uipc_socket2.c revision 1.109.2.2 1 /* $NetBSD: uipc_socket2.c,v 1.109.2.2 2014/05/22 11:41:03 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*
30 * Copyright (c) 1982, 1986, 1988, 1990, 1993
31 * The Regents of the University of California. All rights reserved.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 * 3. Neither the name of the University nor the names of its contributors
42 * may be used to endorse or promote products derived from this software
43 * without specific prior written permission.
44 *
45 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 * SUCH DAMAGE.
56 *
57 * @(#)uipc_socket2.c 8.2 (Berkeley) 2/14/95
58 */
59
60 #include <sys/cdefs.h>
61 __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.109.2.2 2014/05/22 11:41:03 yamt Exp $");
62
63 #include "opt_mbuftrace.h"
64 #include "opt_sb_max.h"
65
66 #include <sys/param.h>
67 #include <sys/systm.h>
68 #include <sys/proc.h>
69 #include <sys/file.h>
70 #include <sys/buf.h>
71 #include <sys/mbuf.h>
72 #include <sys/protosw.h>
73 #include <sys/domain.h>
74 #include <sys/poll.h>
75 #include <sys/socket.h>
76 #include <sys/socketvar.h>
77 #include <sys/signalvar.h>
78 #include <sys/kauth.h>
79 #include <sys/pool.h>
80 #include <sys/uidinfo.h>
81
82 /*
83 * Primitive routines for operating on sockets and socket buffers.
84 *
85 * Locking rules and assumptions:
86 *
87 * o socket::so_lock can change on the fly. The low level routines used
88 * to lock sockets are aware of this. When so_lock is acquired, the
89 * routine locking must check to see if so_lock still points to the
90 * lock that was acquired. If so_lock has changed in the meantime, the
91 * now irellevant lock that was acquired must be dropped and the lock
92 * operation retried. Although not proven here, this is completely safe
93 * on a multiprocessor system, even with relaxed memory ordering, given
94 * the next two rules:
95 *
96 * o In order to mutate so_lock, the lock pointed to by the current value
97 * of so_lock must be held: i.e., the socket must be held locked by the
98 * changing thread. The thread must issue membar_exit() to prevent
99 * memory accesses being reordered, and can set so_lock to the desired
100 * value. If the lock pointed to by the new value of so_lock is not
101 * held by the changing thread, the socket must then be considered
102 * unlocked.
103 *
104 * o If so_lock is mutated, and the previous lock referred to by so_lock
105 * could still be visible to other threads in the system (e.g. via file
106 * descriptor or protocol-internal reference), then the old lock must
107 * remain valid until the socket and/or protocol control block has been
108 * torn down.
109 *
110 * o If a socket has a non-NULL so_head value (i.e. is in the process of
111 * connecting), then locking the socket must also lock the socket pointed
112 * to by so_head: their lock pointers must match.
113 *
114 * o If a socket has connections in progress (so_q, so_q0 not empty) then
115 * locking the socket must also lock the sockets attached to both queues.
116 * Again, their lock pointers must match.
117 *
118 * o Beyond the initial lock assigment in socreate(), assigning locks to
119 * sockets is the responsibility of the individual protocols / protocol
120 * domains.
121 */
122
123 static pool_cache_t socket_cache;
124
125 u_long sb_max = SB_MAX; /* maximum socket buffer size */
126 static u_long sb_max_adj; /* adjusted sb_max */
127
128 /*
129 * Procedures to manipulate state flags of socket
130 * and do appropriate wakeups. Normal sequence from the
131 * active (originating) side is that soisconnecting() is
132 * called during processing of connect() call,
133 * resulting in an eventual call to soisconnected() if/when the
134 * connection is established. When the connection is torn down
135 * soisdisconnecting() is called during processing of disconnect() call,
136 * and soisdisconnected() is called when the connection to the peer
137 * is totally severed. The semantics of these routines are such that
138 * connectionless protocols can call soisconnected() and soisdisconnected()
139 * only, bypassing the in-progress calls when setting up a ``connection''
140 * takes no time.
