Home | History | Annotate | Line # | Download | only in kern
uipc_socket2.c revision 1.105
      1 /*	$NetBSD: uipc_socket2.c,v 1.105 2009/12/30 18:33:53 elad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26  * POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 /*
     30  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     31  *	The Regents of the University of California.  All rights reserved.
     32  *
     33  * Redistribution and use in source and binary forms, with or without
     34  * modification, are permitted provided that the following conditions
     35  * are met:
     36  * 1. Redistributions of source code must retain the above copyright
     37  *    notice, this list of conditions and the following disclaimer.
     38  * 2. Redistributions in binary form must reproduce the above copyright
     39  *    notice, this list of conditions and the following disclaimer in the
     40  *    documentation and/or other materials provided with the distribution.
     41  * 3. Neither the name of the University nor the names of its contributors
     42  *    may be used to endorse or promote products derived from this software
     43  *    without specific prior written permission.
     44  *
     45  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     46  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     47  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     48  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     49  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     50  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     51  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     52  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     53  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     54  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     55  * SUCH DAMAGE.
     56  *
     57  *	@(#)uipc_socket2.c	8.2 (Berkeley) 2/14/95
     58  */
     59 
     60 #include <sys/cdefs.h>
     61 __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.105 2009/12/30 18:33:53 elad Exp $");
     62 
     63 #include "opt_mbuftrace.h"
     64 #include "opt_sb_max.h"
     65 
     66 #include <sys/param.h>
     67 #include <sys/systm.h>
     68 #include <sys/proc.h>
     69 #include <sys/file.h>
     70 #include <sys/buf.h>
     71 #include <sys/malloc.h>
     72 #include <sys/mbuf.h>
     73 #include <sys/protosw.h>
     74 #include <sys/domain.h>
     75 #include <sys/poll.h>
     76 #include <sys/socket.h>
     77 #include <sys/socketvar.h>
     78 #include <sys/signalvar.h>
     79 #include <sys/kauth.h>
     80 #include <sys/pool.h>
     81 #include <sys/uidinfo.h>
     82 
     83 /*
     84  * Primitive routines for operating on sockets and socket buffers.
     85  *
     86  * Locking rules and assumptions:
     87  *
     88  * o socket::so_lock can change on the fly.  The low level routines used
     89  *   to lock sockets are aware of this.  When so_lock is acquired, the
     90  *   routine locking must check to see if so_lock still points to the
     91  *   lock that was acquired.  If so_lock has changed in the meantime, the
     92  *   now irellevant lock that was acquired must be dropped and the lock
     93  *   operation retried.  Although not proven here, this is completely safe
     94  *   on a multiprocessor system, even with relaxed memory ordering, given
     95  *   the next two rules:
     96  *
     97  * o In order to mutate so_lock, the lock pointed to by the current value
     98  *   of so_lock must be held: i.e., the socket must be held locked by the
     99  *   changing thread.  The thread must issue membar_exit() to prevent
    100  *   memory accesses being reordered, and can set so_lock to the desired
    101  *   value.  If the lock pointed to by the new value of so_lock is not
    102  *   held by the changing thread, the socket must then be considered
    103  *   unlocked.
    104  *
    105  * o If so_lock is mutated, and the previous lock referred to by so_lock
    106  *   could still be visible to other threads in the system (e.g. via file
    107  *   descriptor or protocol-internal reference), then the old lock must
    108  *   remain valid until the socket and/or protocol control block has been
    109  *   torn down.
    110  *
    111  * o If a socket has a non-NULL so_head value (i.e. is in the process of
    112  *   connecting), then locking the socket must also lock the socket pointed
    113  *   to by so_head: their lock pointers must match.
    114  *
    115  * o If a socket has connections in progress (so_q, so_q0 not empty) then
    116  *   locking the socket must also lock the sockets attached to both queues.
    117  *   Again, their lock pointers must match.
    118  *
    119  * o Beyond the initial lock assigment in socreate(), assigning locks to
    120  *   sockets is the responsibility of the individual protocols / protocol
    121  *   domains.
    122  */
    123 
    124 static pool_cache_t socket_cache;
    125 
    126 u_long	sb_max = SB_MAX;	/* maximum socket buffer size */
    127 static u_long sb_max_adj;	/* adjusted sb_max */
    128 
    129 /*
    130  * Procedures to manipulate state flags of socket
    131  * and do appropriate wakeups.  Normal sequence from the
    132  * active (originating) side is that soisconnecting() is
    133  * called during processing of connect() call,
    134  * resulting in an eventual call to soisconnected() if/when the
    135  * connection is established.  When the connection is torn down
    136  * soisdisconnecting() is called during processing of disconnect() call,
    137  * and soisdisconnected() is called when the connection to the peer
    138  * is totally severed.  The semantics of these routines are such that
    139  * connectionless protocols can call soisconnected() and soisdisconnected()
    140  * only, bypassing the in-progress calls when setting up a ``connection''
    141  * takes no time.
    142  *
    143  * From the passive side, a socket is created with
    144  * two queues of sockets: so_q0 for connections in progress
    145  * and so_q for connections already made and awaiting user acceptance.
    146  * As a protocol is preparing incoming connections, it creates a socket
    147  * structure queued on so_q0 by calling sonewconn().  When the connection
    148  * is established, soisconnected() is called, and transfers the
    149  * socket structure to so_q, making it available to accept().
    150  *
    151  * If a socket is closed with sockets on either
    152  * so_q0 or so_q, these sockets are dropped.
    153  *
    154  * If higher level protocols are implemented in
    155  * the kernel, the wakeups done here will sometimes
    156  * cause software-interrupt process scheduling.
