uipc_socket2.c revision 1.106.4.2 1 /* $NetBSD: uipc_socket2.c,v 1.106.4.2 2011/05/31 03:05:03 rmind Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*
30 * Copyright (c) 1982, 1986, 1988, 1990, 1993
31 * The Regents of the University of California. All rights reserved.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 * 3. Neither the name of the University nor the names of its contributors
42 * may be used to endorse or promote products derived from this software
43 * without specific prior written permission.
44 *
45 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 * SUCH DAMAGE.
56 *
57 * @(#)uipc_socket2.c 8.2 (Berkeley) 2/14/95
58 */
59
60 #include <sys/cdefs.h>
61 __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.106.4.2 2011/05/31 03:05:03 rmind Exp $");
62
63 #include "opt_mbuftrace.h"
64 #include "opt_sb_max.h"
65
66 #include <sys/param.h>
67 #include <sys/systm.h>
68 #include <sys/proc.h>
69 #include <sys/file.h>
70 #include <sys/buf.h>
71 #include <sys/mbuf.h>
72 #include <sys/protosw.h>
73 #include <sys/domain.h>
74 #include <sys/poll.h>
75 #include <sys/socket.h>
76 #include <sys/socketvar.h>
77 #include <sys/signalvar.h>
78 #include <sys/kauth.h>
79 #include <sys/pool.h>
80 #include <sys/uidinfo.h>
81
82 /*
83 * Primitive routines for operating on sockets and socket buffers.
84 *
85 * Locking rules and assumptions:
86 *
87 * o socket::so_lock can change on the fly. The low level routines used
88 * to lock sockets are aware of this. When so_lock is acquired, the
89 * routine locking must check to see if so_lock still points to the
90 * lock that was acquired. If so_lock has changed in the meantime, the
91 * now irellevant lock that was acquired must be dropped and the lock
92 * operation retried. Although not proven here, this is completely safe
93 * on a multiprocessor system, even with relaxed memory ordering, given
94 * the next two rules:
95 *
96 * o In order to mutate so_lock, the lock pointed to by the current value
97 * of so_lock must be held: i.e., the socket must be held locked by the
98 * changing thread. The thread must issue membar_exit() to prevent
99 * memory accesses being reordered, and can set so_lock to the desired
100 * value. If the lock pointed to by the new value of so_lock is not
101 * held by the changing thread, the socket must then be considered
102 * unlocked.
103 *
104 * o If so_lock is mutated, and the previous lock referred to by so_lock
105 * could still be visible to other threads in the system (e.g. via file
106 * descriptor or protocol-internal reference), then the old lock must
107 * remain valid until the socket and/or protocol control block has been
108 * torn down.
109 *
110 * o If a socket has a non-NULL so_head value (i.e. is in the process of
111 * connecting), then locking the socket must also lock the socket pointed
112 * to by so_head: their lock pointers must match.
113 *
114 * o If a socket has connections in progress (so_q, so_q0 not empty) then
115 * locking the socket must also lock the sockets attached to both queues.
116 * Again, their lock pointers must match.
117 *
118 * o Beyond the initial lock assigment in socreate(), assigning locks to
119 * sockets is the responsibility of the individual protocols / protocol
120 * domains.
121 */
122
123 static pool_cache_t socket_cache;
124
125 u_long sb_max = SB_MAX; /* maximum socket buffer size */
126 static u_long sb_max_adj; /* adjusted sb_max */
127
128 /*
129 * Procedures to manipulate state flags of socket
130 * and do appropriate wakeups. Normal sequence from the
131 * active (originating) side is that soisconnecting() is
132 * called during processing of connect() call,
133 * resulting in an eventual call to soisconnected() if/when the
134 * connection is established. When the connection is torn down
135 * soisdisconnecting() is called during processing of disconnect() call,
136 * and soisdisconnected() is called when the connection to the peer
137 * is totally severed. The semantics of these routines are such that
138 * connectionless protocols can call soisconnected() and soisdisconnected()
139 * only, bypassing the in-progress calls when setting up a ``connection''
140 * takes no time.
141 *
142 * From the passive side, a socket is created with
143 * two queues of sockets: so_q0 for connections in progress
144 * and so_q for connections already made and awaiting user acceptance.
145 * As a protocol is preparing incoming connections, it creates a socket
146 * structure queued on so_q0 by calling sonewconn(). When the connection
147 * is established, soisconnected() is called, and transfers the
148 * socket structure to so_q, making it available to accept().
149 *
150 * If a socket is closed with sockets on either
151 * so_q0 or so_q, these sockets are dropped.
152 *
153 * If higher level protocols are implemented in
154 * the kernel, the wakeups done here will sometimes
155 * cause software-interrupt process scheduling.