141 *
142 * From the passive side, a socket is created with
143 * two queues of sockets: so_q0 for connections in progress
144 * and so_q for connections already made and awaiting user acceptance.
145 * As a protocol is preparing incoming connections, it creates a socket
146 * structure queued on so_q0 by calling sonewconn(). When the connection
147 * is established, soisconnected() is called, and transfers the
148 * socket structure to so_q, making it available to accept().
149 *
150 * If a socket is closed with sockets on either
151 * so_q0 or so_q, these sockets are dropped.
152 *
153 * If higher level protocols are implemented in
154 * the kernel, the wakeups done here will sometimes
155 * cause software-interrupt process scheduling.
156 */
157
158 void
159 soisconnecting(struct socket *so)
160 {
161
162 KASSERT(solocked(so));
163
164 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
165 so->so_state |= SS_ISCONNECTING;
166 }
167
168 void
169 soisconnected(struct socket *so)
170 {
171 struct socket *head;
172
173 head = so->so_head;
174
175 KASSERT(solocked(so));
176 KASSERT(head == NULL || solocked2(so, head));
177
178 so->so_state &= ~(SS_ISCONNECTING | SS_ISDISCONNECTING);
179 so->so_state |= SS_ISCONNECTED;
180 if (head && so->so_onq == &head->so_q0) {
181 if ((so->so_options & SO_ACCEPTFILTER) == 0) {
182 soqremque(so, 0);
183 soqinsque(head, so, 1);
184 sorwakeup(head);
185 cv_broadcast(&head->so_cv);
186 } else {
187 so->so_upcall =
188 head->so_accf->so_accept_filter->accf_callback;
189 so->so_upcallarg = head->so_accf->so_accept_filter_arg;
190 so->so_rcv.sb_flags |= SB_UPCALL;
191 so->so_options &= ~SO_ACCEPTFILTER;
192 (*so->so_upcall)(so, so->so_upcallarg,
193 POLLIN|POLLRDNORM, M_DONTWAIT);
194 }
195 } else {
196 cv_broadcast(&so->so_cv);
197 sorwakeup(so);
198 sowwakeup(so);
199 }
200 }
201
202 void
203 soisdisconnecting(struct socket *so)
204 {
205
206 KASSERT(solocked(so));
207
208 so->so_state &= ~SS_ISCONNECTING;
209 so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
210 cv_broadcast(&so->so_cv);
211 sowwakeup(so);
212 sorwakeup(so);
213 }
214
215 void
216 soisdisconnected(struct socket *so)
217 {
218
219 KASSERT(solocked(so));
220
221 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
222 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
223 cv_broadcast(&so->so_cv);
224 sowwakeup(so);
225 sorwakeup(so);
226 }
227
228 void
229 soinit2(void)
230 {
231
232 socket_cache = pool_cache_init(sizeof(struct socket), 0, 0, 0,
233 "socket", NULL, IPL_SOFTNET, NULL, NULL, NULL);
234 }
235
236 /*
237 * When an attempt at a new connection is noted on a socket
238 * which accepts connections, sonewconn is called. If the
239 * connection is possible (subject to space constraints, etc.)
240 * then we allocate a new structure, propoerly linked into the
241 * data structure of the original socket, and return this.
