEXTMALLOC(m, salen, M_NOWAIT);
    991 		if ((m->m_flags & M_EXT) == 0) {
    992 			m_free(m);
    993 			return (0);
    994 		}
    995 	}
    996 #else
    997 	KASSERT(salen <= MHLEN);
    998 #endif
    999 	m->m_len = salen;
   1000 	memcpy(mtod(m, void *), asa, salen);
   1001 	m->m_next = m0;
   1002 	m->m_pkthdr.len = salen + m0->m_pkthdr.len;
   1003 
   1004 	return m;
   1005 }
   1006 
   1007 int
   1008 sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa,
   1009 		  struct mbuf *m0, int sbprio)
   1010 {
   1011 	int space;
   1012 	struct mbuf *m, *n, *n0, *nlast;
   1013 	int error;
   1014 
   1015 	KASSERT(solocked(sb->sb_so));
   1016 
   1017 	/*
   1018 	 * XXX sbprio reserved for encoding priority of this* request:
   1019 	 *  SB_PRIO_NONE --> honour normal sb limits
   1020 	 *  SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space,
   1021 	 *	take whole chain. Intended for large requests
   1022 	 *      that should be delivered atomically (all, or none).
   1023 	 * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow
   1024 	 *       over normal socket limits, for messages indicating
   1025 	 *       buffer overflow in earlier normal/lower-priority messages
   1026 	 * SB_PRIO_BESTEFFORT -->  ignore limits entirely.
   1027 	 *       Intended for  kernel-generated messages only.
   1028 	 *        Up to generator to avoid total mbuf resource exhaustion.
   1029 	 */
   1030 	(void)sbprio;
   1031 
   1032 	if (m0 && (m0->m_flags & M_PKTHDR) == 0)
   1033 		panic("sbappendaddrchain");
   1034 
   1035 	space = sbspace(sb);
   1036 
   1037 #ifdef notyet
   1038 	/*
   1039 	 * Enforce SB_PRIO_* limits as described above.
   1040 	 */
   1041 #endif
   1042 
   1043 	n0 = NULL;
   1044 	nlast = NULL;
   1045 	for (m = m0; m; m = m->m_nextpkt) {
   1046 		struct mbuf *np;
   1047 
   1048 #ifdef MBUFTRACE
   1049 		m_claimm(m, sb->sb_mowner);
   1050 #endif
   1051 
   1052 		/* Prepend sockaddr to this record (m) of input chain m0 */
   1053 	  	n = m_prepend_sockaddr(sb, m, asa);
   1054 		if (n == NULL) {
   1055 			error = ENOBUFS;
   1056 			goto bad;
   1057 		}
   1058 
   1059 		/* Append record (asa+m) to end of new chain n0 */
   1060 		if (n0 == NULL) {
   1061 			n0 = n;
   1062 		} else {
   1063 			nlast->m_nextpkt = n;
   1064 		}
   1065 		/* Keep track of last record on new chain */
   1066 		nlast = n;
   1067 
   1068 		for (np = n; np; np = np->m_next)
   1069 			sballoc(sb, np);
   1070 	}
   1071 
   1072 	SBLASTRECORDCHK(sb, "sbappendaddrchain 1");
   1073 
   1074 	/* Drop the entire chain of (asa+m) records onto the socket */
   1075 	SBLINKRECORDCHAIN(sb, n0, nlast);
   1076 
   1077 	SBLASTRECORDCHK(sb, "sbappendaddrchain 2");
   1078 
   1079 	for (m = nlast; m->m_next; m = m->m_next)
   1080 		;
   1081 	sb->sb_mbtail = m;
   1082 	SBLASTMBUFCHK(sb, "sbappendaddrchain");
   1083 
   1084 	return (1);
   1085 
   1086 bad:
   1087 	/*
   1088 	 * On error, free the prepended addreseses. For consistency
   1089 	 * with sbappendaddr(), leave it to our caller to free
   1090 	 * the input record chain passed to us as m0.