156 */
157
158 void
159 soisconnecting(struct socket *so)
160 {
161
162 KASSERT(solocked(so));
163
164 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
165 so->so_state |= SS_ISCONNECTING;
166 }
167
168 void
169 soisconnected(struct socket *so)
170 {
171 struct socket *head;
172
173 head = so->so_head;
174
175 KASSERT(solocked(so));
176 KASSERT(head == NULL || solocked2(so, head));
177
178 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
179 so->so_state |= SS_ISCONNECTED;
180 if (head && so->so_onq == &head->so_q0) {
181 if ((so->so_options & SO_ACCEPTFILTER) == 0) {
182 soqremque(so, 0);
183 soqinsque(head, so, 1);
184 sorwakeup(head);
185 cv_broadcast(&head->so_cv);
186 } else {
187 so->so_upcall =
188 head->so_accf->so_accept_filter->accf_callback;
189 so->so_upcallarg = head->so_accf->so_accept_filter_arg;
190 so->so_rcv.sb_flags |= SB_UPCALL;
191 so->so_options &= ~SO_ACCEPTFILTER;
192 (*so->so_upcall)(so, so->so_upcallarg,
193 POLLIN|POLLRDNORM, M_DONTWAIT);
194 }
195 } else {
196 cv_broadcast(&so->so_cv);
197 sorwakeup(so);
198 sowwakeup(so);
199 }
200 }
201
202 void
203 soisdisconnecting(struct socket *so)
204 {
205
206 KASSERT(solocked(so));
207
208 so->so_state &= ~SS_ISCONNECTING;
209 so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
210 cv_broadcast(&so->so_cv);
211 sowwakeup(so);
212 sorwakeup(so);
213 }
214
215 void
216 soisdisconnected(struct socket *so)
217 {
218
219 KASSERT(solocked(so));
220
221 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
222 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
223 cv_broadcast(&so->so_cv);
224 sowwakeup(so);
225 sorwakeup(so);
226 }
227
228 void
229 soinit2(void)
230 {
231
232 socket_cache = pool_cache_init(sizeof(struct socket), 0, 0, 0,
233 "socket", NULL, IPL_SOFTNET, NULL, NULL, NULL);
234 }
235
236 /*
237 * When an attempt at a new connection is noted on a socket
238 * which accepts connections, sonewconn is called. If the
239 * connection is possible (subject to space constraints, etc.)
240 * then we allocate a new structure, propoerly linked into the
241 * data structure of the original socket, and return this.
242 * Connstatus may be 0, SS_ISCONFIRMING, or SS_ISCONNECTED.
243 */
244 struct socket *
245 sonewconn(struct socket *head, int connstatus)
246 {
247 struct socket *so;
248 int soqueue, error;
249
250 KASSERT(connstatus == 0 || connstatus == SS_ISCONFIRMING ||
251 connstatus == SS_ISCONNECTED);
252 KASSERT(solocked(head));
253
254 if ((head->so_options & SO_ACCEPTFILTER) != 0)
255 connstatus = 0;
256 soqueue = connstatus ? 1 : 0;
257 if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
258 return NULL;
259 so = soget(false);
260 if (so == NULL)
261 return NULL;
262 mutex_obj_hold(head->so_lock);
263 so->so_lock = head->so_lock;
264 so->so_type = head->so_type;
265 so->so_options = head->so_options &~ SO_ACCEPTCONN;
266 so->so_linger = head->so_linger;
267 so->so_state = head->so_state | SS_NOFDREF;
268 so->so_nbio = head->so_nbio;
269 so->so_proto = head->so_proto;
270 so->so_timeo = head->so_timeo;
271 so->so_pgid = head->so_pgid;
272 so->so_send = head->so_send;
273 so->so_receive = head->so_receive;
274 so->so_uidinfo = head->so_uidinfo;
275 so->so_cpid = head->so_cpid;
276 #ifdef MBUFTRACE
277 so->so_mowner = head->so_mowner;
278 so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
279 so->so_snd.sb_mowner = head->so_snd.sb_mowner;
280 #endif
281 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat) != 0)
282 goto out;
283 so->so_snd.sb_lowat = head->so_snd.sb_lowat;
284 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
285 so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
286 so->so_snd.sb_timeo = head->so_snd.sb_timeo;
287 so->so_rcv.sb_flags |= head->so_rcv.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
288 so->so_snd.sb_flags |= head->so_snd.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
289 soqinsque(head, so, soqueue);
290 error = (*so->so_proto->pr_usrreq)(so, PRU_ATTACH, NULL, NULL,
291 NULL, NULL);
292 KASSERT(solocked(so));
293 if (error != 0) {
294 (void) soqremque(so, soqueue);
295 out:
296 /*
297 * Remove acccept filter if one is present.
298 * XXX Is this really needed?
299 */
300 if (so->so_accf != NULL)
301 (void)accept_filt_clear(so);
302 soput(so);
303 return NULL;
304 }
305 if (connstatus) {
306 sorwakeup(head);
307 cv_broadcast(&head->so_cv);
308 so->so_state |= connstatus;
309 }
310 return so;
311 }
312
313 struct socket *
314 soget(bool waitok)
315 {
316 struct socket *so;
317
318 so = pool_cache_get(socket_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
319 if (__predict_false(so == NULL))
320 return (NULL);
321 memset(so, 0, sizeof(*so));
322 TAILQ_INIT(&so->so_q0);
323 TAILQ_INIT(&so->so_q);
324 cv_init(&so->so_cv, "socket");
325 cv_init(&so->so_rcv.sb_cv, "netio");
326 cv_init(&so->so_snd.sb_cv, "netio");
327 selinit(&so->so_rcv.sb_sel);
328 selinit(&so->so_snd.sb_sel);
329 so->so_rcv.sb_so = so;
330 so->so_snd.sb_so = so;
331 return so;
332 }
333
334 void
335 soput(struct socket *so)
336 {
337
338 KASSERT(!cv_has_waiters(&so->so_cv));
339 KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
340 KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
341 seldestroy(&so->so_rcv.sb_sel);
342 seldestroy(&so->so_snd.sb_sel);
343 mutex_obj_free(so->so_lock);
344 cv_destroy(&so->so_cv);
345 cv_destroy(&so->so_rcv.sb_cv);
346 cv_destroy(&so->so_snd.sb_cv);
347 pool_cache_put(socket_cache, so);
348 }
349
350 void
351 soqinsque(struct socket *head, struct socket *so, int q)
352 {
353
354 KASSERT(solocked2(head, so));
355
356 #ifdef DIAGNOSTIC
357 if (so->so_onq != NULL)
358 panic("soqinsque");
359 #endif
360
361 so->so_head = head;
362 if (q == 0) {
363 head->so_q0len++;
364 so->so_onq = &head->so_q0;
365 } else {
366 head->so_qlen++;
367 so->so_onq = &head->so_q;
368 }
369 TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
370 }
371
372 int
373 soqremque(struct socket *so, int q)
374 {
375 struct socket *head;
376
377 head = so->so_head;
378
379 KASSERT(solocked(so));
380 if (q == 0) {
381 if (so->so_onq != &head->so_q0)
382 return (0);
383 head->so_q0len--;
384 } else {
385 if (so->so_onq != &head->so_q)
386 return (0);
387 head->so_qlen--;
388 }
389 KASSERT(solocked2(so, head));
390 TAILQ_REMOVE(so->so_onq, so, so_qe);
391 so->so_onq = NULL;
392 so->so_head = NULL;
393 return (1);
394 }
395
396 /*
397 * Socantsendmore indicates that no more data will be sent on the
398 * socket; it would normally be applied to a socket when the user
399 * informs the system that no more data is to be sent, by the protocol
400 * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data
401 * will be received, and will normally be applied to the socket by a
402 * protocol when it detects that the peer will send no more data.