242 */
243 struct socket *
244 sonewconn(struct socket *head, bool conncomplete)
245 {
246 struct socket *so;
247 int soqueue, error;
248
249 KASSERT(solocked(head));
250
251 if ((head->so_options & SO_ACCEPTFILTER) != 0)
252 conncomplete = false;
253 soqueue = conncomplete ? 1 : 0;
254
255 if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
256 return NULL;
257 so = soget(false);
258 if (so == NULL)
259 return NULL;
260 mutex_obj_hold(head->so_lock);
261 so->so_lock = head->so_lock;
262 so->so_type = head->so_type;
263 so->so_options = head->so_options &~ SO_ACCEPTCONN;
264 so->so_linger = head->so_linger;
265 so->so_state = head->so_state | SS_NOFDREF;
266 so->so_proto = head->so_proto;
267 so->so_timeo = head->so_timeo;
268 so->so_pgid = head->so_pgid;
269 so->so_send = head->so_send;
270 so->so_receive = head->so_receive;
271 so->so_uidinfo = head->so_uidinfo;
272 so->so_cpid = head->so_cpid;
273 #ifdef MBUFTRACE
274 so->so_mowner = head->so_mowner;
275 so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
276 so->so_snd.sb_mowner = head->so_snd.sb_mowner;
277 #endif
278 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat) != 0)
279 goto out;
280 so->so_snd.sb_lowat = head->so_snd.sb_lowat;
281 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
282 so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
283 so->so_snd.sb_timeo = head->so_snd.sb_timeo;
284 so->so_rcv.sb_flags |= head->so_rcv.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
285 so->so_snd.sb_flags |= head->so_snd.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
286 soqinsque(head, so, soqueue);
287 error = (*so->so_proto->pr_usrreq)(so, PRU_ATTACH, NULL, NULL,
288 NULL, NULL);
289 KASSERT(solocked(so));
290 if (error != 0) {
291 (void) soqremque(so, soqueue);
292 out:
293 /*
294 * Remove acccept filter if one is present.
295 * XXX Is this really needed?
296 */
297 if (so->so_accf != NULL)
298 (void)accept_filt_clear(so);
299 soput(so);
300 return NULL;
301 }
302 if (conncomplete) {
303 sorwakeup(head);
304 cv_broadcast(&head->so_cv);
305 so->so_state |= SS_ISCONNECTED;
306 }
307 return so;
308 }
309
310 struct socket *
311 soget(bool waitok)
312 {
313 struct socket *so;
314
315 so = pool_cache_get(socket_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
316 if (__predict_false(so == NULL))
317 return (NULL);
318 memset(so, 0, sizeof(*so));
319 TAILQ_INIT(&so->so_q0);
320 TAILQ_INIT(&so->so_q);
321 cv_init(&so->so_cv, "socket");
322 cv_init(&so->so_rcv.sb_cv, "netio");
323 cv_init(&so->so_snd.sb_cv, "netio");
324 selinit(&so->so_rcv.sb_sel);
325 selinit(&so->so_snd.sb_sel);
326 so->so_rcv.sb_so = so;
327 so->so_snd.sb_so = so;
328 return so;
329 }
330
331 void
332 soput(struct socket *so)
333 {
334
335 KASSERT(!cv_has_waiters(&so->so_cv));
336 KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
337 KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
338 seldestroy(&so->so_rcv.sb_sel);
339 seldestroy(&so->so_snd.sb_sel);
340 mutex_obj_free(so->so_lock);
341 cv_destroy(&so->so_cv);
342 cv_destroy(&so->so_rcv.sb_cv);
343 cv_destroy(&so->so_snd.sb_cv);
344 pool_cache_put(socket_cache, so);
345 }
346
347 void
348 soqinsque(struct socket *head, struct socket *so, int q)
349 {
350
351 KASSERT(solocked2(head, so));
352
353 #ifdef DIAGNOSTIC
354 if (so->so_onq != NULL)
355 panic("soqinsque");
356 #endif
357
358 so->so_head = head;
359 if (q == 0) {
360 head->so_q0len++;
361 so->so_onq = &head->so_q0;
362 } else {
363 head->so_qlen++;
364 so->so_onq = &head->so_q;
365 }
366 TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
367 }
368
369 int
370 soqremque(struct socket *so, int q)
371 {
372 struct socket *head;
373
374 head = so->so_head;
375
376 KASSERT(solocked(so));
377 if (q == 0) {
378 if (so->so_onq != &head->so_q0)
379 return (0);
380 head->so_q0len--;
381 } else {
382 if (so->so_onq != &head->so_q)
383 return (0);
384 head->so_qlen--;
385 }
386 KASSERT(solocked2(so, head));
387 TAILQ_REMOVE(so->so_onq, so, so_qe);
388 so->so_onq = NULL;
389 so->so_head = NULL;
390 return (1);
391 }
392
393 /*
394 * Socantsendmore indicates that no more data will be sent on the
395 * socket; it would normally be applied to a socket when the user
396 * informs the system that no more data is to be sent, by the protocol
397 * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data
398 * will be received, and will normally be applied to the socket by a
399 * protocol when it detects that the peer will send no more data.