   1091 	 */
   1092 	while ((n = n0) != NULL) {
   1093 	  	struct mbuf *np;
   1094 
   1095 		/* Undo the sballoc() of this record */
   1096 		for (np = n; np; np = np->m_next)
   1097 			sbfree(sb, np);
   1098 
   1099 		n0 = n->m_nextpkt;	/* iterate at next prepended address */
   1100 		MFREE(n, np);		/* free prepended address (not data) */
   1101 	}
   1102 	return 0;
   1103 }
   1104 
   1105 
   1106 int
   1107 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
   1108 {
   1109 	struct mbuf	*m, *mlast, *n;
   1110 	int		space;
   1111 
   1112 	KASSERT(solocked(sb->sb_so));
   1113 
   1114 	space = 0;
   1115 	if (control == 0)
   1116 		panic("sbappendcontrol");
   1117 	for (m = control; ; m = m->m_next) {
   1118 		space += m->m_len;
   1119 		MCLAIM(m, sb->sb_mowner);
   1120 		if (m->m_next == 0)
   1121 			break;
   1122 	}
   1123 	n = m;			/* save pointer to last control buffer */
   1124 	for (m = m0; m; m = m->m_next) {
   1125 		MCLAIM(m, sb->sb_mowner);
   1126 		space += m->m_len;
   1127 	}
   1128 	if (space > sbspace(sb))
   1129 		return (0);
   1130 	n->m_next = m0;			/* concatenate data to control */
   1131 
   1132 	SBLASTRECORDCHK(sb, "sbappendcontrol 1");
   1133 
   1134 	for (m = control; m->m_next != NULL; m = m->m_next)
   1135 		sballoc(sb, m);
   1136 	sballoc(sb, m);
   1137 	mlast = m;
   1138 	SBLINKRECORD(sb, control);
   1139 
   1140 	sb->sb_mbtail = mlast;
   1141 	SBLASTMBUFCHK(sb, "sbappendcontrol");
   1142 	SBLASTRECORDCHK(sb, "sbappendcontrol 2");
   1143 
   1144 	return (1);
   1145 }
   1146 
   1147 /*
   1148  * Compress mbuf chain m into the socket
   1149  * buffer sb following mbuf n.  If n
   1150  * is null, the buffer is presumed empty.
   1151  */
   1152 void
   1153 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
   1154 {
   1155 	int		eor;
   1156 	struct mbuf	*o;
   1157 
   1158 	KASSERT(solocked(sb->sb_so));
   1159 
   1160 	eor = 0;
   1161 	while (m) {
   1162 		eor |= m->m_flags & M_EOR;
   1163 		if (m->m_len == 0 &&
   1164 		    (eor == 0 ||
   1165 		     (((o = m->m_next) || (o = n)) &&
   1166 		      o->m_type == m->m_type))) {
   1167 			if (sb->sb_lastrecord == m)
   1168 				sb->sb_lastrecord = m->m_next;
   1169 			m = m_free(m);
   1170 			continue;
   1171 		}
   1172 		if (n && (n->m_flags & M_EOR) == 0 &&
   1173 		    /* M_TRAILINGSPACE() checks buffer writeability */
   1174 		    m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
   1175 		    m->m_len <= M_TRAILINGSPACE(n) &&
   1176 		    n->m_type == m->m_type) {
   1177 			memcpy(mtod(n, char *) + n->m_len, mtod(m, void *),
   1178 			    (unsigned)m->m_len);
   1179 			n->m_len += m->m_len;
   1180 			sb->sb_cc += m->m_len;
   1181 			m = m_free(m);
   1182 			continue;
   1183 		}
   1184 		if (n)
   1185 			n->m_next = m;
   1186 		else
   1187 			sb->sb_mb = m;
   1188 		sb->sb_mbtail = m;
   1189 		sballoc(sb, m);
   1190 		n = m;
   1191 		m->m_flags &= ~M_EOR;
   1192 		m = m->m_next;
   1193 		n->m_next = 0;
   1194 	}
   1195 	if (eor) {
   1196 		if (n)
   1197 			n->m_flags |= eor;
   1198 		else
   1199 			printf("semi-panic: sbcompress\n");
   1200 	}
   1201 	SBLASTMBUFCHK(sb, __func__);
   1202 }
   1203 
   1204 /*
   1205  * Free all mbufs in a sockbuf.
   1206  * Check that all resources are reclaimed.