403 * Data queued for reading in the socket may yet be read.
404 */
405
406 void
407 socantsendmore(struct socket *so)
408 {
409
410 KASSERT(solocked(so));
411
412 so->so_state |= SS_CANTSENDMORE;
413 sowwakeup(so);
414 }
415
416 void
417 socantrcvmore(struct socket *so)
418 {
419
420 KASSERT(solocked(so));
421
422 so->so_state |= SS_CANTRCVMORE;
423 sorwakeup(so);
424 }
425
426 /*
427 * Wait for data to arrive at/drain from a socket buffer.
428 */
429 int
430 sbwait(struct sockbuf *sb)
431 {
432 struct socket *so;
433 kmutex_t *lock;
434 int error;
435
436 so = sb->sb_so;
437
438 KASSERT(solocked(so));
439
440 sb->sb_flags |= SB_NOTIFY;
441 lock = so->so_lock;
442 if ((sb->sb_flags & SB_NOINTR) != 0)
443 error = cv_timedwait(&sb->sb_cv, lock, sb->sb_timeo);
444 else
445 error = cv_timedwait_sig(&sb->sb_cv, lock, sb->sb_timeo);
446 if (__predict_false(lock != so->so_lock))
447 solockretry(so, lock);
448 return error;
449 }
450
451 /*
452 * Wakeup processes waiting on a socket buffer.
453 * Do asynchronous notification via SIGIO
454 * if the socket buffer has the SB_ASYNC flag set.
455 */
456 void
457 sowakeup(struct socket *so, struct sockbuf *sb, int code)
458 {
459 int band;
460
461 KASSERT(solocked(so));
462 KASSERT(sb->sb_so == so);
463
464 if (code == POLL_IN)
465 band = POLLIN|POLLRDNORM;
466 else
467 band = POLLOUT|POLLWRNORM;
468 sb->sb_flags &= ~SB_NOTIFY;
469 selnotify(&sb->sb_sel, band, NOTE_SUBMIT);
470 cv_broadcast(&sb->sb_cv);
471 if (sb->sb_flags & SB_ASYNC)
472 fownsignal(so->so_pgid, SIGIO, code, band, so);
473 if (sb->sb_flags & SB_UPCALL)
474 (*so->so_upcall)(so, so->so_upcallarg, band, M_DONTWAIT);
475 }
476
477 /*
478 * Reset a socket's lock pointer. Wake all threads waiting on the
479 * socket's condition variables so that they can restart their waits
480 * using the new lock. The existing lock must be held.
481 */
482 void
483 solockreset(struct socket *so, kmutex_t *lock)
484 {
485
486 KASSERT(solocked(so));
487
488 so->so_lock = lock;
489 cv_broadcast(&so->so_snd.sb_cv);
490 cv_broadcast(&so->so_rcv.sb_cv);
491 cv_broadcast(&so->so_cv);
492 }
493
494 /*
495 * Socket buffer (struct sockbuf) utility routines.
496 *
497 * Each socket contains two socket buffers: one for sending data and
498 * one for receiving data. Each buffer contains a queue of mbufs,
499 * information about the number of mbufs and amount of data in the
500 * queue, and other fields allowing poll() statements and notification
501 * on data availability to be implemented.
502 *
503 * Data stored in a socket buffer is maintained as a list of records.
504 * Each record is a list of mbufs chained together with the m_next
505 * field. Records are chained together with the m_nextpkt field. The upper
506 * level routine soreceive() expects the following conventions to be
507 * observed when placing information in the receive buffer:
508 *
509 * 1. If the protocol requires each message be preceded by the sender's
510 * name, then a record containing that name must be present before
511 * any associated data (mbuf's must be of type MT_SONAME).
512 * 2. If the protocol supports the exchange of ``access rights'' (really
513 * just additional data associated with the message), and there are
514 * ``rights'' to be received, then a record containing this data
515 * should be present (mbuf's must be of type MT_CONTROL).
516 * 3. If a name or rights record exists, then it must be followed by
517 * a data record, perhaps of zero length.
518 *
519 * Before using a new socket structure it is first necessary to reserve
520 * buffer space to the socket, by calling sbreserve(). This should commit
521 * some of the available buffer space in the system buffer pool for the
522 * socket (currently, it does nothing but enforce limits). The space
523 * should be released by calling sbrelease() when the socket is destroyed.
524 */
525
526 int
527 sb_max_set(u_long new_sbmax)
528 {
529 int s;
530
531 if (new_sbmax < (16 * 1024))
532 return (EINVAL);
533
534 s = splsoftnet();
535 sb_max = new_sbmax;
536 sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
537 splx(s);
538
539 return (0);
540 }
541
542 int
543 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
544 {
545
546 KASSERT(so->so_lock == NULL || solocked(so));
547
548 /*
549 * there's at least one application (a configure script of screen)
550 * which expects a fifo is writable even if it has "some" bytes
551 * in its buffer.