400 * Data queued for reading in the socket may yet be read.
401 */
402
403 void
404 socantsendmore(struct socket *so)
405 {
406
407 KASSERT(solocked(so));
408
409 so->so_state |= SS_CANTSENDMORE;
410 sowwakeup(so);
411 }
412
413 void
414 socantrcvmore(struct socket *so)
415 {
416
417 KASSERT(solocked(so));
418
419 so->so_state |= SS_CANTRCVMORE;
420 sorwakeup(so);
421 }
422
423 /*
424 * Wait for data to arrive at/drain from a socket buffer.
425 */
426 int
427 sbwait(struct sockbuf *sb)
428 {
429 struct socket *so;
430 kmutex_t *lock;
431 int error;
432
433 so = sb->sb_so;
434
435 KASSERT(solocked(so));
436
437 sb->sb_flags |= SB_NOTIFY;
438 lock = so->so_lock;
439 if ((sb->sb_flags & SB_NOINTR) != 0)
440 error = cv_timedwait(&sb->sb_cv, lock, sb->sb_timeo);
441 else
442 error = cv_timedwait_sig(&sb->sb_cv, lock, sb->sb_timeo);
443 if (__predict_false(lock != so->so_lock))
444 solockretry(so, lock);
445 return error;
446 }
447
448 /*
449 * Wakeup processes waiting on a socket buffer.
450 * Do asynchronous notification via SIGIO
451 * if the socket buffer has the SB_ASYNC flag set.
452 */
453 void
454 sowakeup(struct socket *so, struct sockbuf *sb, int code)
455 {
456 int band;
457
458 KASSERT(solocked(so));
459 KASSERT(sb->sb_so == so);
460
461 if (code == POLL_IN)
462 band = POLLIN|POLLRDNORM;
463 else
464 band = POLLOUT|POLLWRNORM;
465 sb->sb_flags &= ~SB_NOTIFY;
466 selnotify(&sb->sb_sel, band, NOTE_SUBMIT);
467 cv_broadcast(&sb->sb_cv);
468 if (sb->sb_flags & SB_ASYNC)
469 fownsignal(so->so_pgid, SIGIO, code, band, so);
470 if (sb->sb_flags & SB_UPCALL)
471 (*so->so_upcall)(so, so->so_upcallarg, band, M_DONTWAIT);
472 }
473
474 /*
475 * Reset a socket's lock pointer. Wake all threads waiting on the
476 * socket's condition variables so that they can restart their waits
477 * using the new lock. The existing lock must be held.
478 */
479 void
480 solockreset(struct socket *so, kmutex_t *lock)
481 {
482
483 KASSERT(solocked(so));
484
485 so->so_lock = lock;
486 cv_broadcast(&so->so_snd.sb_cv);
487 cv_broadcast(&so->so_rcv.sb_cv);
488 cv_broadcast(&so->so_cv);
489 }
490
491 /*
492 * Socket buffer (struct sockbuf) utility routines.
493 *
494 * Each socket contains two socket buffers: one for sending data and
495 * one for receiving data. Each buffer contains a queue of mbufs,
496 * information about the number of mbufs and amount of data in the
497 * queue, and other fields allowing poll() statements and notification
498 * on data availability to be implemented.
499 *
500 * Data stored in a socket buffer is maintained as a list of records.
501 * Each record is a list of mbufs chained together with the m_next
502 * field. Records are chained together with the m_nextpkt field. The upper
503 * level routine soreceive() expects the following conventions to be
504 * observed when placing information in the receive buffer:
505 *
506 * 1. If the protocol requires each message be preceded by the sender's
507 * name, then a record containing that name must be present before
508 * any associated data (mbuf's must be of type MT_SONAME).
509 * 2. If the protocol supports the exchange of ``access rights'' (really
510 * just additional data associated with the message), and there are
511 * ``rights'' to be received, then a record containing this data
512 * should be present (mbuf's must be of type MT_CONTROL).