   1207  */
   1208 void
   1209 sbflush(struct sockbuf *sb)
   1210 {
   1211 
   1212 	KASSERT(solocked(sb->sb_so));
   1213 	KASSERT((sb->sb_flags & SB_LOCK) == 0);
   1214 
   1215 	while (sb->sb_mbcnt)
   1216 		sbdrop(sb, (int)sb->sb_cc);
   1217 
   1218 	KASSERT(sb->sb_cc == 0);
   1219 	KASSERT(sb->sb_mb == NULL);
   1220 	KASSERT(sb->sb_mbtail == NULL);
   1221 	KASSERT(sb->sb_lastrecord == NULL);
   1222 }
   1223 
   1224 /*
   1225  * Drop data from (the front of) a sockbuf.
   1226  */
   1227 void
   1228 sbdrop(struct sockbuf *sb, int len)
   1229 {
   1230 	struct mbuf	*m, *mn, *next;
   1231 
   1232 	KASSERT(solocked(sb->sb_so));
   1233 
   1234 	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
   1235 	while (len > 0) {
   1236 		if (m == 0) {
   1237 			if (next == 0)
   1238 				panic("sbdrop");
   1239 			m = next;
   1240 			next = m->m_nextpkt;
   1241 			continue;
   1242 		}
   1243 		if (m->m_len > len) {
   1244 			m->m_len -= len;
   1245 			m->m_data += len;
   1246 			sb->sb_cc -= len;
   1247 			break;
   1248 		}
   1249 		len -= m->m_len;
   1250 		sbfree(sb, m);
   1251 		MFREE(m, mn);
   1252 		m = mn;
   1253 	}
   1254 	while (m && m->m_len == 0) {
   1255 		sbfree(sb, m);
   1256 		MFREE(m, mn);
   1257 		m = mn;
   1258 	}
   1259 	if (m) {
   1260 		sb->sb_mb = m;
   1261 		m->m_nextpkt = next;
   1262 	} else
   1263 		sb->sb_mb = next;
   1264 	/*
   1265 	 * First part is an inline SB_EMPTY_FIXUP().  Second part
   1266 	 * makes sure sb_lastrecord is up-to-date if we dropped
   1267 	 * part of the last record.
   1268 	 */
   1269 	m = sb->sb_mb;
   1270 	if (m == NULL) {
   1271 		sb->sb_mbtail = NULL;
   1272 		sb->sb_lastrecord = NULL;
   1273 	} else if (m->m_nextpkt == NULL)
   1274 		sb->sb_lastrecord = m;
   1275 }
   1276 
   1277 /*
   1278  * Drop a record off the front of a sockbuf
   1279  * and move the next record to the front.
   1280  */
   1281 void
   1282 sbdroprecord(struct sockbuf *sb)
   1283 {
   1284 	struct mbuf	*m, *mn;
   1285 
   1286 	KASSERT(solocked(sb->sb_so));
   1287 
   1288 	m = sb->sb_mb;
   1289 	if (m) {
   1290 		sb->sb_mb = m->m_nextpkt;
   1291 		do {
   1292 			sbfree(sb, m);
   1293 			MFREE(m, mn);
   1294 		} while ((m = mn) != NULL);
   1295 	}
   1296 	SB_EMPTY_FIXUP(sb);
   1297 }
   1298 
   1299 /*
   1300  * Create a "control" mbuf containing the specified data
   1301  * with the specified type for presentation on a socket buffer.