    157  */
    158 
    159 void
    160 soisconnecting(struct socket *so)
    161 {
    162 
    163 	KASSERT(solocked(so));
    164 
    165 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
    166 	so->so_state |= SS_ISCONNECTING;
    167 }
    168 
    169 void
    170 soisconnected(struct socket *so)
    171 {
    172 	struct socket	*head;
    173 
    174 	head = so->so_head;
    175 
    176 	KASSERT(solocked(so));
    177 	KASSERT(head == NULL || solocked2(so, head));
    178 
    179 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
    180 	so->so_state |= SS_ISCONNECTED;
    181 	if (head && so->so_onq == &head->so_q0) {
    182 		if ((so->so_options & SO_ACCEPTFILTER) == 0) {
    183 			soqremque(so, 0);
    184 			soqinsque(head, so, 1);
    185 			sorwakeup(head);
    186 			cv_broadcast(&head->so_cv);
    187 		} else {
    188 			so->so_upcall =
    189 			    head->so_accf->so_accept_filter->accf_callback;
    190 			so->so_upcallarg = head->so_accf->so_accept_filter_arg;
    191 			so->so_rcv.sb_flags |= SB_UPCALL;
    192 			so->so_options &= ~SO_ACCEPTFILTER;
    193 			(*so->so_upcall)(so, so->so_upcallarg,
    194 					 POLLIN|POLLRDNORM, M_DONTWAIT);
    195 		}
    196 	} else {
    197 		cv_broadcast(&so->so_cv);
    198 		sorwakeup(so);
    199 		sowwakeup(so);
    200 	}
    201 }
    202 
    203 void
    204 soisdisconnecting(struct socket *so)
    205 {
    206 
    207 	KASSERT(solocked(so));
    208 
    209 	so->so_state &= ~SS_ISCONNECTING;
    210 	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
    211 	cv_broadcast(&so->so_cv);
    212 	sowwakeup(so);
    213 	sorwakeup(so);
    214 }
    215 
    216 void
    217 soisdisconnected(struct socket *so)
    218 {
    219 
    220 	KASSERT(solocked(so));
    221 
    222 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
    223 	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
    224 	cv_broadcast(&so->so_cv);
    225 	sowwakeup(so);
    226 	sorwakeup(so);
    227 }
    228 
    229 void
    230 soinit2(void)
    231 {
    232 
    233 	socket_cache = pool_cache_init(sizeof(struct socket), 0, 0, 0,
    234 	    "socket", NULL, IPL_SOFTNET, NULL, NULL, NULL);
    235 }
    236 
    237 /*
    238  * When an attempt at a new connection is noted on a socket
    239  * which accepts connections, sonewconn is called.  If the
    240  * connection is possible (subject to space constraints, etc.)
    241  * then we allocate a new structure, propoerly linked into the
    242  * data structure of the original socket, and return this.
    243  * Connstatus may be 0, SS_ISCONFIRMING, or SS_ISCONNECTED.
    244  */
    245 struct socket *
    246 sonewconn(struct socket *head, int connstatus)
    247 {
    248 	struct socket	*so;
    249 	int		soqueue, error;
    250 
    251 	KASSERT(connstatus == 0 || connstatus == SS_ISCONFIRMING ||
    252 	    connstatus == SS_ISCONNECTED);
    253 	KASSERT(solocked(head));
    254 
    255 	if ((head->so_options & SO_ACCEPTFILTER) != 0)
    256 		connstatus = 0;
    257 	soqueue = connstatus ? 1 : 0;
    258 	if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
    259 		return NULL;
    260 	so = soget(false);
    261 	if (so == NULL)
    262 		return NULL;
    263 	mutex_obj_hold(head->so_lock);
    264 	so->so_lock = head->so_lock;
    265 	so->so_type = head->so_type;
    266 	so->so_options = head->so_options &~ SO_ACCEPTCONN;
    267 	so->so_linger = head->so_linger;
    268 	so->so_state = head->so_state | SS_NOFDREF;
    269 	so->so_nbio = head->so_nbio;
    270 	so->so_proto = head->so_proto;
    271 	so->so_timeo = head->so_timeo;
    272 	so->so_pgid = head->so_pgid;
    273 	so->so_send = head->so_send;
    274 	so->so_receive = head->so_receive;
    275 	so->so_uidinfo = head->so_uidinfo;
    276 	so->so_egid = head->so_egid;
    277 	so->so_cpid = head->so_cpid;
    278 #ifdef MBUFTRACE
    279 	so->so_mowner = head->so_mowner;
    280 	so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
    281 	so->so_snd.sb_mowner = head->so_snd.sb_mowner;
    282 #endif
    283 	if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat) != 0)
    284 		goto out;
    285 	so->so_snd.sb_lowat = head->so_snd.sb_lowat;
    286 	so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
    287 	so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
    288 	so->so_snd.sb_timeo = head->so_snd.sb_timeo;
    289 	so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE;
    290 	so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE;
    291 	soqinsque(head, so, soqueue);
    292 	error = (*so->so_proto->pr_usrreq)(so, PRU_ATTACH, NULL, NULL,
    293 	    NULL, NULL);
    294 	KASSERT(solocked(so));
    295 	if (error != 0) {
    296 		(void) soqremque(so, soqueue);
    297 out:
    298 		/*
    299 		 * Remove acccept filter if one is present.
    300 		 * XXX Is this really needed?
    301 		 */
    302 		if (so->so_accf != NULL)
    303 			(void)accept_filt_clear(so);
    304 		soput(so);
    305 		return NULL;
    306 	}
    307 	if (connstatus) {
    308 		sorwakeup(head);
    309 		cv_broadcast(&head->so_cv);
    310 		so->so_state |= connstatus;
    311 	}
    312 	return so;
    313 }
    314 
    315 struct socket *
    316 soget(bool waitok)
    317 {
    318 	struct socket *so;
    319 
    320 	so = pool_cache_get(socket_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
    321 	if (__predict_false(so == NULL))
    322 		return (NULL);
    323 	memset(so, 0, sizeof(*so));
    324 	TAILQ_INIT(&so->so_q0);
    325 	TAILQ_INIT(&so->so_q);
    326 	cv_init(&so->so_cv, "socket");
    327 	cv_init(&so->so_rcv.sb_cv, "netio");
    328 	cv_init(&so->so_snd.sb_cv, "netio");
    329 	selinit(&so->so_rcv.sb_sel);
    330 	selinit(&so->so_snd.sb_sel);
    331 	so->so_rcv.sb_so = so;
    332 	so->so_snd.sb_so = so;
    333 	return so;
    334 }
    335 
    336 void
    337 soput(struct socket *so)
    338 {
    339 
    340 	KASSERT(!cv_has_waiters(&so->so_cv));
    341 	KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
    342 	KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
    343 	seldestroy(&so->so_rcv.sb_sel);
    344 	seldestroy(&so->so_snd.sb_sel);
    345 	mutex_obj_free(so->so_lock);
    346 	cv_destroy(&so->so_cv);
    347 	cv_destroy(&so->so_rcv.sb_cv);
    348 	cv_destroy(&so->so_snd.sb_cv);
    349 	pool_cache_put(socket_cache, so);
    350 }
    351 
    352 void
    353 soqinsque(struct socket *head, struct socket *so, int q)
    354 {
    355 
    356 	KASSERT(solocked2(head, so));
    357 
    358 #ifdef DIAGNOSTIC
    359 	if (so->so_onq != NULL)
    360 		panic("soqinsque");
    361 #endif
    362 
    363 	so->so_head = head;
    364 	if (q == 0) {
    365 		head->so_q0len++;
    366 		so->so_onq = &head->so_q0;
    367 	} else {
    368 		head->so_qlen++;
    369 		so->so_onq = &head->so_q;
    370 	}
    371 	TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
    372 }
    373 
    374 int
    375 soqremque(struct socket *so, int q)
    376 {
    377 	struct socket	*head;
    378 
    379 	head = so->so_head;
    380 
    381 	KASSERT(solocked(so));
    382 	if (q == 0) {
    383 		if (so->so_onq != &head->so_q0)
    384 			return (0);
    385 		head->so_q0len--;
    386 	} else {
    387 		if (so->so_onq != &head->so_q)
    388 			return (0);
    389 		head->so_qlen--;
    390 	}
    391 	KASSERT(solocked2(so, head));
    392 	TAILQ_REMOVE(so->so_onq, so, so_qe);
    393 	so->so_onq = NULL;
    394 	so->so_head = NULL;
    395 	return (1);
    396 }
    397 
    398 /*
    399  * Socantsendmore indicates that no more data will be sent on the
    400  * socket; it would normally be applied to a socket when the user
    401  * informs the system that no more data is to be sent, by the protocol
    402  * code (in case PRU_SHUTDOWN).  Socantrcvmore indicates that no more data
    403  * will be received, and will normally be applied to the socket by a
    404  * protocol when it detects that the peer will send no more data.