513 * 3. If a name or rights record exists, then it must be followed by
514 * a data record, perhaps of zero length.
515 *
516 * Before using a new socket structure it is first necessary to reserve
517 * buffer space to the socket, by calling sbreserve(). This should commit
518 * some of the available buffer space in the system buffer pool for the
519 * socket (currently, it does nothing but enforce limits). The space
520 * should be released by calling sbrelease() when the socket is destroyed.
521 */
522
523 int
524 sb_max_set(u_long new_sbmax)
525 {
526 int s;
527
528 if (new_sbmax < (16 * 1024))
529 return (EINVAL);
530
531 s = splsoftnet();
532 sb_max = new_sbmax;
533 sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
534 splx(s);
535
536 return (0);
537 }
538
539 int
540 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
541 {
542
543 KASSERT(so->so_lock == NULL || solocked(so));
544
545 /*
546 * there's at least one application (a configure script of screen)
547 * which expects a fifo is writable even if it has "some" bytes
548 * in its buffer.
549 * so we want to make sure (hiwat - lowat) >= (some bytes).
550 *
551 * PIPE_BUF here is an arbitrary value chosen as (some bytes) above.
552 * we expect it's large enough for such applications.
553 */
554 u_long lowat = MAX(sock_loan_thresh, MCLBYTES);
555 u_long hiwat = lowat + PIPE_BUF;
556
557 if (sndcc < hiwat)
558 sndcc = hiwat;
559 if (sbreserve(&so->so_snd, sndcc, so) == 0)
560 goto bad;
561 if (sbreserve(&so->so_rcv, rcvcc, so) == 0)
562 goto bad2;
563 if (so->so_rcv.sb_lowat == 0)
564 so->so_rcv.sb_lowat = 1;
565 if (so->so_snd.sb_lowat == 0)
566 so->so_snd.sb_lowat = lowat;
567 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
568 so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
569 return (0);
570 bad2:
571 sbrelease(&so->so_snd, so);
572 bad:
573 return (ENOBUFS);
574 }
575
576 /*
577 * Allot mbufs to a sockbuf.
578 * Attempt to scale mbmax so that mbcnt doesn't become limiting
579 * if buffering efficiency is near the normal case.
580 */
581 int
582 sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
583 {
584 struct lwp *l = curlwp; /* XXX */
585 rlim_t maxcc;
586 struct uidinfo *uidinfo;
587
588 KASSERT(so->so_lock == NULL || solocked(so));
589 KASSERT(sb->sb_so == so);
590 KASSERT(sb_max_adj != 0);
591
592 if (cc == 0 || cc > sb_max_adj)
593 return (0);
594
595 maxcc = l->l_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur;
596
597 uidinfo = so->so_uidinfo;
598 if (!chgsbsize(uidinfo, &sb->sb_hiwat, cc, maxcc))
599 return 0;
600 sb->sb_mbmax = min(cc * 2, sb_max);
601 if (sb->sb_lowat > sb->sb_hiwat)
602 sb->sb_lowat = sb->sb_hiwat;
603 return (1);
604 }
605
606 /*
607 * Free mbufs held by a socket, and reserved mbuf space. We do not assert
608 * that the socket is held locked here: see sorflush().
609 */
610 void
611 sbrelease(struct sockbuf *sb, struct socket *so)
612 {
613
614 KASSERT(sb->sb_so == so);
615
616 sbflush(sb);
617 (void)chgsbsize(so->so_uidinfo, &sb->sb_hiwat, 0, RLIM_INFINITY);
618 sb->sb_mbmax = 0;
619 }
620
621 /*
622 * Routines to add and remove
623 * data from an mbuf queue.
624 *
625 * The routines sbappend() or sbappendrecord() are normally called to
626 * append new mbufs to a socket buffer, after checking that adequate
627 * space is available, comparing the function sbspace() with the amount
628 * of data to be added. sbappendrecord() differs from sbappend() in
629 * that data supplied is treated as the beginning of a new record.
