uipc_socket2.c revision 1.105 1 /* $NetBSD: uipc_socket2.c,v 1.105 2009/12/30 18:33:53 elad Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*
30 * Copyright (c) 1982, 1986, 1988, 1990, 1993
31 * The Regents of the University of California. All rights reserved.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 * 3. Neither the name of the University nor the names of its contributors
42 * may be used to endorse or promote products derived from this software
43 * without specific prior written permission.
44 *
45 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 * SUCH DAMAGE.
56 *
57 * @(#)uipc_socket2.c 8.2 (Berkeley) 2/14/95
58 */
59
60 #include <sys/cdefs.h>
61 __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.105 2009/12/30 18:33:53 elad Exp $");
62
63 #include "opt_mbuftrace.h"
64 #include "opt_sb_max.h"
65
66 #include <sys/param.h>
67 #include <sys/systm.h>
68 #include <sys/proc.h>
69 #include <sys/file.h>
70 #include <sys/buf.h>
71 #include <sys/malloc.h>
72 #include <sys/mbuf.h>
73 #include <sys/protosw.h>
74 #include <sys/domain.h>
75 #include <sys/poll.h>
76 #include <sys/socket.h>
77 #include <sys/socketvar.h>
78 #include <sys/signalvar.h>
79 #include <sys/kauth.h>
80 #include <sys/pool.h>
81 #include <sys/uidinfo.h>
82
83 /*
84 * Primitive routines for operating on sockets and socket buffers.
85 *
86 * Locking rules and assumptions:
87 *
88 * o socket::so_lock can change on the fly. The low level routines used
89 * to lock sockets are aware of this. When so_lock is acquired, the
90 * routine locking must check to see if so_lock still points to the
91 * lock that was acquired. If so_lock has changed in the meantime, the
92 * now irellevant lock that was acquired must be dropped and the lock
93 * operation retried. Although not proven here, this is completely safe
94 * on a multiprocessor system, even with relaxed memory ordering, given
95 * the next two rules:
96 *
97 * o In order to mutate so_lock, the lock pointed to by the current value
98 * of so_lock must be held: i.e., the socket must be held locked by the
99 * changing thread. The thread must issue membar_exit() to prevent
100 * memory accesses being reordered, and can set so_lock to the desired
101 * value. If the lock pointed to by the new value of so_lock is not
102 * held by the changing thread, the socket must then be considered
103 * unlocked.
104 *
105 * o If so_lock is mutated, and the previous lock referred to by so_lock
106 * could still be visible to other threads in the system (e.g. via file
107 * descriptor or protocol-internal reference), then the old lock must
108 * remain valid until the socket and/or protocol control block has been
109 * torn down.
110 *
111 * o If a socket has a non-NULL so_head value (i.e. is in the process of
112 * connecting), then locking the socket must also lock the socket pointed
113 * to by so_head: their lock pointers must match.
114 *
115 * o If a socket has connections in progress (so_q, so_q0 not empty) then
116 * locking the socket must also lock the sockets attached to both queues.
117 * Again, their lock pointers must match.
118 *
119 * o Beyond the initial lock assigment in socreate(), assigning locks to
120 * sockets is the responsibility of the individual protocols / protocol
121 * domains.
122 */
123
124 static pool_cache_t socket_cache;
125
126 u_long sb_max = SB_MAX; /* maximum socket buffer size */
127 static u_long sb_max_adj; /* adjusted sb_max */
128
129 /*
130 * Procedures to manipulate state flags of socket
131 * and do appropriate wakeups. Normal sequence from the
132 * active (originating) side is that soisconnecting() is
133 * called during processing of connect() call,
134 * resulting in an eventual call to soisconnected() if/when the
135 * connection is established. When the connection is torn down
136 * soisdisconnecting() is called during processing of disconnect() call,
137 * and soisdisconnected() is called when the connection to the peer
138 * is totally severed. The semantics of these routines are such that
139 * connectionless protocols can call soisconnected() and soisdisconnected()
140 * only, bypassing the in-progress calls when setting up a ``connection''
141 * takes no time.
142 *
143 * From the passive side, a socket is created with
144 * two queues of sockets: so_q0 for connections in progress
145 * and so_q for connections already made and awaiting user acceptance.
146 * As a protocol is preparing incoming connections, it creates a socket
147 * structure queued on so_q0 by calling sonewconn(). When the connection
148 * is established, soisconnected() is called, and transfers the
149 * socket structure to so_q, making it available to accept().
150 *
151 * If a socket is closed with sockets on either
152 * so_q0 or so_q, these sockets are dropped.
153 *
154 * If higher level protocols are implemented in
155 * the kernel, the wakeups done here will sometimes
156 * cause software-interrupt process scheduling.