    405  * Data queued for reading in the socket may yet be read.
    406  */
    407 
    408 void
    409 socantsendmore(struct socket *so)
    410 {
    411 
    412 	KASSERT(solocked(so));
    413 
    414 	so->so_state |= SS_CANTSENDMORE;
    415 	sowwakeup(so);
    416 }
    417 
    418 void
    419 socantrcvmore(struct socket *so)
    420 {
    421 
    422 	KASSERT(solocked(so));
    423 
    424 	so->so_state |= SS_CANTRCVMORE;
    425 	sorwakeup(so);
    426 }
    427 
    428 /*
    429  * Wait for data to arrive at/drain from a socket buffer.
    430  */
    431 int
    432 sbwait(struct sockbuf *sb)
    433 {
    434 	struct socket *so;
    435 	kmutex_t *lock;
    436 	int error;
    437 
    438 	so = sb->sb_so;
    439 
    440 	KASSERT(solocked(so));
    441 
    442 	sb->sb_flags |= SB_NOTIFY;
    443 	lock = so->so_lock;
    444 	if ((sb->sb_flags & SB_NOINTR) != 0)
    445 		error = cv_timedwait(&sb->sb_cv, lock, sb->sb_timeo);
    446 	else
    447 		error = cv_timedwait_sig(&sb->sb_cv, lock, sb->sb_timeo);
    448 	if (__predict_false(lock != so->so_lock))
    449 		solockretry(so, lock);
    450 	return error;
    451 }
    452 
    453 /*
    454  * Wakeup processes waiting on a socket buffer.
    455  * Do asynchronous notification via SIGIO
    456  * if the socket buffer has the SB_ASYNC flag set.
    457  */
    458 void
    459 sowakeup(struct socket *so, struct sockbuf *sb, int code)
    460 {
    461 	int band;
    462 
    463 	KASSERT(solocked(so));
    464 	KASSERT(sb->sb_so == so);
    465 
    466 	if (code == POLL_IN)
    467 		band = POLLIN|POLLRDNORM;
    468 	else
    469 		band = POLLOUT|POLLWRNORM;
    470 	sb->sb_flags &= ~SB_NOTIFY;
    471 	selnotify(&sb->sb_sel, band, NOTE_SUBMIT);
    472 	cv_broadcast(&sb->sb_cv);
    473 	if (sb->sb_flags & SB_ASYNC)
    474 		fownsignal(so->so_pgid, SIGIO, code, band, so);
    475 	if (sb->sb_flags & SB_UPCALL)
    476 		(*so->so_upcall)(so, so->so_upcallarg, band, M_DONTWAIT);
    477 }
    478 
    479 /*
    480  * Reset a socket's lock pointer.  Wake all threads waiting on the
    481  * socket's condition variables so that they can restart their waits
    482  * using the new lock.  The existing lock must be held.
    483  */
    484 void
    485 solockreset(struct socket *so, kmutex_t *lock)
    486 {
    487 
    488 	KASSERT(solocked(so));
    489 
    490 	so->so_lock = lock;
    491 	cv_broadcast(&so->so_snd.sb_cv);
    492 	cv_broadcast(&so->so_rcv.sb_cv);
    493 	cv_broadcast(&so->so_cv);
    494 }
    495 
    496 /*
    497  * Socket buffer (struct sockbuf) utility routines.
    498  *
    499  * Each socket contains two socket buffers: one for sending data and
    500  * one for receiving data.  Each buffer contains a queue of mbufs,
    501  * information about the number of mbufs and amount of data in the
    502  * queue, and other fields allowing poll() statements and notification
    503  * on data availability to be implemented.
    504  *
    505  * Data stored in a socket buffer is maintained as a list of records.
    506  * Each record is a list of mbufs chained together with the m_next
    507  * field.  Records are chained together with the m_nextpkt field. The upper
    508  * level routine soreceive() expects the following conventions to be
    509  * observed when placing information in the receive buffer:
    510  *
    511  * 1. If the protocol requires each message be preceded by the sender's
    512  *    name, then a record containing that name must be present before
    513  *    any associated data (mbuf's must be of type MT_SONAME).
    514  * 2. If the protocol supports the exchange of ``access rights'' (really
    515  *    just additional data associated with the message), and there are
    516  *    ``rights'' to be received, then a record containing this data
    517  *    should be present (mbuf's must be of type MT_CONTROL).
    518  * 3. If a name or rights record exists, then it must be followed by
    519  *    a data record, perhaps of zero length.
    520  *
    521  * Before using a new socket structure it is first necessary to reserve
    522  * buffer space to the socket, by calling sbreserve().  This should commit
    523  * some of the available buffer space in the system buffer pool for the
    524  * socket (currently, it does nothing but enforce limits).  The space
    525  * should be released by calling sbrelease() when the socket is destroyed.
    526  */
    527 
    528 int
    529 sb_max_set(u_long new_sbmax)
    530 {
    531 	int s;
    532 
    533 	if (new_sbmax < (16 * 1024))
    534 		return (EINVAL);
    535 
    536 	s = splsoftnet();
    537 	sb_max = new_sbmax;
    538 	sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
    539 	splx(s);
    540 
    541 	return (0);
    542 }
    543 
    544 int
    545 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
    546 {
    547 
    548 	KASSERT(so->so_lock == NULL || solocked(so));
    549 
    550 	/*
    551 	 * there's at least one application (a configure script of screen)
    552 	 * which expects a fifo is writable even if it has "some" bytes
    553 	 * in its buffer.