630 * To place a sender's address, optional access rights, and data in a
631 * socket receive buffer, sbappendaddr() should be used. To place
632 * access rights and data in a socket receive buffer, sbappendrights()
633 * should be used. In either case, the new data begins a new record.
634 * Note that unlike sbappend() and sbappendrecord(), these routines check
635 * for the caller that there will be enough space to store the data.
636 * Each fails if there is not enough space, or if it cannot find mbufs
637 * to store additional information in.
638 *
639 * Reliable protocols may use the socket send buffer to hold data
640 * awaiting acknowledgement. Data is normally copied from a socket
641 * send buffer in a protocol with m_copy for output to a peer,
642 * and then removing the data from the socket buffer with sbdrop()
643 * or sbdroprecord() when the data is acknowledged by the peer.
644 */
645
646 #ifdef SOCKBUF_DEBUG
647 void
648 sblastrecordchk(struct sockbuf *sb, const char *where)
649 {
650 struct mbuf *m = sb->sb_mb;
651
652 KASSERT(solocked(sb->sb_so));
653
654 while (m && m->m_nextpkt)
655 m = m->m_nextpkt;
656
657 if (m != sb->sb_lastrecord) {
658 printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
659 sb->sb_mb, sb->sb_lastrecord, m);
660 printf("packet chain:\n");
661 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
662 printf("\t%p\n", m);
663 panic("sblastrecordchk from %s", where);
664 }
665 }
666
667 void
668 sblastmbufchk(struct sockbuf *sb, const char *where)
669 {
670 struct mbuf *m = sb->sb_mb;
671 struct mbuf *n;
672
673 KASSERT(solocked(sb->sb_so));
674
675 while (m && m->m_nextpkt)
676 m = m->m_nextpkt;
677
678 while (m && m->m_next)
679 m = m->m_next;
680
681 if (m != sb->sb_mbtail) {
682 printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
683 sb->sb_mb, sb->sb_mbtail, m);
684 printf("packet tree:\n");
685 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
686 printf("\t");
687 for (n = m; n != NULL; n = n->m_next)
688 printf("%p ", n);
689 printf("\n");
690 }
691 panic("sblastmbufchk from %s", where);
692 }
693 }
694 #endif /* SOCKBUF_DEBUG */
695
696 /*
697 * Link a chain of records onto a socket buffer
698 */
699 #define SBLINKRECORDCHAIN(sb, m0, mlast) \
700 do { \
701 if ((sb)->sb_lastrecord != NULL) \
702 (sb)->sb_lastrecord->m_nextpkt = (m0); \
703 else \
704 (sb)->sb_mb = (m0); \
705 (sb)->sb_lastrecord = (mlast); \
706 } while (/*CONSTCOND*/0)
707
708
709 #define SBLINKRECORD(sb, m0) \
710 SBLINKRECORDCHAIN(sb, m0, m0)
711
712 /*
713 * Append mbuf chain m to the last record in the
714 * socket buffer sb. The additional space associated
715 * the mbuf chain is recorded in sb. Empty mbufs are
716 * discarded and mbufs are compacted where possible.
717 */
718 void
719 sbappend(struct sockbuf *sb, struct mbuf *m)
720 {
721 struct mbuf *n;
722
723 KASSERT(solocked(sb->sb_so));
724
725 if (m == NULL)
726 return;
727
728 #ifdef MBUFTRACE
729 m_claimm(m, sb->sb_mowner);
730 #endif
731
732 SBLASTRECORDCHK(sb, "sbappend 1");
733
734 if ((n = sb->sb_lastrecord) != NULL) {
735 /*
736 * XXX Would like to simply use sb_mbtail here, but
737 * XXX I need to verify that I won't miss an EOR that
738 * XXX way.
739 */
740 do {
741 if (n->m_flags & M_EOR) {
742 sbappendrecord(sb, m); /* XXXXXX!!!! */
743 return;
744 }
745 } while (n->m_next && (n = n->m_next));
746 } else {
747 /*
748 * If this is the first record in the socket buffer, it's
749 * also the last record.