157 */
158
159 void
160 soisconnecting(struct socket *so)
161 {
162
163 KASSERT(solocked(so));
164
165 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
166 so->so_state |= SS_ISCONNECTING;
167 }
168
169 void
170 soisconnected(struct socket *so)
171 {
172 struct socket *head;
173
174 head = so->so_head;
175
176 KASSERT(solocked(so));
177 KASSERT(head == NULL || solocked2(so, head));
178
179 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
180 so->so_state |= SS_ISCONNECTED;
181 if (head && so->so_onq == &head->so_q0) {
182 if ((so->so_options & SO_ACCEPTFILTER) == 0) {
183 soqremque(so, 0);
184 soqinsque(head, so, 1);
185 sorwakeup(head);
186 cv_broadcast(&head->so_cv);
187 } else {
188 so->so_upcall =
189 head->so_accf->so_accept_filter->accf_callback;
190 so->so_upcallarg = head->so_accf->so_accept_filter_arg;
191 so->so_rcv.sb_flags |= SB_UPCALL;
192 so->so_options &= ~SO_ACCEPTFILTER;
193 (*so->so_upcall)(so, so->so_upcallarg,
194 POLLIN|POLLRDNORM, M_DONTWAIT);
195 }
196 } else {
197 cv_broadcast(&so->so_cv);
198 sorwakeup(so);
199 sowwakeup(so);
200 }
201 }
202
203 void
204 soisdisconnecting(struct socket *so)
205 {
206
207 KASSERT(solocked(so));
208
209 so->so_state &= ~SS_ISCONNECTING;
210 so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
211 cv_broadcast(&so->so_cv);
212 sowwakeup(so);
213 sorwakeup(so);
214 }
215
216 void
217 soisdisconnected(struct socket *so)
218 {
219
220 KASSERT(solocked(so));
221
222 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
223 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
224 cv_broadcast(&so->so_cv);
225 sowwakeup(so);
226 sorwakeup(so);
227 }
228
229 void
230 soinit2(void)
231 {
232
233 socket_cache = pool_cache_init(sizeof(struct socket), 0, 0, 0,
234 "socket", NULL, IPL_SOFTNET, NULL, NULL, NULL);
235 }
236
237 /*
238 * When an attempt at a new connection is noted on a socket
239 * which accepts connections, sonewconn is called. If the
240 * connection is possible (subject to space constraints, etc.)
241 * then we allocate a new structure, propoerly linked into the
242 * data structure of the original socket, and return this.
243 * Connstatus may be 0, SS_ISCONFIRMING, or SS_ISCONNECTED.
244 */
245 struct socket *
246 sonewconn(struct socket *head, int connstatus)
247 {
248 struct socket *so;
249 int soqueue, error;
250
251 KASSERT(connstatus == 0 || connstatus == SS_ISCONFIRMING ||
252 connstatus == SS_ISCONNECTED);
253 KASSERT(solocked(head));
254
255 if ((head->so_options & SO_ACCEPTFILTER) != 0)
256 connstatus = 0;
257 soqueue = connstatus ? 1 : 0;
258 if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
259 return NULL;
260 so = soget(false);
261 if (so == NULL)
262 return NULL;
263 mutex_obj_hold(head->so_lock);
264 so->so_lock = head->so_lock;
265 so->so_type = head->so_type;
266 so->so_options = head->so_options &~ SO_ACCEPTCONN;
267 so->so_linger = head->so_linger;
268 so->so_state = head->so_state | SS_NOFDREF;
269 so->so_nbio = head->so_nbio;
270 so->so_proto = head->so_proto;
271 so->so_timeo = head->so_timeo;
272 so->so_pgid = head->so_pgid;
273 so->so_send = head->so_send;
274 so->so_receive = head->so_receive;
275 so->so_uidinfo = head->so_uidinfo;
276 so->so_egid = head->so_egid;
277 so->so_cpid = head->so_cpid;
278 #ifdef MBUFTRACE
279 so->so_mowner = head->so_mowner;
280 so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
281 so->so_snd.sb_mowner = head->so_snd.sb_mowner;
282 #endif
283 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat) != 0)
284 goto out;
285 so->so_snd.sb_lowat = head->so_snd.sb_lowat;
286 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
287 so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
288 so->so_snd.sb_timeo = head->so_snd.sb_timeo;
289 so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE;
290 so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE;
291 soqinsque(head, so, soqueue);
292 error = (*so->so_proto->pr_usrreq)(so, PRU_ATTACH, NULL, NULL,
293 NULL, NULL);
294 KASSERT(solocked(so));
295 if (error != 0) {
296 (void) soqremque(so, soqueue);
297 out:
298 /*
299 * Remove acccept filter if one is present.
300 * XXX Is this really needed?
301 */
302 if (so->so_accf != NULL)
303 (void)accept_filt_clear(so);
304 soput(so);
305 return NULL;
306 }
307 if (connstatus) {
308 sorwakeup(head);
309 cv_broadcast(&head->so_cv);
310 so->so_state |= connstatus;
311 }
312 return so;
313 }
314
315 struct socket *
316 soget(bool waitok)
317 {
318 struct socket *so;
319
320 so = pool_cache_get(socket_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
321 if (__predict_false(so == NULL))
322 return (NULL);
323 memset(so, 0, sizeof(*so));
324 TAILQ_INIT(&so->so_q0);
325 TAILQ_INIT(&so->so_q);
326 cv_init(&so->so_cv, "socket");
327 cv_init(&so->so_rcv.sb_cv, "netio");
328 cv_init(&so->so_snd.sb_cv, "netio");
329 selinit(&so->so_rcv.sb_sel);
330 selinit(&so->so_snd.sb_sel);
331 so->so_rcv.sb_so = so;
332 so->so_snd.sb_so = so;
333 return so;
334 }
335
336 void
337 soput(struct socket *so)
338 {
339
340 KASSERT(!cv_has_waiters(&so->so_cv));
341 KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
342 KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
343 seldestroy(&so->so_rcv.sb_sel);
344 seldestroy(&so->so_snd.sb_sel);
345 mutex_obj_free(so->so_lock);
346 cv_destroy(&so->so_cv);
347 cv_destroy(&so->so_rcv.sb_cv);
348 cv_destroy(&so->so_snd.sb_cv);
349 pool_cache_put(socket_cache, so);
350 }
351
352 void
353 soqinsque(struct socket *head, struct socket *so, int q)
354 {
355
356 KASSERT(solocked2(head, so));
357
358 #ifdef DIAGNOSTIC
359 if (so->so_onq != NULL)
360 panic("soqinsque");
361 #endif
362
363 so->so_head = head;
364 if (q == 0) {
365 head->so_q0len++;
366 so->so_onq = &head->so_q0;
367 } else {
368 head->so_qlen++;
369 so->so_onq = &head->so_q;
370 }
371 TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
372 }
373
374 int
375 soqremque(struct socket *so, int q)
376 {
377 struct socket *head;
378
379 head = so->so_head;
380
381 KASSERT(solocked(so));
382 if (q == 0) {
383 if (so->so_onq != &head->so_q0)
384 return (0);
385 head->so_q0len--;
386 } else {
387 if (so->so_onq != &head->so_q)
388 return (0);
389 head->so_qlen--;
390 }
391 KASSERT(solocked2(so, head));
392 TAILQ_REMOVE(so->so_onq, so, so_qe);
393 so->so_onq = NULL;
394 so->so_head = NULL;
395 return (1);
396 }
397
398 /*
399 * Socantsendmore indicates that no more data will be sent on the
400 * socket; it would normally be applied to a socket when the user
401 * informs the system that no more data is to be sent, by the protocol
402 * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data
403 * will be received, and will normally be applied to the socket by a
404 * protocol when it detects that the peer will send no more data.