    554 	 * so we want to make sure (hiwat - lowat) >= (some bytes).
    555 	 *
    556 	 * PIPE_BUF here is an arbitrary value chosen as (some bytes) above.
    557 	 * we expect it's large enough for such applications.
    558 	 */
    559 	u_long  lowat = MAX(sock_loan_thresh, MCLBYTES);
    560 	u_long  hiwat = lowat + PIPE_BUF;
    561 
    562 	if (sndcc < hiwat)
    563 		sndcc = hiwat;
    564 	if (sbreserve(&so->so_snd, sndcc, so) == 0)
    565 		goto bad;
    566 	if (sbreserve(&so->so_rcv, rcvcc, so) == 0)
    567 		goto bad2;
    568 	if (so->so_rcv.sb_lowat == 0)
    569 		so->so_rcv.sb_lowat = 1;
    570 	if (so->so_snd.sb_lowat == 0)
    571 		so->so_snd.sb_lowat = lowat;
    572 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
    573 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
    574 	return (0);
    575  bad2:
    576 	sbrelease(&so->so_snd, so);
    577  bad:
    578 	return (ENOBUFS);
    579 }
    580 
    581 /*
    582  * Allot mbufs to a sockbuf.
    583  * Attempt to scale mbmax so that mbcnt doesn't become limiting
    584  * if buffering efficiency is near the normal case.
    585  */
    586 int
    587 sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
    588 {
    589 	struct lwp *l = curlwp; /* XXX */
    590 	rlim_t maxcc;
    591 	struct uidinfo *uidinfo;
    592 
    593 	KASSERT(so->so_lock == NULL || solocked(so));
    594 	KASSERT(sb->sb_so == so);
    595 	KASSERT(sb_max_adj != 0);
    596 
    597 	if (cc == 0 || cc > sb_max_adj)
    598 		return (0);
    599 
    600 	maxcc = l->l_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur;
    601 
    602 	uidinfo = so->so_uidinfo;
    603 	if (!chgsbsize(uidinfo, &sb->sb_hiwat, cc, maxcc))
    604 		return 0;
    605 	sb->sb_mbmax = min(cc * 2, sb_max);
    606 	if (sb->sb_lowat > sb->sb_hiwat)
    607 		sb->sb_lowat = sb->sb_hiwat;
    608 	return (1);
    609 }
    610 
    611 /*
    612  * Free mbufs held by a socket, and reserved mbuf space.  We do not assert
    613  * that the socket is held locked here: see sorflush().
    614  */
    615 void
    616 sbrelease(struct sockbuf *sb, struct socket *so)
    617 {
    618 
    619 	KASSERT(sb->sb_so == so);
    620 
    621 	sbflush(sb);
    622 	(void)chgsbsize(so->so_uidinfo, &sb->sb_hiwat, 0, RLIM_INFINITY);
    623 	sb->sb_mbmax = 0;
    624 }
    625 
    626 /*
    627  * Routines to add and remove
    628  * data from an mbuf queue.
    629  *
    630  * The routines sbappend() or sbappendrecord() are normally called to
    631  * append new mbufs to a socket buffer, after checking that adequate
    632  * space is available, comparing the function sbspace() with the amount
    633  * of data to be added.  sbappendrecord() differs from sbappend() in
    634  * that data supplied is treated as the beginning of a new record.
    635  * To place a sender's address, optional access rights, and data in a
    636  * socket receive buffer, sbappendaddr() should be used.  To place
    637  * access rights and data in a socket receive buffer, sbappendrights()
    638  * should be used.  In either case, the new data begins a new record.
    639  * Note that unlike sbappend() and sbappendrecord(), these routines check
    640  * for the caller that there will be enough space to store the data.
    641  * Each fails if there is not enough space, or if it cannot find mbufs
    642  * to store additional information in.
    643  *
    644  * Reliable protocols may use the socket send buffer to hold data
    645  * awaiting acknowledgement.  Data is normally copied from a socket
    646  * send buffer in a protocol with m_copy for output to a peer,
    647  * and then removing the data from the socket buffer with sbdrop()
    648  * or sbdroprecord() when the data is acknowledged by the peer.
    649  */
    650 
    651 #ifdef SOCKBUF_DEBUG
    652 void
    653 sblastrecordchk(struct sockbuf *sb, const char *where)
    654 {
    655 	struct mbuf *m = sb->sb_mb;
    656 
    657 	KASSERT(solocked(sb->sb_so));
    658 
    659 	while (m && m->m_nextpkt)
    660 		m = m->m_nextpkt;
    661 
    662 	if (m != sb->sb_lastrecord) {
    663 		printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
    664 		    sb->sb_mb, sb->sb_lastrecord, m);
    665 		printf("packet chain:\n");
    666 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
    667 			printf("\t%p\n", m);
    668 		panic("sblastrecordchk from %s", where);
    669 	}
    670 }
    671 
    672 void
    673 sblastmbufchk(struct sockbuf *sb, const char *where)
    674 {
    675 	struct mbuf *m = sb->sb_mb;
    676 	struct mbuf *n;
    677 
    678 	KASSERT(solocked(sb->sb_so));
    679 
    680 	while (m && m->m_nextpkt)
    681 		m = m->m_nextpkt;
    682 
    683 	while (m && m->m_next)
    684 		m = m->m_next;
    685 
    686 	if (m != sb->sb_mbtail) {
    687 		printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
    688 		    sb->sb_mb, sb->sb_mbtail, m);
    689 		printf("packet tree:\n");
    690 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
    691 			printf("\t");
    692 			for (n = m; n != NULL; n = n->m_next)
    693 				printf("%p ", n);
    694 			printf("\n");
    695 		}
    696 		panic("sblastmbufchk from %s", where);
    697 	}
    698 }
    699 #endif /* SOCKBUF_DEBUG */
    700 
    701 /*
    702  * Link a chain of records onto a socket buffer
    703  */
    704 #define	SBLINKRECORDCHAIN(sb, m0, mlast)				\
    705 do {									\
    706 	if ((sb)->sb_lastrecord != NULL)				\
    707 		(sb)->sb_lastrecord->m_nextpkt = (m0);			\
    708 	else								\
    709 		(sb)->sb_mb = (m0);					\
    710 	(sb)->sb_lastrecord = (mlast);					\
    711 } while (/*CONSTCOND*/0)
    712 
    713 
    714 #define	SBLINKRECORD(sb, m0)						\
    715     SBLINKRECORDCHAIN(sb, m0, m0)
    716 
    717 /*
    718  * Append mbuf chain m to the last record in the
    719  * socket buffer sb.  The additional space associated
    720  * the mbuf chain is recorded in sb.  Empty mbufs are
    721  * discarded and mbufs are compacted where possible.