552 * so we want to make sure (hiwat - lowat) >= (some bytes).
553 *
554 * PIPE_BUF here is an arbitrary value chosen as (some bytes) above.
555 * we expect it's large enough for such applications.
556 */
557 u_long lowat = MAX(sock_loan_thresh, MCLBYTES);
558 u_long hiwat = lowat + PIPE_BUF;
559
560 if (sndcc < hiwat)
561 sndcc = hiwat;
562 if (sbreserve(&so->so_snd, sndcc, so) == 0)
563 goto bad;
564 if (sbreserve(&so->so_rcv, rcvcc, so) == 0)
565 goto bad2;
566 if (so->so_rcv.sb_lowat == 0)
567 so->so_rcv.sb_lowat = 1;
568 if (so->so_snd.sb_lowat == 0)
569 so->so_snd.sb_lowat = lowat;
570 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
571 so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
572 return (0);
573 bad2:
574 sbrelease(&so->so_snd, so);
575 bad:
576 return (ENOBUFS);
577 }
578
579 /*
580 * Allot mbufs to a sockbuf.
581 * Attempt to scale mbmax so that mbcnt doesn't become limiting
582 * if buffering efficiency is near the normal case.
583 */
584 int
585 sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
586 {
587 struct lwp *l = curlwp; /* XXX */
588 rlim_t maxcc;
589 struct uidinfo *uidinfo;
590
591 KASSERT(so->so_lock == NULL || solocked(so));
592 KASSERT(sb->sb_so == so);
593 KASSERT(sb_max_adj != 0);
594
595 if (cc == 0 || cc > sb_max_adj)
596 return (0);
597
598 maxcc = l->l_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur;
599
600 uidinfo = so->so_uidinfo;
601 if (!chgsbsize(uidinfo, &sb->sb_hiwat, cc, maxcc))
602 return 0;
603 sb->sb_mbmax = min(cc * 2, sb_max);
604 if (sb->sb_lowat > sb->sb_hiwat)
605 sb->sb_lowat = sb->sb_hiwat;
606 return (1);
607 }
608
609 /*
610 * Free mbufs held by a socket, and reserved mbuf space. We do not assert
611 * that the socket is held locked here: see sorflush().
612 */
613 void
614 sbrelease(struct sockbuf *sb, struct socket *so)
615 {
616
617 KASSERT(sb->sb_so == so);
618
619 sbflush(sb);
620 (void)chgsbsize(so->so_uidinfo, &sb->sb_hiwat, 0, RLIM_INFINITY);
621 sb->sb_mbmax = 0;
622 }
623
624 /*
625 * Routines to add and remove
626 * data from an mbuf queue.
627 *
628 * The routines sbappend() or sbappendrecord() are normally called to
629 * append new mbufs to a socket buffer, after checking that adequate
630 * space is available, comparing the function sbspace() with the amount
631 * of data to be added. sbappendrecord() differs from sbappend() in
632 * that data supplied is treated as the beginning of a new record.
633 * To place a sender's address, optional access rights, and data in a
634 * socket receive buffer, sbappendaddr() should be used. To place
635 * access rights and data in a socket receive buffer, sbappendrights()
636 * should be used. In either case, the new data begins a new record.
637 * Note that unlike sbappend() and sbappendrecord(), these routines check
638 * for the caller that there will be enough space to store the data.
639 * Each fails if there is not enough space, or if it cannot find mbufs
640 * to store additional information in.
641 *
642 * Reliable protocols may use the socket send buffer to hold data
643 * awaiting acknowledgement. Data is normally copied from a socket
644 * send buffer in a protocol with m_copy for output to a peer,
645 * and then removing the data from the socket buffer with sbdrop()
646 * or sbdroprecord() when the data is acknowledged by the peer.
647 */
648
649 #ifdef SOCKBUF_DEBUG
650 void
651 sblastrecordchk(struct sockbuf *sb, const char *where)
652 {
653 struct mbuf *m = sb->sb_mb;
654
655 KASSERT(solocked(sb->sb_so));
656
657 while (m && m->m_nextpkt)
658 m = m->m_nextpkt;
659
660 if (m != sb->sb_lastrecord) {
661 printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
662 sb->sb_mb, sb->sb_lastrecord, m);
663 printf("packet chain:\n");
664 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
665 printf("\t%p\n", m);
666 panic("sblastrecordchk from %s", where);
667 }
668 }
669
670 void
671 sblastmbufchk(struct sockbuf *sb, const char *where)
672 {
673 struct mbuf *m = sb->sb_mb;
674 struct mbuf *n;
675
676 KASSERT(solocked(sb->sb_so));
677
678 while (m && m->m_nextpkt)
679 m = m->m_nextpkt;
680
681 while (m && m->m_next)
682 m = m->m_next;
683
684 if (m != sb->sb_mbtail) {
685 printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
686 sb->sb_mb, sb->sb_mbtail, m);
687 printf("packet tree:\n");
688 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
689 printf("\t");
690 for (n = m; n != NULL; n = n->m_next)
691 printf("%p ", n);
692 printf("\n");
693 }
694 panic("sblastmbufchk from %s", where);
695 }
696 }
697 #endif /* SOCKBUF_DEBUG */
698
699 /*
700 * Link a chain of records onto a socket buffer
701 */
702 #define SBLINKRECORDCHAIN(sb, m0, mlast) \
703 do { \
704 if ((sb)->sb_lastrecord != NULL) \
705 (sb)->sb_lastrecord->m_nextpkt = (m0); \
706 else \
707 (sb)->sb_mb = (m0); \
708 (sb)->sb_lastrecord = (mlast); \
709 } while (/*CONSTCOND*/0)
710
711
712 #define SBLINKRECORD(sb, m0) \
713 SBLINKRECORDCHAIN(sb, m0, m0)
714
715 /*
716 * Append mbuf chain m to the last record in the
717 * socket buffer sb. The additional space associated
718 * the mbuf chain is recorded in sb. Empty mbufs are
719 * discarded and mbufs are compacted where possible.