405 * Data queued for reading in the socket may yet be read.
406 */
407
408 void
409 socantsendmore(struct socket *so)
410 {
411
412 KASSERT(solocked(so));
413
414 so->so_state |= SS_CANTSENDMORE;
415 sowwakeup(so);
416 }
417
418 void
419 socantrcvmore(struct socket *so)
420 {
421
422 KASSERT(solocked(so));
423
424 so->so_state |= SS_CANTRCVMORE;
425 sorwakeup(so);
426 }
427
428 /*
429 * Wait for data to arrive at/drain from a socket buffer.
430 */
431 int
432 sbwait(struct sockbuf *sb)
433 {
434 struct socket *so;
435 kmutex_t *lock;
436 int error;
437
438 so = sb->sb_so;
439
440 KASSERT(solocked(so));
441
442 sb->sb_flags |= SB_NOTIFY;
443 lock = so->so_lock;
444 if ((sb->sb_flags & SB_NOINTR) != 0)
445 error = cv_timedwait(&sb->sb_cv, lock, sb->sb_timeo);
446 else
447 error = cv_timedwait_sig(&sb->sb_cv, lock, sb->sb_timeo);
448 if (__predict_false(lock != so->so_lock))
449 solockretry(so, lock);
450 return error;
451 }
452
453 /*
454 * Wakeup processes waiting on a socket buffer.
455 * Do asynchronous notification via SIGIO
456 * if the socket buffer has the SB_ASYNC flag set.
457 */
458 void
459 sowakeup(struct socket *so, struct sockbuf *sb, int code)
460 {
461 int band;
462
463 KASSERT(solocked(so));
464 KASSERT(sb->sb_so == so);
465
466 if (code == POLL_IN)
467 band = POLLIN|POLLRDNORM;
468 else
469 band = POLLOUT|POLLWRNORM;
470 sb->sb_flags &= ~SB_NOTIFY;
471 selnotify(&sb->sb_sel, band, NOTE_SUBMIT);
472 cv_broadcast(&sb->sb_cv);
473 if (sb->sb_flags & SB_ASYNC)
474 fownsignal(so->so_pgid, SIGIO, code, band, so);
475 if (sb->sb_flags & SB_UPCALL)
476 (*so->so_upcall)(so, so->so_upcallarg, band, M_DONTWAIT);
477 }
478
479 /*
480 * Reset a socket's lock pointer. Wake all threads waiting on the
481 * socket's condition variables so that they can restart their waits
482 * using the new lock. The existing lock must be held.
483 */
484 void
485 solockreset(struct socket *so, kmutex_t *lock)
486 {
487
488 KASSERT(solocked(so));
489
490 so->so_lock = lock;
491 cv_broadcast(&so->so_snd.sb_cv);
492 cv_broadcast(&so->so_rcv.sb_cv);
493 cv_broadcast(&so->so_cv);
494 }
495
496 /*
497 * Socket buffer (struct sockbuf) utility routines.
498 *
499 * Each socket contains two socket buffers: one for sending data and
500 * one for receiving data. Each buffer contains a queue of mbufs,
501 * information about the number of mbufs and amount of data in the
502 * queue, and other fields allowing poll() statements and notification
503 * on data availability to be implemented.
504 *
505 * Data stored in a socket buffer is maintained as a list of records.
506 * Each record is a list of mbufs chained together with the m_next
507 * field. Records are chained together with the m_nextpkt field. The upper
508 * level routine soreceive() expects the following conventions to be
509 * observed when placing information in the receive buffer:
510 *
511 * 1. If the protocol requires each message be preceded by the sender's
512 * name, then a record containing that name must be present before
513 * any associated data (mbuf's must be of type MT_SONAME).
514 * 2. If the protocol supports the exchange of ``access rights'' (really
515 * just additional data associated with the message), and there are
516 * ``rights'' to be received, then a record containing this data
517 * should be present (mbuf's must be of type MT_CONTROL).
518 * 3. If a name or rights record exists, then it must be followed by
519 * a data record, perhaps of zero length.
520 *
521 * Before using a new socket structure it is first necessary to reserve
522 * buffer space to the socket, by calling sbreserve(). This should commit
523 * some of the available buffer space in the system buffer pool for the
524 * socket (currently, it does nothing but enforce limits). The space
525 * should be released by calling sbrelease() when the socket is destroyed.
526 */
527
528 int
529 sb_max_set(u_long new_sbmax)
530 {
531 int s;
532
533 if (new_sbmax < (16 * 1024))
534 return (EINVAL);
535
536 s = splsoftnet();
537 sb_max = new_sbmax;
538 sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
539 splx(s);
540
541 return (0);
542 }
543
544 int
545 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
546 {
547
548 KASSERT(so->so_lock == NULL || solocked(so));
549
550 /*
551 * there's at least one application (a configure script of screen)
552 * which expects a fifo is writable even if it has "some" bytes
553 * in its buffer.