    722  */
    723 void
    724 sbappend(struct sockbuf *sb, struct mbuf *m)
    725 {
    726 	struct mbuf	*n;
    727 
    728 	KASSERT(solocked(sb->sb_so));
    729 
    730 	if (m == 0)
    731 		return;
    732 
    733 #ifdef MBUFTRACE
    734 	m_claimm(m, sb->sb_mowner);
    735 #endif
    736 
    737 	SBLASTRECORDCHK(sb, "sbappend 1");
    738 
    739 	if ((n = sb->sb_lastrecord) != NULL) {
    740 		/*
    741 		 * XXX Would like to simply use sb_mbtail here, but
    742 		 * XXX I need to verify that I won't miss an EOR that
    743 		 * XXX way.
    744 		 */
    745 		do {
    746 			if (n->m_flags & M_EOR) {
    747 				sbappendrecord(sb, m); /* XXXXXX!!!! */
    748 				return;
    749 			}
    750 		} while (n->m_next && (n = n->m_next));
    751 	} else {
    752 		/*
    753 		 * If this is the first record in the socket buffer, it's
    754 		 * also the last record.
    755 		 */
    756 		sb->sb_lastrecord = m;
    757 	}
    758 	sbcompress(sb, m, n);
    759 	SBLASTRECORDCHK(sb, "sbappend 2");
    760 }
    761 
    762 /*
    763  * This version of sbappend() should only be used when the caller
    764  * absolutely knows that there will never be more than one record
    765  * in the socket buffer, that is, a stream protocol (such as TCP).
    766  */
    767 void
    768 sbappendstream(struct sockbuf *sb, struct mbuf *m)
    769 {
    770 
    771 	KASSERT(solocked(sb->sb_so));
    772 	KDASSERT(m->m_nextpkt == NULL);
    773 	KASSERT(sb->sb_mb == sb->sb_lastrecord);
    774 
    775 	SBLASTMBUFCHK(sb, __func__);
    776 
    777 #ifdef MBUFTRACE
    778 	m_claimm(m, sb->sb_mowner);
    779 #endif
    780 
    781 	sbcompress(sb, m, sb->sb_mbtail);
    782 
    783 	sb->sb_lastrecord = sb->sb_mb;
    784 	SBLASTRECORDCHK(sb, __func__);
    785 }
    786 
    787 #ifdef SOCKBUF_DEBUG
    788 void
    789 sbcheck(struct sockbuf *sb)
    790 {
    791 	struct mbuf	*m, *m2;
    792 	u_long		len, mbcnt;
    793 
    794 	KASSERT(solocked(sb->sb_so));
    795 
    796 	len = 0;
    797 	mbcnt = 0;
    798 	for (m = sb->sb_mb; m; m = m->m_nextpkt) {
    799 		for (m2 = m; m2 != NULL; m2 = m2->m_next) {
    800 			len += m2->m_len;
    801 			mbcnt += MSIZE;
    802 			if (m2->m_flags & M_EXT)
    803 				mbcnt += m2->m_ext.ext_size;
    804 			if (m2->m_nextpkt != NULL)
    805 				panic("sbcheck nextpkt");
    806 		}
    807 	}
    808 	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
    809 		printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
    810 		    mbcnt, sb->sb_mbcnt);
    811 		panic("sbcheck");
    812 	}
    813 }
    814 #endif
    815 
    816 /*
    817  * As above, except the mbuf chain
    818  * begins a new record.
    819  */
    820 void
    821 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
    822 {
    823 	struct mbuf	*m;
    824 
    825 	KASSERT(solocked(sb->sb_so));
    826 
    827 	if (m0 == 0)
    828 		return;
    829 
    830 #ifdef MBUFTRACE
    831 	m_claimm(m0, sb->sb_mowner);
    832 #endif
    833 	/*
    834 	 * Put the first mbuf on the queue.
    835 	 * Note this permits zero length records.
    836 	 */
    837 	sballoc(sb, m0);
    838 	SBLASTRECORDCHK(sb, "sbappendrecord 1");
    839 	SBLINKRECORD(sb, m0);
    840 	m = m0->m_next;
    841 	m0->m_next = 0;
    842 	if (m && (m0->m_flags & M_EOR)) {
    843 		m0->m_flags &= ~M_EOR;
    844 		m->m_flags |= M_EOR;
    845 	}
    846 	sbcompress(sb, m, m0);
    847 	SBLASTRECORDCHK(sb, "sbappendrecord 2");
    848 }
    849 
    850 /*
    851  * As above except that OOB data
    852  * is inserted at the beginning of the sockbuf,
    853  * but after any other OOB data.
    854  */
    855 void
    856 sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
    857 {
    858 	struct mbuf	*m, **mp;
    859 
    860 	KASSERT(solocked(sb->sb_so));
    861 
    862 	if (m0 == 0)
    863 		return;
    864 
    865 	SBLASTRECORDCHK(sb, "sbinsertoob 1");
    866 
    867 	for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
    868 	    again:
    869 		switch (m->m_type) {
    870 
    871 		case MT_OOBDATA:
    872 			continue;		/* WANT next train */
    873 
    874 		case MT_CONTROL:
    875 			if ((m = m->m_next) != NULL)
    876 				goto again;	/* inspect THIS train further */
    877 		}
    878 		break;
    879 	}
    880 	/*
    881 	 * Put the first mbuf on the queue.
    882 	 * Note this permits zero length records.
    883 	 */
    884 	sballoc(sb, m0);
    885 	m0->m_nextpkt = *mp;
    886 	if (*mp == NULL) {
    887 		/* m0 is actually the new tail */
    888 		sb->sb_lastrecord = m0;
    889 	}
    890 	*mp = m0;
    891 	m = m0->m_next;
    892 	m0->m_next = 0;
    893 	if (m && (m0->m_flags & M_EOR)) {
    894 		m0->m_flags &= ~M_EOR;
    895 		m->m_flags |= M_EOR;
    896 	}
    897 	sbcompress(sb, m, m0);
    898 	SBLASTRECORDCHK(sb, "sbinsertoob 2");
    899 }
    900 
    901 /*
    902  * Append address and data, and optionally, control (ancillary) data
    903  * to the receive queue of a socket.  If present,
    904  * m0 must include a packet header with total length.
    905  * Returns 0 if no space in sockbuf or insufficient mbufs.