720 */
721 void
722 sbappend(struct sockbuf *sb, struct mbuf *m)
723 {
724 struct mbuf *n;
725
726 KASSERT(solocked(sb->sb_so));
727
728 if (m == 0)
729 return;
730
731 #ifdef MBUFTRACE
732 m_claimm(m, sb->sb_mowner);
733 #endif
734
735 SBLASTRECORDCHK(sb, "sbappend 1");
736
737 if ((n = sb->sb_lastrecord) != NULL) {
738 /*
739 * XXX Would like to simply use sb_mbtail here, but
740 * XXX I need to verify that I won't miss an EOR that
741 * XXX way.
742 */
743 do {
744 if (n->m_flags & M_EOR) {
745 sbappendrecord(sb, m); /* XXXXXX!!!! */
746 return;
747 }
748 } while (n->m_next && (n = n->m_next));
749 } else {
750 /*
751 * If this is the first record in the socket buffer, it's
752 * also the last record.
753 */
754 sb->sb_lastrecord = m;
755 }
756 sbcompress(sb, m, n);
757 SBLASTRECORDCHK(sb, "sbappend 2");
758 }
759
760 /*
761 * This version of sbappend() should only be used when the caller
762 * absolutely knows that there will never be more than one record
763 * in the socket buffer, that is, a stream protocol (such as TCP).
764 */
765 void
766 sbappendstream(struct sockbuf *sb, struct mbuf *m)
767 {
768
769 KASSERT(solocked(sb->sb_so));
770 KDASSERT(m->m_nextpkt == NULL);
771 KASSERT(sb->sb_mb == sb->sb_lastrecord);
772
773 SBLASTMBUFCHK(sb, __func__);
774
775 #ifdef MBUFTRACE
776 m_claimm(m, sb->sb_mowner);
777 #endif
778
779 sbcompress(sb, m, sb->sb_mbtail);
780
781 sb->sb_lastrecord = sb->sb_mb;
782 SBLASTRECORDCHK(sb, __func__);
783 }
784
785 #ifdef SOCKBUF_DEBUG
786 void
787 sbcheck(struct sockbuf *sb)
788 {
789 struct mbuf *m, *m2;
790 u_long len, mbcnt;
791
792 KASSERT(solocked(sb->sb_so));
793
794 len = 0;
795 mbcnt = 0;
796 for (m = sb->sb_mb; m; m = m->m_nextpkt) {
797 for (m2 = m; m2 != NULL; m2 = m2->m_next) {
798 len += m2->m_len;
799 mbcnt += MSIZE;
800 if (m2->m_flags & M_EXT)
801 mbcnt += m2->m_ext.ext_size;
802 if (m2->m_nextpkt != NULL)
803 panic("sbcheck nextpkt");
804 }
805 }
806 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
807 printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
808 mbcnt, sb->sb_mbcnt);
809 panic("sbcheck");
810 }
811 }
812 #endif
813
814 /*
815 * As above, except the mbuf chain
816 * begins a new record.
817 */
818 void
819 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
820 {
821 struct mbuf *m;
822
823 KASSERT(solocked(sb->sb_so));
824
825 if (m0 == 0)
826 return;
827
828 #ifdef MBUFTRACE
829 m_claimm(m0, sb->sb_mowner);
830 #endif
831 /*
832 * Put the first mbuf on the queue.
833 * Note this permits zero length records.
834 */
835 sballoc(sb, m0);
836 SBLASTRECORDCHK(sb, "sbappendrecord 1");
837 SBLINKRECORD(sb, m0);
838 m = m0->m_next;
839 m0->m_next = 0;
840 if (m && (m0->m_flags & M_EOR)) {
841 m0->m_flags &= ~M_EOR;
842 m->m_flags |= M_EOR;
843 }
844 sbcompress(sb, m, m0);
845 SBLASTRECORDCHK(sb, "sbappendrecord 2");
846 }
847
848 /*
849 * As above except that OOB data
850 * is inserted at the beginning of the sockbuf,
851 * but after any other OOB data.
852 */
853 void
854 sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
855 {
856 struct mbuf *m, **mp;
857
858 KASSERT(solocked(sb->sb_so));
859
860 if (m0 == 0)
861 return;
862
863 SBLASTRECORDCHK(sb, "sbinsertoob 1");
864
865 for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
866 again:
867 switch (m->m_type) {
868
869 case MT_OOBDATA:
870 continue; /* WANT next train */
871
872 case MT_CONTROL:
873 if ((m = m->m_next) != NULL)
874 goto again; /* inspect THIS train further */
875 }
876 break;
877 }
878 /*
879 * Put the first mbuf on the queue.
880 * Note this permits zero length records.
881 */
882 sballoc(sb, m0);
883 m0->m_nextpkt = *mp;
884 if (*mp == NULL) {
885 /* m0 is actually the new tail */
886 sb->sb_lastrecord = m0;
887 }
888 *mp = m0;
889 m = m0->m_next;
890 m0->m_next = 0;
891 if (m && (m0->m_flags & M_EOR)) {
892 m0->m_flags &= ~M_EOR;
893 m->m_flags |= M_EOR;
894 }
895 sbcompress(sb, m, m0);
896 SBLASTRECORDCHK(sb, "sbinsertoob 2");
897 }
898
899 /*
900 * Append address and data, and optionally, control (ancillary) data
901 * to the receive queue of a socket. If present,
902 * m0 must include a packet header with total length.
903 * Returns 0 if no space in sockbuf or insufficient mbufs.