554 * so we want to make sure (hiwat - lowat) >= (some bytes).
555 *
556 * PIPE_BUF here is an arbitrary value chosen as (some bytes) above.
557 * we expect it's large enough for such applications.
558 */
559 u_long lowat = MAX(sock_loan_thresh, MCLBYTES);
560 u_long hiwat = lowat + PIPE_BUF;
561
562 if (sndcc < hiwat)
563 sndcc = hiwat;
564 if (sbreserve(&so->so_snd, sndcc, so) == 0)
565 goto bad;
566 if (sbreserve(&so->so_rcv, rcvcc, so) == 0)
567 goto bad2;
568 if (so->so_rcv.sb_lowat == 0)
569 so->so_rcv.sb_lowat = 1;
570 if (so->so_snd.sb_lowat == 0)
571 so->so_snd.sb_lowat = lowat;
572 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
573 so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
574 return (0);
575 bad2:
576 sbrelease(&so->so_snd, so);
577 bad:
578 return (ENOBUFS);
579 }
580
581 /*
582 * Allot mbufs to a sockbuf.
583 * Attempt to scale mbmax so that mbcnt doesn't become limiting
584 * if buffering efficiency is near the normal case.
585 */
586 int
587 sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
588 {
589 struct lwp *l = curlwp; /* XXX */
590 rlim_t maxcc;
591 struct uidinfo *uidinfo;
592
593 KASSERT(so->so_lock == NULL || solocked(so));
594 KASSERT(sb->sb_so == so);
595 KASSERT(sb_max_adj != 0);
596
597 if (cc == 0 || cc > sb_max_adj)
598 return (0);
599
600 maxcc = l->l_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur;
601
602 uidinfo = so->so_uidinfo;
603 if (!chgsbsize(uidinfo, &sb->sb_hiwat, cc, maxcc))
604 return 0;
605 sb->sb_mbmax = min(cc * 2, sb_max);
606 if (sb->sb_lowat > sb->sb_hiwat)
607 sb->sb_lowat = sb->sb_hiwat;
608 return (1);
609 }
610
611 /*
612 * Free mbufs held by a socket, and reserved mbuf space. We do not assert
613 * that the socket is held locked here: see sorflush().
614 */
615 void
616 sbrelease(struct sockbuf *sb, struct socket *so)
617 {
618
619 KASSERT(sb->sb_so == so);
620
621 sbflush(sb);
622 (void)chgsbsize(so->so_uidinfo, &sb->sb_hiwat, 0, RLIM_INFINITY);
623 sb->sb_mbmax = 0;
624 }
625
626 /*
627 * Routines to add and remove
628 * data from an mbuf queue.
629 *
630 * The routines sbappend() or sbappendrecord() are normally called to
631 * append new mbufs to a socket buffer, after checking that adequate
632 * space is available, comparing the function sbspace() with the amount
633 * of data to be added. sbappendrecord() differs from sbappend() in
634 * that data supplied is treated as the beginning of a new record.
635 * To place a sender's address, optional access rights, and data in a
636 * socket receive buffer, sbappendaddr() should be used. To place
637 * access rights and data in a socket receive buffer, sbappendrights()
638 * should be used. In either case, the new data begins a new record.
639 * Note that unlike sbappend() and sbappendrecord(), these routines check
640 * for the caller that there will be enough space to store the data.
641 * Each fails if there is not enough space, or if it cannot find mbufs
642 * to store additional information in.
643 *
644 * Reliable protocols may use the socket send buffer to hold data
645 * awaiting acknowledgement. Data is normally copied from a socket
646 * send buffer in a protocol with m_copy for output to a peer,
647 * and then removing the data from the socket buffer with sbdrop()
648 * or sbdroprecord() when the data is acknowledged by the peer.
649 */
650
651 #ifdef SOCKBUF_DEBUG
652 void
653 sblastrecordchk(struct sockbuf *sb, const char *where)
654 {
655 struct mbuf *m = sb->sb_mb;
656
657 KASSERT(solocked(sb->sb_so));
658
659 while (m && m->m_nextpkt)
660 m = m->m_nextpkt;
661
662 if (m != sb->sb_lastrecord) {
663 printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
664 sb->sb_mb, sb->sb_lastrecord, m);
665 printf("packet chain:\n");
666 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
667 printf("\t%p\n", m);
668 panic("sblastrecordchk from %s", where);
669 }
670 }
671
672 void
673 sblastmbufchk(struct sockbuf *sb, const char *where)
674 {
675 struct mbuf *m = sb->sb_mb;
676 struct mbuf *n;
677
678 KASSERT(solocked(sb->sb_so));
679
680 while (m && m->m_nextpkt)
681 m = m->m_nextpkt;
682
683 while (m && m->m_next)
684 m = m->m_next;
685
686 if (m != sb->sb_mbtail) {
687 printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
688 sb->sb_mb, sb->sb_mbtail, m);
689 printf("packet tree:\n");
690 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
691 printf("\t");
692 for (n = m; n != NULL; n = n->m_next)
693 printf("%p ", n);
694 printf("\n");
695 }
696 panic("sblastmbufchk from %s", where);
697 }
698 }
699 #endif /* SOCKBUF_DEBUG */
700
701 /*
702 * Link a chain of records onto a socket buffer
703 */
704 #define SBLINKRECORDCHAIN(sb, m0, mlast) \
705 do { \
706 if ((sb)->sb_lastrecord != NULL) \
707 (sb)->sb_lastrecord->m_nextpkt = (m0); \
708 else \
709 (sb)->sb_mb = (m0); \
710 (sb)->sb_lastrecord = (mlast); \
711 } while (/*CONSTCOND*/0)
712
713
714 #define SBLINKRECORD(sb, m0) \
715 SBLINKRECORDCHAIN(sb, m0, m0)
716
717 /*
718 * Append mbuf chain m to the last record in the
719 * socket buffer sb. The additional space associated
720 * the mbuf chain is recorded in sb. Empty mbufs are
721 * discarded and mbufs are compacted where possible.