    906  */
    907 int
    908 sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0,
    909 	struct mbuf *control)
    910 {
    911 	struct mbuf	*m, *n, *nlast;
    912 	int		space, len;
    913 
    914 	KASSERT(solocked(sb->sb_so));
    915 
    916 	space = asa->sa_len;
    917 
    918 	if (m0 != NULL) {
    919 		if ((m0->m_flags & M_PKTHDR) == 0)
    920 			panic("sbappendaddr");
    921 		space += m0->m_pkthdr.len;
    922 #ifdef MBUFTRACE
    923 		m_claimm(m0, sb->sb_mowner);
    924 #endif
    925 	}
    926 	for (n = control; n; n = n->m_next) {
    927 		space += n->m_len;
    928 		MCLAIM(n, sb->sb_mowner);
    929 		if (n->m_next == 0)	/* keep pointer to last control buf */
    930 			break;
    931 	}
    932 	if (space > sbspace(sb))
    933 		return (0);
    934 	MGET(m, M_DONTWAIT, MT_SONAME);
    935 	if (m == 0)
    936 		return (0);
    937 	MCLAIM(m, sb->sb_mowner);
    938 	/*
    939 	 * XXX avoid 'comparison always true' warning which isn't easily
    940 	 * avoided.
    941 	 */
    942 	len = asa->sa_len;
    943 	if (len > MLEN) {
    944 		MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
    945 		if ((m->m_flags & M_EXT) == 0) {
    946 			m_free(m);
    947 			return (0);
    948 		}
    949 	}
    950 	m->m_len = asa->sa_len;
    951 	memcpy(mtod(m, void *), asa, asa->sa_len);
    952 	if (n)
    953 		n->m_next = m0;		/* concatenate data to control */
    954 	else
    955 		control = m0;
    956 	m->m_next = control;
    957 
    958 	SBLASTRECORDCHK(sb, "sbappendaddr 1");
    959 
    960 	for (n = m; n->m_next != NULL; n = n->m_next)
    961 		sballoc(sb, n);
    962 	sballoc(sb, n);
    963 	nlast = n;
    964 	SBLINKRECORD(sb, m);
    965 
    966 	sb->sb_mbtail = nlast;
    967 	SBLASTMBUFCHK(sb, "sbappendaddr");
    968 	SBLASTRECORDCHK(sb, "sbappendaddr 2");
    969 
    970 	return (1);
    971 }
    972 
    973 /*
    974  * Helper for sbappendchainaddr: prepend a struct sockaddr* to
    975  * an mbuf chain.
    976  */
    977 static inline struct mbuf *
    978 m_prepend_sockaddr(struct sockbuf *sb, struct mbuf *m0,
    979 		   const struct sockaddr *asa)
    980 {
    981 	struct mbuf *m;
    982 	const int salen = asa->sa_len;
    983 
    984 	KASSERT(solocked(sb->sb_so));
    985 
    986 	/* only the first in each chain need be a pkthdr */
    987 	MGETHDR(m, M_DONTWAIT, MT_SONAME);
    988 	if (m == 0)
    989 		return (0);
    990 	MCLAIM(m, sb->sb_mowner);
    991 #ifdef notyet
    992 	if (salen > MHLEN) {
    993 		MEXTMALLOC(m, salen, M_NOWAIT);
    994 		if ((m->m_flags & M_EXT) == 0) {
    995 			m_free(m);
    996 			return (0);
    997 		}
    998 	}
    999 #else
   1000 	KASSERT(salen <= MHLEN);
   1001 #endif
   1002 	m->m_len = salen;
   1003 	memcpy(mtod(m, void *), asa, salen);
   1004 	m->m_next = m0;
   1005 	m->m_pkthdr.len = salen + m0->m_pkthdr.len;
   1006 
   1007 	return m;
   1008 }
   1009 
   1010 int
   1011 sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa,
   1012 		  struct mbuf *m0, int sbprio)
   1013 {
   1014 	int space;
   1015 	struct mbuf *m, *n, *n0, *nlast;
   1016 	int error;
   1017 
   1018 	KASSERT(solocked(sb->sb_so));
   1019 
   1020 	/*
   1021 	 * XXX sbprio reserved for encoding priority of this* request:
   1022 	 *  SB_PRIO_NONE --> honour normal sb limits
   1023 	 *  SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space,
   1024 	 *	take whole chain. Intended for large requests
   1025 	 *      that should be delivered atomically (all, or none).
   1026 	 * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow
   1027 	 *       over normal socket limits, for messages indicating
   1028 	 *       buffer overflow in earlier normal/lower-priority messages
   1029 	 * SB_PRIO_BESTEFFORT -->  ignore limits entirely.
   1030 	 *       Intended for  kernel-generated messages only.
   1031 	 *        Up to generator to avoid total mbuf resource exhaustion.
   1032 	 */
   1033 	(void)sbprio;
   1034 
   1035 	if (m0 && (m0->m_flags & M_PKTHDR) == 0)
   1036 		panic("sbappendaddrchain");
   1037 
   1038 	space = sbspace(sb);
   1039 
   1040 #ifdef notyet
   1041 	/*
   1042 	 * Enforce SB_PRIO_* limits as described above.
   1043 	 */
   1044 #endif
   1045 
   1046 	n0 = NULL;
   1047 	nlast = NULL;
   1048 	for (m = m0; m; m = m->m_nextpkt) {
   1049 		struct mbuf *np;
   1050 
   1051 #ifdef MBUFTRACE
   1052 		m_claimm(m, sb->sb_mowner);
   1053 #endif
   1054 
   1055 		/* Prepend sockaddr to this record (m) of input chain m0 */
   1056 	  	n = m_prepend_sockaddr(sb, m, asa);
   1057 		if (n == NULL) {
   1058 			error = ENOBUFS;
   1059 			goto bad;
   1060 		}
   1061 
   1062 		/* Append record (asa+m) to end of new chain n0 */
   1063 		if (n0 == NULL) {
   1064 			n0 = n;
   1065 		} else {
   1066 			nlast->m_nextpkt = n;
   1067 		}
   1068 		/* Keep track of last record on new chain */
   1069 		nlast = n;
   1070 
   1071 		for (np = n; np; np = np->m_next)
   1072 			sballoc(sb, np);
   1073 	}
   1074 
   1075 	SBLASTRECORDCHK(sb, "sbappendaddrchain 1");
   1076 
   1077 	/* Drop the entire chain of (asa+m) records onto the socket */
   1078 	SBLINKRECORDCHAIN(sb, n0, nlast);
   1079 
   1080 	SBLASTRECORDCHK(sb, "sbappendaddrchain 2");
   1081 
   1082 	for (m = nlast; m->m_next; m = m->m_next)
   1083 		;
   1084 	sb->sb_mbtail = m;
   1085 	SBLASTMBUFCHK(sb, "sbappendaddrchain");
   1086 
   1087 	return (1);
   1088 
   1089 bad:
   1090 	/*
   1091 	 * On error, free the prepended addreseses. For consistency
   1092 	 * with sbappendaddr(), leave it to our caller to free
   1093 	 * the input record chain passed to us as m0.