904 */
905 int
906 sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0,
907 struct mbuf *control)
908 {
909 struct mbuf *m, *n, *nlast;
910 int space, len;
911
912 KASSERT(solocked(sb->sb_so));
913
914 space = asa->sa_len;
915
916 if (m0 != NULL) {
917 if ((m0->m_flags & M_PKTHDR) == 0)
918 panic("sbappendaddr");
919 space += m0->m_pkthdr.len;
920 #ifdef MBUFTRACE
921 m_claimm(m0, sb->sb_mowner);
922 #endif
923 }
924 for (n = control; n; n = n->m_next) {
925 space += n->m_len;
926 MCLAIM(n, sb->sb_mowner);
927 if (n->m_next == 0) /* keep pointer to last control buf */
928 break;
929 }
930 if (space > sbspace(sb))
931 return (0);
932 MGET(m, M_DONTWAIT, MT_SONAME);
933 if (m == 0)
934 return (0);
935 MCLAIM(m, sb->sb_mowner);
936 /*
937 * XXX avoid 'comparison always true' warning which isn't easily
938 * avoided.
939 */
940 len = asa->sa_len;
941 if (len > MLEN) {
942 MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
943 if ((m->m_flags & M_EXT) == 0) {
944 m_free(m);
945 return (0);
946 }
947 }
948 m->m_len = asa->sa_len;
949 memcpy(mtod(m, void *), asa, asa->sa_len);
950 if (n)
951 n->m_next = m0; /* concatenate data to control */
952 else
953 control = m0;
954 m->m_next = control;
955
956 SBLASTRECORDCHK(sb, "sbappendaddr 1");
957
958 for (n = m; n->m_next != NULL; n = n->m_next)
959 sballoc(sb, n);
960 sballoc(sb, n);
961 nlast = n;
962 SBLINKRECORD(sb, m);
963
964 sb->sb_mbtail = nlast;
965 SBLASTMBUFCHK(sb, "sbappendaddr");
966 SBLASTRECORDCHK(sb, "sbappendaddr 2");
967
968 return (1);
969 }
970
971 /*
972 * Helper for sbappendchainaddr: prepend a struct sockaddr* to
973 * an mbuf chain.
974 */
975 static inline struct mbuf *
976 m_prepend_sockaddr(struct sockbuf *sb, struct mbuf *m0,
977 const struct sockaddr *asa)
978 {
979 struct mbuf *m;
980 const int salen = asa->sa_len;
981
982 KASSERT(solocked(sb->sb_so));
983
984 /* only the first in each chain need be a pkthdr */
985 MGETHDR(m, M_DONTWAIT, MT_SONAME);
986 if (m == 0)
987 return (0);
988 MCLAIM(m, sb->sb_mowner);
989 #ifdef notyet
990 if (salen > MHLEN) {
991 MEXTMALLOC(m, salen, M_NOWAIT);
992 if ((m->m_flags & M_EXT) == 0) {
993 m_free(m);
994 return (0);
995 }
996 }
997 #else
998 KASSERT(salen <= MHLEN);
999 #endif
1000 m->m_len = salen;
1001 memcpy(mtod(m, void *), asa, salen);
1002 m->m_next = m0;
1003 m->m_pkthdr.len = salen + m0->m_pkthdr.len;
1004
1005 return m;
1006 }
1007
1008 int
1009 sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa,
1010 struct mbuf *m0, int sbprio)
1011 {
1012 int space;
1013 struct mbuf *m, *n, *n0, *nlast;
1014 int error;
1015
1016 KASSERT(solocked(sb->sb_so));
1017
1018 /*
1019 * XXX sbprio reserved for encoding priority of this* request:
1020 * SB_PRIO_NONE --> honour normal sb limits
1021 * SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space,
1022 * take whole chain. Intended for large requests
1023 * that should be delivered atomically (all, or none).
1024 * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow
1025 * over normal socket limits, for messages indicating
1026 * buffer overflow in earlier normal/lower-priority messages
1027 * SB_PRIO_BESTEFFORT --> ignore limits entirely.
1028 * Intended for kernel-generated messages only.
1029 * Up to generator to avoid total mbuf resource exhaustion.
1030 */
1031 (void)sbprio;
1032
1033 if (m0 && (m0->m_flags & M_PKTHDR) == 0)
1034 panic("sbappendaddrchain");
1035
1036 space = sbspace(sb);
1037
1038 #ifdef notyet
1039 /*
1040 * Enforce SB_PRIO_* limits as described above.
1041 */
1042 #endif
1043
1044 n0 = NULL;
1045 nlast = NULL;
1046 for (m = m0; m; m = m->m_nextpkt) {
1047 struct mbuf *np;
1048
1049 #ifdef MBUFTRACE
1050 m_claimm(m, sb->sb_mowner);
1051 #endif
1052
1053 /* Prepend sockaddr to this record (m) of input chain m0 */
1054 n = m_prepend_sockaddr(sb, m, asa);
1055 if (n == NULL) {
1056 error = ENOBUFS;
1057 goto bad;
1058 }
1059
1060 /* Append record (asa+m) to end of new chain n0 */
1061 if (n0 == NULL) {
1062 n0 = n;
1063 } else {
1064 nlast->m_nextpkt = n;
1065 }
1066 /* Keep track of last record on new chain */
1067 nlast = n;
1068
1069 for (np = n; np; np = np->m_next)
1070 sballoc(sb, np);
1071 }
1072
1073 SBLASTRECORDCHK(sb, "sbappendaddrchain 1");
1074
1075 /* Drop the entire chain of (asa+m) records onto the socket */
1076 SBLINKRECORDCHAIN(sb, n0, nlast);
1077
1078 SBLASTRECORDCHK(sb, "sbappendaddrchain 2");
1079
1080 for (m = nlast; m->m_next; m = m->m_next)
1081 ;
1082 sb->sb_mbtail = m;
1083 SBLASTMBUFCHK(sb, "sbappendaddrchain");
1084
1085 return (1);
1086
1087 bad:
1088 /*
1089 * On error, free the prepended addreseses. For consistency
1090 * with sbappendaddr(), leave it to our caller to free
1091 * the input record chain passed to us as m0.