722 */
723 void
724 sbappend(struct sockbuf *sb, struct mbuf *m)
725 {
726 struct mbuf *n;
727
728 KASSERT(solocked(sb->sb_so));
729
730 if (m == 0)
731 return;
732
733 #ifdef MBUFTRACE
734 m_claimm(m, sb->sb_mowner);
735 #endif
736
737 SBLASTRECORDCHK(sb, "sbappend 1");
738
739 if ((n = sb->sb_lastrecord) != NULL) {
740 /*
741 * XXX Would like to simply use sb_mbtail here, but
742 * XXX I need to verify that I won't miss an EOR that
743 * XXX way.
744 */
745 do {
746 if (n->m_flags & M_EOR) {
747 sbappendrecord(sb, m); /* XXXXXX!!!! */
748 return;
749 }
750 } while (n->m_next && (n = n->m_next));
751 } else {
752 /*
753 * If this is the first record in the socket buffer, it's
754 * also the last record.
755 */
756 sb->sb_lastrecord = m;
757 }
758 sbcompress(sb, m, n);
759 SBLASTRECORDCHK(sb, "sbappend 2");
760 }
761
762 /*
763 * This version of sbappend() should only be used when the caller
764 * absolutely knows that there will never be more than one record
765 * in the socket buffer, that is, a stream protocol (such as TCP).
766 */
767 void
768 sbappendstream(struct sockbuf *sb, struct mbuf *m)
769 {
770
771 KASSERT(solocked(sb->sb_so));
772 KDASSERT(m->m_nextpkt == NULL);
773 KASSERT(sb->sb_mb == sb->sb_lastrecord);
774
775 SBLASTMBUFCHK(sb, __func__);
776
777 #ifdef MBUFTRACE
778 m_claimm(m, sb->sb_mowner);
779 #endif
780
781 sbcompress(sb, m, sb->sb_mbtail);
782
783 sb->sb_lastrecord = sb->sb_mb;
784 SBLASTRECORDCHK(sb, __func__);
785 }
786
787 #ifdef SOCKBUF_DEBUG
788 void
789 sbcheck(struct sockbuf *sb)
790 {
791 struct mbuf *m, *m2;
792 u_long len, mbcnt;
793
794 KASSERT(solocked(sb->sb_so));
795
796 len = 0;
797 mbcnt = 0;
798 for (m = sb->sb_mb; m; m = m->m_nextpkt) {
799 for (m2 = m; m2 != NULL; m2 = m2->m_next) {
800 len += m2->m_len;
801 mbcnt += MSIZE;
802 if (m2->m_flags & M_EXT)
803 mbcnt += m2->m_ext.ext_size;
804 if (m2->m_nextpkt != NULL)
805 panic("sbcheck nextpkt");
806 }
807 }
808 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
809 printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
810 mbcnt, sb->sb_mbcnt);
811 panic("sbcheck");
812 }
813 }
814 #endif
815
816 /*
817 * As above, except the mbuf chain
818 * begins a new record.
819 */
820 void
821 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
822 {
823 struct mbuf *m;
824
825 KASSERT(solocked(sb->sb_so));
826
827 if (m0 == 0)
828 return;
829
830 #ifdef MBUFTRACE
831 m_claimm(m0, sb->sb_mowner);
832 #endif
833 /*
834 * Put the first mbuf on the queue.
835 * Note this permits zero length records.
836 */
837 sballoc(sb, m0);
838 SBLASTRECORDCHK(sb, "sbappendrecord 1");
839 SBLINKRECORD(sb, m0);
840 m = m0->m_next;
841 m0->m_next = 0;
842 if (m && (m0->m_flags & M_EOR)) {
843 m0->m_flags &= ~M_EOR;
844 m->m_flags |= M_EOR;
845 }
846 sbcompress(sb, m, m0);
847 SBLASTRECORDCHK(sb, "sbappendrecord 2");
848 }
849
850 /*
851 * As above except that OOB data
852 * is inserted at the beginning of the sockbuf,
853 * but after any other OOB data.
854 */
855 void
856 sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
857 {
858 struct mbuf *m, **mp;
859
860 KASSERT(solocked(sb->sb_so));
861
862 if (m0 == 0)
863 return;
864
865 SBLASTRECORDCHK(sb, "sbinsertoob 1");
866
867 for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
868 again:
869 switch (m->m_type) {
870
871 case MT_OOBDATA:
872 continue; /* WANT next train */
873
874 case MT_CONTROL:
875 if ((m = m->m_next) != NULL)
876 goto again; /* inspect THIS train further */
877 }
878 break;
879 }
880 /*
881 * Put the first mbuf on the queue.
882 * Note this permits zero length records.
883 */
884 sballoc(sb, m0);
885 m0->m_nextpkt = *mp;
886 if (*mp == NULL) {
887 /* m0 is actually the new tail */
888 sb->sb_lastrecord = m0;
889 }
890 *mp = m0;
891 m = m0->m_next;
892 m0->m_next = 0;
893 if (m && (m0->m_flags & M_EOR)) {
894 m0->m_flags &= ~M_EOR;
895 m->m_flags |= M_EOR;
896 }
897 sbcompress(sb, m, m0);
898 SBLASTRECORDCHK(sb, "sbinsertoob 2");
899 }
900
901 /*
902 * Append address and data, and optionally, control (ancillary) data
903 * to the receive queue of a socket. If present,
904 * m0 must include a packet header with total length.
905 * Returns 0 if no space in sockbuf or insufficient mbufs.