750 */
751 sb->sb_lastrecord = m;
752 }
753 sbcompress(sb, m, n);
754 SBLASTRECORDCHK(sb, "sbappend 2");
755 }
756
757 /*
758 * This version of sbappend() should only be used when the caller
759 * absolutely knows that there will never be more than one record
760 * in the socket buffer, that is, a stream protocol (such as TCP).
761 */
762 void
763 sbappendstream(struct sockbuf *sb, struct mbuf *m)
764 {
765
766 KASSERT(solocked(sb->sb_so));
767 KDASSERT(m->m_nextpkt == NULL);
768 KASSERT(sb->sb_mb == sb->sb_lastrecord);
769
770 SBLASTMBUFCHK(sb, __func__);
771
772 #ifdef MBUFTRACE
773 m_claimm(m, sb->sb_mowner);
774 #endif
775
776 sbcompress(sb, m, sb->sb_mbtail);
777
778 sb->sb_lastrecord = sb->sb_mb;
779 SBLASTRECORDCHK(sb, __func__);
780 }
781
782 #ifdef SOCKBUF_DEBUG
783 void
784 sbcheck(struct sockbuf *sb)
785 {
786 struct mbuf *m, *m2;
787 u_long len, mbcnt;
788
789 KASSERT(solocked(sb->sb_so));
790
791 len = 0;
792 mbcnt = 0;
793 for (m = sb->sb_mb; m; m = m->m_nextpkt) {
794 for (m2 = m; m2 != NULL; m2 = m2->m_next) {
795 len += m2->m_len;
796 mbcnt += MSIZE;
797 if (m2->m_flags & M_EXT)
798 mbcnt += m2->m_ext.ext_size;
799 if (m2->m_nextpkt != NULL)
800 panic("sbcheck nextpkt");
801 }
802 }
803 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
804 printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
805 mbcnt, sb->sb_mbcnt);
806 panic("sbcheck");
807 }
808 }
809 #endif
810
811 /*
812 * As above, except the mbuf chain
813 * begins a new record.
814 */
815 void
816 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
817 {
818 struct mbuf *m;
819
820 KASSERT(solocked(sb->sb_so));
821
822 if (m0 == NULL)
823 return;
824
825 #ifdef MBUFTRACE
826 m_claimm(m0, sb->sb_mowner);
827 #endif
828 /*
829 * Put the first mbuf on the queue.
830 * Note this permits zero length records.
831 */
832 sballoc(sb, m0);
833 SBLASTRECORDCHK(sb, "sbappendrecord 1");
834 SBLINKRECORD(sb, m0);
835 m = m0->m_next;
836 m0->m_next = 0;
837 if (m && (m0->m_flags & M_EOR)) {
838 m0->m_flags &= ~M_EOR;
839 m->m_flags |= M_EOR;
840 }
841 sbcompress(sb, m, m0);
842 SBLASTRECORDCHK(sb, "sbappendrecord 2");
843 }
844
845 /*
846 * As above except that OOB data
847 * is inserted at the beginning of the sockbuf,
848 * but after any other OOB data.
849 */
850 void
851 sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
852 {
853 struct mbuf *m, **mp;
854
855 KASSERT(solocked(sb->sb_so));
856
857 if (m0 == NULL)
858 return;
859
860 SBLASTRECORDCHK(sb, "sbinsertoob 1");
861
862 for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
863 again:
864 switch (m->m_type) {
865
866 case MT_OOBDATA:
867 continue; /* WANT next train */
868
869 case MT_CONTROL:
870 if ((m = m->m_next) != NULL)
871 goto again; /* inspect THIS train further */
872 }
873 break;
874 }
875 /*
876 * Put the first mbuf on the queue.
877 * Note this permits zero length records.
878 */
879 sballoc(sb, m0);
880 m0->m_nextpkt = *mp;
881 if (*mp == NULL) {
882 /* m0 is actually the new tail */
883 sb->sb_lastrecord = m0;
884 }
885 *mp = m0;
886 m = m0->m_next;
887 m0->m_next = 0;
888 if (m && (m0->m_flags & M_EOR)) {
889 m0->m_flags &= ~M_EOR;
890 m->m_flags |= M_EOR;
891 }
892 sbcompress(sb, m, m0);
893 SBLASTRECORDCHK(sb, "sbinsertoob 2");
894 }
895
896 /*
897 * Append address and data, and optionally, control (ancillary) data
898 * to the receive queue of a socket. If present,
899 * m0 must include a packet header with total length.