   1302  */
   1303 struct mbuf *
   1304 sbcreatecontrol(void *p, int size, int type, int level)
   1305 {
   1306 	struct cmsghdr	*cp;
   1307 	struct mbuf	*m;
   1308 
   1309 	if (CMSG_SPACE(size) > MCLBYTES) {
   1310 		printf("sbcreatecontrol: message too large %d\n", size);
   1311 		return NULL;
   1312 	}
   1313 
   1314 	if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
   1315 		return ((struct mbuf *) NULL);
   1316 	if (CMSG_SPACE(size) > MLEN) {
   1317 		MCLGET(m, M_DONTWAIT);
   1318 		if ((m->m_flags & M_EXT) == 0) {
   1319 			m_free(m);
   1320 			return NULL;
   1321 		}
   1322 	}
   1323 	cp = mtod(m, struct cmsghdr *);
   1324 	memcpy(CMSG_DATA(cp), p, size);
   1325 	m->m_len = CMSG_SPACE(size);
   1326 	cp->cmsg_len = CMSG_LEN(size);
   1327 	cp->cmsg_level = level;
   1328 	cp->cmsg_type = type;
   1329 	return (m);
   1330 }
   1331 
   1332 void
   1333 solockretry(struct socket *so, kmutex_t *lock)
   1334 {
   1335 
   1336 	while (lock != so->so_lock) {
   1337 		mutex_exit(lock);
   1338 		lock = so->so_lock;
   1339 		mutex_enter(lock);
   1340 	}
   1341 }
   1342 
   1343 bool
   1344 solocked(struct socket *so)
   1345 {
   1346 
   1347 	return mutex_owned(so->so_lock);
   1348 }
   1349 
   1350 bool
   1351 solocked2(struct socket *so1, struct socket *so2)
   1352 {
   1353 	kmutex_t *lock;
   1354 
   1355 	lock = so1->so_lock;
   1356 	if (lock != so2->so_lock)
   1357 		return false;
   1358 	return mutex_owned(lock);
   1359 }
   1360 
   1361 /*
   1362  * Assign a default lock to a new socket.  For PRU_ATTACH, and done by
   1363  * protocols that do not have special locking requirements.
   1364  */
   1365 void
   1366 sosetlock(struct socket *so)
   1367 {
   1368 	kmutex_t *lock;
   1369 
   1370 	if (so->so_lock == NULL) {
   1371 		lock = softnet_lock;
   1372 		so->so_lock = lock;
   1373 		mutex_obj_hold(lock);
   1374 		mutex_enter(lock);
   1375 	}
   1376 
   1377 	/* In all cases, lock must be held on return from PRU_ATTACH. */
   1378 	KASSERT(solocked(so));
   1379 }
   1380 
   1381 /*
   1382  * Set lock on sockbuf sb; sleep if lock is already held.
   1383  * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
   1384  * Returns error without lock if sleep is interrupted.
   1385  */
   1386 int
   1387 sblock(struct sockbuf *sb, int wf)
   1388 {
   1389 	struct socket *so;
   1390 	kmutex_t *lock;
   1391 	int error;
   1392 
   1393 	KASSERT(solocked(sb->sb_so));
   1394 
   1395 	for (;;) {
   1396 		if (__predict_true((sb->sb_flags & SB_LOCK) == 0)) {
   1397 			sb->sb_flags |= SB_LOCK;
   1398 			return 0;
   1399 		}
   1400 		if (wf != M_WAITOK)
   1401 			return EWOULDBLOCK;
   1402 		so = sb->sb_so;
   1403 		lock = so->so_lock;
   1404 		if ((sb->sb_flags & SB_NOINTR) != 0) {
   1405 			cv_wait(&so->so_cv, lock);
   1406 			error = 0;
   1407 		} else
   1408 			error = cv_wait_sig(&so->so_cv, lock);
   1409 		if (__predict_false(lock != so->so_lock))
   1410 			solockretry(so, lock);
   1411 		if (error != 0)
   1412 			return error;
   1413 	}
   1414 }
   1415 
   1416 void
   1417 sbunlock(struct sockbuf *sb)
   1418 {
   1419 	struct socket *so;
   1420 
   1421 	so = sb->sb_so;
   1422 
   1423 	KASSERT(solocked(so));
   1424 	KASSERT((sb->sb_flags & SB_LOCK) != 0);
   1425 
   1426 	sb->sb_flags &= ~SB_LOCK;
   1427 	cv_broadcast(&so->so_cv);
   1428 }
   1429 
   1430 int
   1431 sowait(struct socket *so, int timo)
   1432 {
   1433 	kmutex_t *lock;
   1434 	int error;
   1435 
   1436 	KASSERT(solocked(so));
   1437 
   1438 	lock = so->so_lock;
   1439 	error = cv_timedwait_sig(&so->so_cv, lock, timo);
   1440 	if (__predict_false(lock != so->so_lock))
   1441 		solockretry(so, lock);
   1442 	return error;
   1443 }
   1444