906 */
907 int
908 sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0,
909 struct mbuf *control)
910 {
911 struct mbuf *m, *n, *nlast;
912 int space, len;
913
914 KASSERT(solocked(sb->sb_so));
915
916 space = asa->sa_len;
917
918 if (m0 != NULL) {
919 if ((m0->m_flags & M_PKTHDR) == 0)
920 panic("sbappendaddr");
921 space += m0->m_pkthdr.len;
922 #ifdef MBUFTRACE
923 m_claimm(m0, sb->sb_mowner);
924 #endif
925 }
926 for (n = control; n; n = n->m_next) {
927 space += n->m_len;
928 MCLAIM(n, sb->sb_mowner);
929 if (n->m_next == 0) /* keep pointer to last control buf */
930 break;
931 }
932 if (space > sbspace(sb))
933 return (0);
934 MGET(m, M_DONTWAIT, MT_SONAME);
935 if (m == 0)
936 return (0);
937 MCLAIM(m, sb->sb_mowner);
938 /*
939 * XXX avoid 'comparison always true' warning which isn't easily
940 * avoided.
941 */
942 len = asa->sa_len;
943 if (len > MLEN) {
944 MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
945 if ((m->m_flags & M_EXT) == 0) {
946 m_free(m);
947 return (0);
948 }
949 }
950 m->m_len = asa->sa_len;
951 memcpy(mtod(m, void *), asa, asa->sa_len);
952 if (n)
953 n->m_next = m0; /* concatenate data to control */
954 else
955 control = m0;
956 m->m_next = control;
957
958 SBLASTRECORDCHK(sb, "sbappendaddr 1");
959
960 for (n = m; n->m_next != NULL; n = n->m_next)
961 sballoc(sb, n);
962 sballoc(sb, n);
963 nlast = n;
964 SBLINKRECORD(sb, m);
965
966 sb->sb_mbtail = nlast;
967 SBLASTMBUFCHK(sb, "sbappendaddr");
968 SBLASTRECORDCHK(sb, "sbappendaddr 2");
969
970 return (1);
971 }
972
973 /*
974 * Helper for sbappendchainaddr: prepend a struct sockaddr* to
975 * an mbuf chain.
976 */
977 static inline struct mbuf *
978 m_prepend_sockaddr(struct sockbuf *sb, struct mbuf *m0,
979 const struct sockaddr *asa)
980 {
981 struct mbuf *m;
982 const int salen = asa->sa_len;
983
984 KASSERT(solocked(sb->sb_so));
985
986 /* only the first in each chain need be a pkthdr */
987 MGETHDR(m, M_DONTWAIT, MT_SONAME);
988 if (m == 0)
989 return (0);
990 MCLAIM(m, sb->sb_mowner);
991 #ifdef notyet
992 if (salen > MHLEN) {
993 MEXTMALLOC(m, salen, M_NOWAIT);
994 if ((m->m_flags & M_EXT) == 0) {
995 m_free(m);
996 return (0);
997 }
998 }
999 #else
1000 KASSERT(salen <= MHLEN);
1001 #endif
1002 m->m_len = salen;
1003 memcpy(mtod(m, void *), asa, salen);
1004 m->m_next = m0;
1005 m->m_pkthdr.len = salen + m0->m_pkthdr.len;
1006
1007 return m;
1008 }
1009
1010 int
1011 sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa,
1012 struct mbuf *m0, int sbprio)
1013 {
1014 int space;
1015 struct mbuf *m, *n, *n0, *nlast;
1016 int error;
1017
1018 KASSERT(solocked(sb->sb_so));
1019
1020 /*
1021 * XXX sbprio reserved for encoding priority of this* request:
1022 * SB_PRIO_NONE --> honour normal sb limits
1023 * SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space,
1024 * take whole chain. Intended for large requests
1025 * that should be delivered atomically (all, or none).
1026 * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow
1027 * over normal socket limits, for messages indicating
1028 * buffer overflow in earlier normal/lower-priority messages
1029 * SB_PRIO_BESTEFFORT --> ignore limits entirely.
1030 * Intended for kernel-generated messages only.
1031 * Up to generator to avoid total mbuf resource exhaustion.
1032 */
1033 (void)sbprio;
1034
1035 if (m0 && (m0->m_flags & M_PKTHDR) == 0)
1036 panic("sbappendaddrchain");
1037
1038 space = sbspace(sb);
1039
1040 #ifdef notyet
1041 /*
1042 * Enforce SB_PRIO_* limits as described above.
1043 */
1044 #endif
1045
1046 n0 = NULL;
1047 nlast = NULL;
1048 for (m = m0; m; m = m->m_nextpkt) {
1049 struct mbuf *np;
1050
1051 #ifdef MBUFTRACE
1052 m_claimm(m, sb->sb_mowner);
1053 #endif
1054
1055 /* Prepend sockaddr to this record (m) of input chain m0 */
1056 n = m_prepend_sockaddr(sb, m, asa);
1057 if (n == NULL) {
1058 error = ENOBUFS;
1059 goto bad;
1060 }
1061
1062 /* Append record (asa+m) to end of new chain n0 */
1063 if (n0 == NULL) {
1064 n0 = n;
1065 } else {
1066 nlast->m_nextpkt = n;
1067 }
1068 /* Keep track of last record on new chain */
1069 nlast = n;
1070
1071 for (np = n; np; np = np->m_next)
1072 sballoc(sb, np);
1073 }
1074
1075 SBLASTRECORDCHK(sb, "sbappendaddrchain 1");
1076
1077 /* Drop the entire chain of (asa+m) records onto the socket */
1078 SBLINKRECORDCHAIN(sb, n0, nlast);
1079
1080 SBLASTRECORDCHK(sb, "sbappendaddrchain 2");
1081
1082 for (m = nlast; m->m_next; m = m->m_next)
1083 ;
1084 sb->sb_mbtail = m;
1085 SBLASTMBUFCHK(sb, "sbappendaddrchain");
1086
1087 return (1);
1088
1089 bad:
1090 /*
1091 * On error, free the prepended addreseses. For consistency
1092 * with sbappendaddr(), leave it to our caller to free
1093 * the input record chain passed to us as m0.