   1094 	 */
   1095 	while ((n = n0) != NULL) {
   1096 	  	struct mbuf *np;
   1097 
   1098 		/* Undo the sballoc() of this record */
   1099 		for (np = n; np; np = np->m_next)
   1100 			sbfree(sb, np);
   1101 
   1102 		n0 = n->m_nextpkt;	/* iterate at next prepended address */
   1103 		MFREE(n, np);		/* free prepended address (not data) */
   1104 	}
   1105 	return 0;
   1106 }
   1107 
   1108 
   1109 int
   1110 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
   1111 {
   1112 	struct mbuf	*m, *mlast, *n;
   1113 	int		space;
   1114 
   1115 	KASSERT(solocked(sb->sb_so));
   1116 
   1117 	space = 0;
   1118 	if (control == 0)
   1119 		panic("sbappendcontrol");
   1120 	for (m = control; ; m = m->m_next) {
   1121 		space += m->m_len;
   1122 		MCLAIM(m, sb->sb_mowner);
   1123 		if (m->m_next == 0)
   1124 			break;
   1125 	}
   1126 	n = m;			/* save pointer to last control buffer */
   1127 	for (m = m0; m; m = m->m_next) {
   1128 		MCLAIM(m, sb->sb_mowner);
   1129 		space += m->m_len;
   1130 	}
   1131 	if (space > sbspace(sb))
   1132 		return (0);
   1133 	n->m_next = m0;			/* concatenate data to control */
   1134 
   1135 	SBLASTRECORDCHK(sb, "sbappendcontrol 1");
   1136 
   1137 	for (m = control; m->m_next != NULL; m = m->m_next)
   1138 		sballoc(sb, m);
   1139 	sballoc(sb, m);
   1140 	mlast = m;
   1141 	SBLINKRECORD(sb, control);
   1142 
   1143 	sb->sb_mbtail = mlast;
   1144 	SBLASTMBUFCHK(sb, "sbappendcontrol");
   1145 	SBLASTRECORDCHK(sb, "sbappendcontrol 2");
   1146 
   1147 	return (1);
   1148 }
   1149 
   1150 /*
   1151  * Compress mbuf chain m into the socket
   1152  * buffer sb following mbuf n.  If n
   1153  * is null, the buffer is presumed empty.
   1154  */
   1155 void
   1156 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
   1157 {
   1158 	int		eor;
   1159 	struct mbuf	*o;
   1160 
   1161 	KASSERT(solocked(sb->sb_so));
   1162 
   1163 	eor = 0;
   1164 	while (m) {
   1165 		eor |= m->m_flags & M_EOR;
   1166 		if (m->m_len == 0 &&
   1167 		    (eor == 0 ||
   1168 		     (((o = m->m_next) || (o = n)) &&
   1169 		      o->m_type == m->m_type))) {
   1170 			if (sb->sb_lastrecord == m)
   1171 				sb->sb_lastrecord = m->m_next;
   1172 			m = m_free(m);
   1173 			continue;
   1174 		}
   1175 		if (n && (n->m_flags & M_EOR) == 0 &&
   1176 		    /* M_TRAILINGSPACE() checks buffer writeability */
   1177 		    m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
   1178 		    m->m_len <= M_TRAILINGSPACE(n) &&
   1179 		    n->m_type == m->m_type) {
   1180 			memcpy(mtod(n, char *) + n->m_len, mtod(m, void *),
   1181 			    (unsigned)m->m_len);
   1182 			n->m_len += m->m_len;
   1183 			sb->sb_cc += m->m_len;
   1184 			m = m_free(m);
   1185 			continue;
   1186 		}
   1187 		if (n)
   1188 			n->m_next = m;
   1189 		else
   1190 			sb->sb_mb = m;
   1191 		sb->sb_mbtail = m;
   1192 		sballoc(sb, m);
   1193 		n = m;
   1194 		m->m_flags &= ~M_EOR;
   1195 		m = m->m_next;
   1196 		n->m_next = 0;
   1197 	}
   1198 	if (eor) {
   1199 		if (n)
   1200 			n->m_flags |= eor;
   1201 		else
   1202 			printf("semi-panic: sbcompress\n");
   1203 	}
   1204 	SBLASTMBUFCHK(sb, __func__);
   1205 }
   1206 
   1207 /*
   1208  * Free all mbufs in a sockbuf.
   1209  * Check that all resources are reclaimed.
   1210  */
   1211 void
   1212 sbflush(struct sockbuf *sb)
   1213 {
   1214 
   1215 	KASSERT(solocked(sb->sb_so));
   1216 	KASSERT((sb->sb_flags & SB_LOCK) == 0);
   1217 
   1218 	while (sb->sb_mbcnt)
   1219 		sbdrop(sb, (int)sb->sb_cc);
   1220 
   1221 	KASSERT(sb->sb_cc == 0);
   1222 	KASSERT(sb->sb_mb == NULL);
   1223 	KASSERT(sb->sb_mbtail == NULL);
   1224 	KASSERT(sb->sb_lastrecord == NULL);
   1225 }
   1226 
   1227 /*
   1228  * Drop data from (the front of) a sockbuf.
   1229  */
   1230 void
   1231 sbdrop(struct sockbuf *sb, int len)
   1232 {
   1233 	struct mbuf	*m, *mn, *next;
   1234 
   1235 	KASSERT(solocked(sb->sb_so));
   1236 
   1237 	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
   1238 	while (len > 0) {
   1239 		if (m == 0) {
   1240 			if (next == 0)
   1241 				panic("sbdrop");
   1242 			m = next;
   1243 			next = m->m_nextpkt;
   1244 			continue;
   1245 		}
   1246 		if (m->m_len > len) {
   1247 			m->m_len -= len;
   1248 			m->m_data += len;
   1249 			sb->sb_cc -= len;
   1250 			break;
   1251 		}
   1252 		len -= m->m_len;
   1253 		sbfree(sb, m);
   1254 		MFREE(m, mn);
   1255 		m = mn;
   1256 	}
   1257 	while (m && m->m_len == 0) {
   1258 		sbfree(sb, m);
   1259 		MFREE(m, mn);
   1260 		m = mn;
   1261 	}
   1262 	if (m) {
   1263 		sb->sb_mb = m;
   1264 		m->m_nextpkt = next;
   1265 	} else
   1266 		sb->sb_mb = next;
   1267 	/*
   1268 	 * First part is an inline SB_EMPTY_FIXUP().  Second part
   1269 	 * makes sure sb_lastrecord is up-to-date if we dropped
   1270 	 * part of the last record.