1092 */
1093 while ((n = n0) != NULL) {
1094 struct mbuf *np;
1095
1096 /* Undo the sballoc() of this record */
1097 for (np = n; np; np = np->m_next)
1098 sbfree(sb, np);
1099
1100 n0 = n->m_nextpkt; /* iterate at next prepended address */
1101 MFREE(n, np); /* free prepended address (not data) */
1102 }
1103 return 0;
1104 }
1105
1106
1107 int
1108 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
1109 {
1110 struct mbuf *m, *mlast, *n;
1111 int space;
1112
1113 KASSERT(solocked(sb->sb_so));
1114
1115 space = 0;
1116 if (control == 0)
1117 panic("sbappendcontrol");
1118 for (m = control; ; m = m->m_next) {
1119 space += m->m_len;
1120 MCLAIM(m, sb->sb_mowner);
1121 if (m->m_next == 0)
1122 break;
1123 }
1124 n = m; /* save pointer to last control buffer */
1125 for (m = m0; m; m = m->m_next) {
1126 MCLAIM(m, sb->sb_mowner);
1127 space += m->m_len;
1128 }
1129 if (space > sbspace(sb))
1130 return (0);
1131 n->m_next = m0; /* concatenate data to control */
1132
1133 SBLASTRECORDCHK(sb, "sbappendcontrol 1");
1134
1135 for (m = control; m->m_next != NULL; m = m->m_next)
1136 sballoc(sb, m);
1137 sballoc(sb, m);
1138 mlast = m;
1139 SBLINKRECORD(sb, control);
1140
1141 sb->sb_mbtail = mlast;
1142 SBLASTMBUFCHK(sb, "sbappendcontrol");
1143 SBLASTRECORDCHK(sb, "sbappendcontrol 2");
1144
1145 return (1);
1146 }
1147
1148 /*
1149 * Compress mbuf chain m into the socket
1150 * buffer sb following mbuf n. If n
1151 * is null, the buffer is presumed empty.
1152 */
1153 void
1154 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
1155 {
1156 int eor;
1157 struct mbuf *o;
1158
1159 KASSERT(solocked(sb->sb_so));
1160
1161 eor = 0;
1162 while (m) {
1163 eor |= m->m_flags & M_EOR;
1164 if (m->m_len == 0 &&
1165 (eor == 0 ||
1166 (((o = m->m_next) || (o = n)) &&
1167 o->m_type == m->m_type))) {
1168 if (sb->sb_lastrecord == m)
1169 sb->sb_lastrecord = m->m_next;
1170 m = m_free(m);
1171 continue;
1172 }
1173 if (n && (n->m_flags & M_EOR) == 0 &&
1174 /* M_TRAILINGSPACE() checks buffer writeability */
1175 m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
1176 m->m_len <= M_TRAILINGSPACE(n) &&
1177 n->m_type == m->m_type) {
1178 memcpy(mtod(n, char *) + n->m_len, mtod(m, void *),
1179 (unsigned)m->m_len);
1180 n->m_len += m->m_len;
1181 sb->sb_cc += m->m_len;
1182 m = m_free(m);
1183 continue;
1184 }
1185 if (n)
1186 n->m_next = m;
1187 else
1188 sb->sb_mb = m;
1189 sb->sb_mbtail = m;
1190 sballoc(sb, m);
1191 n = m;
1192 m->m_flags &= ~M_EOR;
1193 m = m->m_next;
1194 n->m_next = 0;
1195 }
1196 if (eor) {
1197 if (n)
1198 n->m_flags |= eor;
1199 else
1200 printf("semi-panic: sbcompress\n");
1201 }
1202 SBLASTMBUFCHK(sb, __func__);
1203 }
1204
1205 /*
1206 * Free all mbufs in a sockbuf.
1207 * Check that all resources are reclaimed.
1208 */
1209 void
1210 sbflush(struct sockbuf *sb)
1211 {
1212
1213 KASSERT(solocked(sb->sb_so));
1214 KASSERT((sb->sb_flags & SB_LOCK) == 0);
1215
1216 while (sb->sb_mbcnt)
1217 sbdrop(sb, (int)sb->sb_cc);
1218
1219 KASSERT(sb->sb_cc == 0);
1220 KASSERT(sb->sb_mb == NULL);
1221 KASSERT(sb->sb_mbtail == NULL);
1222 KASSERT(sb->sb_lastrecord == NULL);
1223 }
1224
1225 /*
1226 * Drop data from (the front of) a sockbuf.
1227 */
1228 void
1229 sbdrop(struct sockbuf *sb, int len)
1230 {
1231 struct mbuf *m, *mn, *next;
1232
1233 KASSERT(solocked(sb->sb_so));
1234
1235 next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
1236 while (len > 0) {
1237 if (m == 0) {
1238 if (next == 0)
1239 panic("sbdrop");
1240 m = next;
1241 next = m->m_nextpkt;
1242 continue;
1243 }
1244 if (m->m_len > len) {
1245 m->m_len -= len;
1246 m->m_data += len;
1247 sb->sb_cc -= len;
1248 break;
1249 }
1250 len -= m->m_len;
1251 sbfree(sb, m);
1252 MFREE(m, mn);
1253 m = mn;
1254 }
1255 while (m && m->m_len == 0) {
1256 sbfree(sb, m);
1257 MFREE(m, mn);
1258 m = mn;
1259 }
1260 if (m) {
1261 sb->sb_mb = m;
1262 m->m_nextpkt = next;
1263 } else
1264 sb->sb_mb = next;
1265 /*
1266 * First part is an inline SB_EMPTY_FIXUP(). Second part
1267 * makes sure sb_lastrecord is up-to-date if we dropped
1268 * part of the last record.