1094 */
1095 while ((n = n0) != NULL) {
1096 struct mbuf *np;
1097
1098 /* Undo the sballoc() of this record */
1099 for (np = n; np; np = np->m_next)
1100 sbfree(sb, np);
1101
1102 n0 = n->m_nextpkt; /* iterate at next prepended address */
1103 MFREE(n, np); /* free prepended address (not data) */
1104 }
1105 return 0;
1106 }
1107
1108
1109 int
1110 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
1111 {
1112 struct mbuf *m, *mlast, *n;
1113 int space;
1114
1115 KASSERT(solocked(sb->sb_so));
1116
1117 space = 0;
1118 if (control == 0)
1119 panic("sbappendcontrol");
1120 for (m = control; ; m = m->m_next) {
1121 space += m->m_len;
1122 MCLAIM(m, sb->sb_mowner);
1123 if (m->m_next == 0)
1124 break;
1125 }
1126 n = m; /* save pointer to last control buffer */
1127 for (m = m0; m; m = m->m_next) {
1128 MCLAIM(m, sb->sb_mowner);
1129 space += m->m_len;
1130 }
1131 if (space > sbspace(sb))
1132 return (0);
1133 n->m_next = m0; /* concatenate data to control */
1134
1135 SBLASTRECORDCHK(sb, "sbappendcontrol 1");
1136
1137 for (m = control; m->m_next != NULL; m = m->m_next)
1138 sballoc(sb, m);
1139 sballoc(sb, m);
1140 mlast = m;
1141 SBLINKRECORD(sb, control);
1142
1143 sb->sb_mbtail = mlast;
1144 SBLASTMBUFCHK(sb, "sbappendcontrol");
1145 SBLASTRECORDCHK(sb, "sbappendcontrol 2");
1146
1147 return (1);
1148 }
1149
1150 /*
1151 * Compress mbuf chain m into the socket
1152 * buffer sb following mbuf n. If n
1153 * is null, the buffer is presumed empty.
1154 */
1155 void
1156 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
1157 {
1158 int eor;
1159 struct mbuf *o;
1160
1161 KASSERT(solocked(sb->sb_so));
1162
1163 eor = 0;
1164 while (m) {
1165 eor |= m->m_flags & M_EOR;
1166 if (m->m_len == 0 &&
1167 (eor == 0 ||
1168 (((o = m->m_next) || (o = n)) &&
1169 o->m_type == m->m_type))) {
1170 if (sb->sb_lastrecord == m)
1171 sb->sb_lastrecord = m->m_next;
1172 m = m_free(m);
1173 continue;
1174 }
1175 if (n && (n->m_flags & M_EOR) == 0 &&
1176 /* M_TRAILINGSPACE() checks buffer writeability */
1177 m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
1178 m->m_len <= M_TRAILINGSPACE(n) &&
1179 n->m_type == m->m_type) {
1180 memcpy(mtod(n, char *) + n->m_len, mtod(m, void *),
1181 (unsigned)m->m_len);
1182 n->m_len += m->m_len;
1183 sb->sb_cc += m->m_len;
1184 m = m_free(m);
1185 continue;
1186 }
1187 if (n)
1188 n->m_next = m;
1189 else
1190 sb->sb_mb = m;
1191 sb->sb_mbtail = m;
1192 sballoc(sb, m);
1193 n = m;
1194 m->m_flags &= ~M_EOR;
1195 m = m->m_next;
1196 n->m_next = 0;
1197 }
1198 if (eor) {
1199 if (n)
1200 n->m_flags |= eor;
1201 else
1202 printf("semi-panic: sbcompress\n");
1203 }
1204 SBLASTMBUFCHK(sb, __func__);
1205 }
1206
1207 /*
1208 * Free all mbufs in a sockbuf.
1209 * Check that all resources are reclaimed.
1210 */
1211 void
1212 sbflush(struct sockbuf *sb)
1213 {
1214
1215 KASSERT(solocked(sb->sb_so));
1216 KASSERT((sb->sb_flags & SB_LOCK) == 0);
1217
1218 while (sb->sb_mbcnt)
1219 sbdrop(sb, (int)sb->sb_cc);
1220
1221 KASSERT(sb->sb_cc == 0);
1222 KASSERT(sb->sb_mb == NULL);
1223 KASSERT(sb->sb_mbtail == NULL);
1224 KASSERT(sb->sb_lastrecord == NULL);
1225 }
1226
1227 /*
1228 * Drop data from (the front of) a sockbuf.
1229 */
1230 void
1231 sbdrop(struct sockbuf *sb, int len)
1232 {
1233 struct mbuf *m, *mn, *next;
1234
1235 KASSERT(solocked(sb->sb_so));
1236
1237 next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
1238 while (len > 0) {
1239 if (m == 0) {
1240 if (next == 0)
1241 panic("sbdrop");
1242 m = next;
1243 next = m->m_nextpkt;
1244 continue;
1245 }
1246 if (m->m_len > len) {
1247 m->m_len -= len;
1248 m->m_data += len;
1249 sb->sb_cc -= len;
1250 break;
1251 }
1252 len -= m->m_len;
1253 sbfree(sb, m);
1254 MFREE(m, mn);
1255 m = mn;
1256 }
1257 while (m && m->m_len == 0) {
1258 sbfree(sb, m);
1259 MFREE(m, mn);
1260 m = mn;
1261 }
1262 if (m) {
1263 sb->sb_mb = m;
1264 m->m_nextpkt = next;
1265 } else
1266 sb->sb_mb = next;
1267 /*
1268 * First part is an inline SB_EMPTY_FIXUP(). Second part
1269 * makes sure sb_lastrecord is up-to-date if we dropped
1270 * part of the last record.