   1271 	 */
   1272 	m = sb->sb_mb;
   1273 	if (m == NULL) {
   1274 		sb->sb_mbtail = NULL;
   1275 		sb->sb_lastrecord = NULL;
   1276 	} else if (m->m_nextpkt == NULL)
   1277 		sb->sb_lastrecord = m;
   1278 }
   1279 
   1280 /*
   1281  * Drop a record off the front of a sockbuf
   1282  * and move the next record to the front.
   1283  */
   1284 void
   1285 sbdroprecord(struct sockbuf *sb)
   1286 {
   1287 	struct mbuf	*m, *mn;
   1288 
   1289 	KASSERT(solocked(sb->sb_so));
   1290 
   1291 	m = sb->sb_mb;
   1292 	if (m) {
   1293 		sb->sb_mb = m->m_nextpkt;
   1294 		do {
   1295 			sbfree(sb, m);
   1296 			MFREE(m, mn);
   1297 		} while ((m = mn) != NULL);
   1298 	}
   1299 	SB_EMPTY_FIXUP(sb);
   1300 }
   1301 
   1302 /*
   1303  * Create a "control" mbuf containing the specified data
   1304  * with the specified type for presentation on a socket buffer.
   1305  */
   1306 struct mbuf *
   1307 sbcreatecontrol(void *p, int size, int type, int level)
   1308 {
   1309 	struct cmsghdr	*cp;
   1310 	struct mbuf	*m;
   1311 
   1312 	if (CMSG_SPACE(size) > MCLBYTES) {
   1313 		printf("sbcreatecontrol: message too large %d\n", size);
   1314 		return NULL;
   1315 	}
   1316 
   1317 	if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
   1318 		return ((struct mbuf *) NULL);
   1319 	if (CMSG_SPACE(size) > MLEN) {
   1320 		MCLGET(m, M_DONTWAIT);
   1321 		if ((m->m_flags & M_EXT) == 0) {
   1322 			m_free(m);
   1323 			return NULL;
   1324 		}
   1325 	}
   1326 	cp = mtod(m, struct cmsghdr *);
   1327 	memcpy(CMSG_DATA(cp), p, size);
   1328 	m->m_len = CMSG_SPACE(size);
   1329 	cp->cmsg_len = CMSG_LEN(size);
   1330 	cp->cmsg_level = level;
   1331 	cp->cmsg_type = type;
   1332 	return (m);
   1333 }
   1334 
   1335 void
   1336 solockretry(struct socket *so, kmutex_t *lock)
   1337 {
   1338 
   1339 	while (lock != so->so_lock) {
   1340 		mutex_exit(lock);
   1341 		lock = so->so_lock;
   1342 		mutex_enter(lock);
   1343 	}
   1344 }
   1345 
   1346 bool
   1347 solocked(struct socket *so)
   1348 {
   1349 
   1350 	return mutex_owned(so->so_lock);
   1351 }
   1352 
   1353 bool
   1354 solocked2(struct socket *so1, struct socket *so2)
   1355 {
   1356 	kmutex_t *lock;
   1357 
   1358 	lock = so1->so_lock;
   1359 	if (lock != so2->so_lock)
   1360 		return false;
   1361 	return mutex_owned(lock);
   1362 }
   1363 
   1364 /*
   1365  * Assign a default lock to a new socket.  For PRU_ATTACH, and done by
   1366  * protocols that do not have special locking requirements.
   1367  */
   1368 void
   1369 sosetlock(struct socket *so)
   1370 {
   1371 	kmutex_t *lock;
   1372 
   1373 	if (so->so_lock == NULL) {
   1374 		lock = softnet_lock;
   1375 		so->so_lock = lock;
   1376 		mutex_obj_hold(lock);
   1377 		mutex_enter(lock);
   1378 	}
   1379 
   1380 	/* In all cases, lock must be held on return from PRU_ATTACH. */
   1381 	KASSERT(solocked(so));
   1382 }
   1383 
   1384 /*
   1385  * Set lock on sockbuf sb; sleep if lock is already held.
   1386  * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
   1387  * Returns error without lock if sleep is interrupted.
   1388  */
   1389 int
   1390 sblock(struct sockbuf *sb, int wf)
   1391 {
   1392 	struct socket *so;
   1393 	kmutex_t *lock;
   1394 	int error;
   1395 
   1396 	KASSERT(solocked(sb->sb_so));
   1397 
   1398 	for (;;) {
   1399 		if (__predict_true((sb->sb_flags & SB_LOCK) == 0)) {
   1400 			sb->sb_flags |= SB_LOCK;
   1401 			return 0;
   1402 		}
   1403 		if (wf != M_WAITOK)
   1404 			return EWOULDBLOCK;
   1405 		so = sb->sb_so;
   1406 		lock = so->so_lock;
   1407 		if ((sb->sb_flags & SB_NOINTR) != 0) {
   1408 			cv_wait(&so->so_cv, lock);
   1409 			error = 0;
   1410 		} else
   1411 			error = cv_wait_sig(&so->so_cv, lock);
   1412 		if (__predict_false(lock != so->so_lock))
   1413 			solockretry(so, lock);
   1414 		if (error != 0)
   1415 			return error;
   1416 	}
   1417 }
   1418 
   1419 void
   1420 sbunlock(struct sockbuf *sb)
   1421 {
   1422 	struct socket *so;
   1423 
   1424 	so = sb->sb_so;
   1425 
   1426 	KASSERT(solocked(so));
   1427 	KASSERT((sb->sb_flags & SB_LOCK) != 0);
   1428 
   1429 	sb->sb_flags &= ~SB_LOCK;
   1430 	cv_broadcast(&so->so_cv);
   1431 }
   1432 
   1433 int
   1434 sowait(struct socket *so, bool catch, int timo)
   1435 {
   1436 	kmutex_t *lock;
   1437 	int error;
   1438 
   1439 	KASSERT(solocked(so));
   1440 	KASSERT(catch || timo != 0);
   1441 
   1442 	lock = so->so_lock;
   1443 	if (catch)
   1444 		error = cv_timedwait_sig(&so->so_cv, lock, timo);
   1445 	else
   1446 		error = cv_timedwait(&so->so_cv, lock, timo);
   1447 	if (__predict_false(lock != so->so_lock))
   1448 		solockretry(so, lock);
   1449 	return error;
   1450 }
   1451