1269 */
1270 m = sb->sb_mb;
1271 if (m == NULL) {
1272 sb->sb_mbtail = NULL;
1273 sb->sb_lastrecord = NULL;
1274 } else if (m->m_nextpkt == NULL)
1275 sb->sb_lastrecord = m;
1276 }
1277
1278 /*
1279 * Drop a record off the front of a sockbuf
1280 * and move the next record to the front.
1281 */
1282 void
1283 sbdroprecord(struct sockbuf *sb)
1284 {
1285 struct mbuf *m, *mn;
1286
1287 KASSERT(solocked(sb->sb_so));
1288
1289 m = sb->sb_mb;
1290 if (m) {
1291 sb->sb_mb = m->m_nextpkt;
1292 do {
1293 sbfree(sb, m);
1294 MFREE(m, mn);
1295 } while ((m = mn) != NULL);
1296 }
1297 SB_EMPTY_FIXUP(sb);
1298 }
1299
1300 /*
1301 * Create a "control" mbuf containing the specified data
1302 * with the specified type for presentation on a socket buffer.
1303 */
1304 struct mbuf *
1305 sbcreatecontrol(void *p, int size, int type, int level)
1306 {
1307 struct cmsghdr *cp;
1308 struct mbuf *m;
1309
1310 if (CMSG_SPACE(size) > MCLBYTES) {
1311 printf("sbcreatecontrol: message too large %d\n", size);
1312 return NULL;
1313 }
1314
1315 if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
1316 return ((struct mbuf *) NULL);
1317 if (CMSG_SPACE(size) > MLEN) {
1318 MCLGET(m, M_DONTWAIT);
1319 if ((m->m_flags & M_EXT) == 0) {
1320 m_free(m);
1321 return NULL;
1322 }
1323 }
1324 cp = mtod(m, struct cmsghdr *);
1325 memcpy(CMSG_DATA(cp), p, size);
1326 m->m_len = CMSG_SPACE(size);
1327 cp->cmsg_len = CMSG_LEN(size);
1328 cp->cmsg_level = level;
1329 cp->cmsg_type = type;
1330 return (m);
1331 }
1332
1333 void
1334 solockretry(struct socket *so, kmutex_t *lock)
1335 {
1336
1337 while (lock != so->so_lock) {
1338 mutex_exit(lock);
1339 lock = so->so_lock;
1340 mutex_enter(lock);
1341 }
1342 }
1343
1344 bool
1345 solocked(struct socket *so)
1346 {
1347
1348 return mutex_owned(so->so_lock);
1349 }
1350
1351 bool
1352 solocked2(struct socket *so1, struct socket *so2)
1353 {
1354 kmutex_t *lock;
1355
1356 lock = so1->so_lock;
1357 if (lock != so2->so_lock)
1358 return false;
1359 return mutex_owned(lock);
1360 }
1361
1362 /*
1363 * Assign a default lock to a new socket. For PRU_ATTACH, and done by
1364 * protocols that do not have special locking requirements.
1365 */
1366 void
1367 sosetlock(struct socket *so)
1368 {
1369 kmutex_t *lock;
1370
1371 if (so->so_lock == NULL) {
1372 lock = softnet_lock;
1373 so->so_lock = lock;
1374 mutex_obj_hold(lock);
1375 mutex_enter(lock);
1376 }
1377
1378 /* In all cases, lock must be held on return from PRU_ATTACH. */
1379 KASSERT(solocked(so));
1380 }
1381
1382 /*
1383 * Set lock on sockbuf sb; sleep if lock is already held.
1384 * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
1385 * Returns error without lock if sleep is interrupted.
1386 */
1387 int
1388 sblock(struct sockbuf *sb, int wf)
1389 {
1390 struct socket *so;
1391 kmutex_t *lock;
1392 int error;
1393
1394 KASSERT(solocked(sb->sb_so));
1395
1396 for (;;) {
1397 if (__predict_true((sb->sb_flags & SB_LOCK) == 0)) {
1398 sb->sb_flags |= SB_LOCK;
1399 return 0;
1400 }
1401 if (wf != M_WAITOK)
1402 return EWOULDBLOCK;
1403 so = sb->sb_so;
1404 lock = so->so_lock;
1405 if ((sb->sb_flags & SB_NOINTR) != 0) {
1406 cv_wait(&so->so_cv, lock);
1407 error = 0;
1408 } else
1409 error = cv_wait_sig(&so->so_cv, lock);
1410 if (__predict_false(lock != so->so_lock))
1411 solockretry(so, lock);
1412 if (error != 0)
1413 return error;
1414 }
1415 }
1416
1417 void
1418 sbunlock(struct sockbuf *sb)
1419 {
1420 struct socket *so;
1421
1422 so = sb->sb_so;
1423
1424 KASSERT(solocked(so));
1425 KASSERT((sb->sb_flags & SB_LOCK) != 0);
1426
1427 sb->sb_flags &= ~SB_LOCK;
1428 cv_broadcast(&so->so_cv);
1429 }
1430
1431 int
1432 sowait(struct socket *so, bool catch, int timo)
1433 {
1434 kmutex_t *lock;
1435 int error;
1436
1437 KASSERT(solocked(so));
1438 KASSERT(catch || timo != 0);
1439
1440 lock = so->so_lock;
1441 if (catch)
1442 error = cv_timedwait_sig(&so->so_cv, lock, timo);
1443 else
1444 error = cv_timedwait(&so->so_cv, lock, timo);
1445 if (__predict_false(lock != so->so_lock))
1446 solockretry(so, lock);
1447 return error;
1448 }
1449