1271 */
1272 m = sb->sb_mb;
1273 if (m == NULL) {
1274 sb->sb_mbtail = NULL;
1275 sb->sb_lastrecord = NULL;
1276 } else if (m->m_nextpkt == NULL)
1277 sb->sb_lastrecord = m;
1278 }
1279
1280 /*
1281 * Drop a record off the front of a sockbuf
1282 * and move the next record to the front.
1283 */
1284 void
1285 sbdroprecord(struct sockbuf *sb)
1286 {
1287 struct mbuf *m, *mn;
1288
1289 KASSERT(solocked(sb->sb_so));
1290
1291 m = sb->sb_mb;
1292 if (m) {
1293 sb->sb_mb = m->m_nextpkt;
1294 do {
1295 sbfree(sb, m);
1296 MFREE(m, mn);
1297 } while ((m = mn) != NULL);
1298 }
1299 SB_EMPTY_FIXUP(sb);
1300 }
1301
1302 /*
1303 * Create a "control" mbuf containing the specified data
1304 * with the specified type for presentation on a socket buffer.
1305 */
1306 struct mbuf *
1307 sbcreatecontrol(void *p, int size, int type, int level)
1308 {
1309 struct cmsghdr *cp;
1310 struct mbuf *m;
1311
1312 if (CMSG_SPACE(size) > MCLBYTES) {
1313 printf("sbcreatecontrol: message too large %d\n", size);
1314 return NULL;
1315 }
1316
1317 if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
1318 return ((struct mbuf *) NULL);
1319 if (CMSG_SPACE(size) > MLEN) {
1320 MCLGET(m, M_DONTWAIT);
1321 if ((m->m_flags & M_EXT) == 0) {
1322 m_free(m);
1323 return NULL;
1324 }
1325 }
1326 cp = mtod(m, struct cmsghdr *);
1327 memcpy(CMSG_DATA(cp), p, size);
1328 m->m_len = CMSG_SPACE(size);
1329 cp->cmsg_len = CMSG_LEN(size);
1330 cp->cmsg_level = level;
1331 cp->cmsg_type = type;
1332 return (m);
1333 }
1334
1335 void
1336 solockretry(struct socket *so, kmutex_t *lock)
1337 {
1338
1339 while (lock != so->so_lock) {
1340 mutex_exit(lock);
1341 lock = so->so_lock;
1342 mutex_enter(lock);
1343 }
1344 }
1345
1346 bool
1347 solocked(struct socket *so)
1348 {
1349
1350 return mutex_owned(so->so_lock);
1351 }
1352
1353 bool
1354 solocked2(struct socket *so1, struct socket *so2)
1355 {
1356 kmutex_t *lock;
1357
1358 lock = so1->so_lock;
1359 if (lock != so2->so_lock)
1360 return false;
1361 return mutex_owned(lock);
1362 }
1363
1364 /*
1365 * Assign a default lock to a new socket. For PRU_ATTACH, and done by
1366 * protocols that do not have special locking requirements.
1367 */
1368 void
1369 sosetlock(struct socket *so)
1370 {
1371 kmutex_t *lock;
1372
1373 if (so->so_lock == NULL) {
1374 lock = softnet_lock;
1375 so->so_lock = lock;
1376 mutex_obj_hold(lock);
1377 mutex_enter(lock);
1378 }
1379
1380 /* In all cases, lock must be held on return from PRU_ATTACH. */
1381 KASSERT(solocked(so));
1382 }
1383
1384 /*
1385 * Set lock on sockbuf sb; sleep if lock is already held.
1386 * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
1387 * Returns error without lock if sleep is interrupted.
1388 */
1389 int
1390 sblock(struct sockbuf *sb, int wf)
1391 {
1392 struct socket *so;
1393 kmutex_t *lock;
1394 int error;
1395
1396 KASSERT(solocked(sb->sb_so));
1397
1398 for (;;) {
1399 if (__predict_true((sb->sb_flags & SB_LOCK) == 0)) {
1400 sb->sb_flags |= SB_LOCK;
1401 return 0;
1402 }
1403 if (wf != M_WAITOK)
1404 return EWOULDBLOCK;
1405 so = sb->sb_so;
1406 lock = so->so_lock;
1407 if ((sb->sb_flags & SB_NOINTR) != 0) {
1408 cv_wait(&so->so_cv, lock);
1409 error = 0;
1410 } else
1411 error = cv_wait_sig(&so->so_cv, lock);
1412 if (__predict_false(lock != so->so_lock))
1413 solockretry(so, lock);
1414 if (error != 0)
1415 return error;
1416 }
1417 }
1418
1419 void
1420 sbunlock(struct sockbuf *sb)
1421 {
1422 struct socket *so;
1423
1424 so = sb->sb_so;
1425
1426 KASSERT(solocked(so));
1427 KASSERT((sb->sb_flags & SB_LOCK) != 0);
1428
1429 sb->sb_flags &= ~SB_LOCK;
1430 cv_broadcast(&so->so_cv);
1431 }
1432
1433 int
1434 sowait(struct socket *so, bool catch, int timo)
1435 {
1436 kmutex_t *lock;
1437 int error;
1438
1439 KASSERT(solocked(so));
1440 KASSERT(catch || timo != 0);
1441
1442 lock = so->so_lock;
1443 if (catch)
1444 error = cv_timedwait_sig(&so->so_cv, lock, timo);
1445 else
1446 error = cv_timedwait(&so->so_cv, lock, timo);
1447 if (__predict_false(lock != so->so_lock))
1448 solockretry(so, lock);
1449 return error;
1450 }
1451