900 * Returns 0 if no space in sockbuf or insufficient mbufs.
901 */
902 int
903 sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0,
904 struct mbuf *control)
905 {
906 struct mbuf *m, *n, *nlast;
907 int space, len;
908
909 KASSERT(solocked(sb->sb_so));
910
911 space = asa->sa_len;
912
913 if (m0 != NULL) {
914 if ((m0->m_flags & M_PKTHDR) == 0)
915 panic("sbappendaddr");
916 space += m0->m_pkthdr.len;
917 #ifdef MBUFTRACE
918 m_claimm(m0, sb->sb_mowner);
919 #endif
920 }
921 for (n = control; n; n = n->m_next) {
922 space += n->m_len;
923 MCLAIM(n, sb->sb_mowner);
924 if (n->m_next == NULL) /* keep pointer to last control buf */
925 break;
926 }
927 if (space > sbspace(sb))
928 return (0);
929 m = m_get(M_DONTWAIT, MT_SONAME);
930 if (m == NULL)
931 return (0);
932 MCLAIM(m, sb->sb_mowner);
933 /*
934 * XXX avoid 'comparison always true' warning which isn't easily
935 * avoided.
936 */
937 len = asa->sa_len;
938 if (len > MLEN) {
939 MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
940 if ((m->m_flags & M_EXT) == 0) {
941 m_free(m);
942 return (0);
943 }
944 }
945 m->m_len = asa->sa_len;
946 memcpy(mtod(m, void *), asa, asa->sa_len);
947 if (n)
948 n->m_next = m0; /* concatenate data to control */
949 else
950 control = m0;
951 m->m_next = control;
952
953 SBLASTRECORDCHK(sb, "sbappendaddr 1");
954
955 for (n = m; n->m_next != NULL; n = n->m_next)
956 sballoc(sb, n);
957 sballoc(sb, n);
958 nlast = n;
959 SBLINKRECORD(sb, m);
960
961 sb->sb_mbtail = nlast;
962 SBLASTMBUFCHK(sb, "sbappendaddr");
963 SBLASTRECORDCHK(sb, "sbappendaddr 2");
964
965 return (1);
966 }
967
968 /*
969 * Helper for sbappendchainaddr: prepend a struct sockaddr* to
970 * an mbuf chain.
971 */
972 static inline struct mbuf *
973 m_prepend_sockaddr(struct sockbuf *sb, struct mbuf *m0,
974 const struct sockaddr *asa)
975 {
976 struct mbuf *m;
977 const int salen = asa->sa_len;
978
979 KASSERT(solocked(sb->sb_so));
980
981 /* only the first in each chain need be a pkthdr */
982 m = m_gethdr(M_DONTWAIT, MT_SONAME);
983 if (m == NULL)
984 return NULL;
985 MCLAIM(m, sb->sb_mowner);
986 #ifdef notyet
987 if (salen > MHLEN) {
988 MEXTMALLOC(m, salen, M_NOWAIT);
989 if ((m->m_flags & M_EXT) == 0) {
990 m_free(m);
991 return NULL;
992 }
993 }
994 #else
995 KASSERT(salen <= MHLEN);
996 #endif
997 m->m_len = salen;
998 memcpy(mtod(m, void *), asa, salen);
999 m->m_next = m0;
1000 m->m_pkthdr.len = salen + m0->m_pkthdr.len;
1001
1002 return m;
1003 }
1004
1005 int
1006 sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa,
1007 struct mbuf *m0, int sbprio)
1008 {
1009 struct mbuf *m, *n, *n0, *nlast;
1010 int error;
1011
1012 KASSERT(solocked(sb->sb_so));
1013
1014 /*
1015 * XXX sbprio reserved for encoding priority of this* request:
1016 * SB_PRIO_NONE --> honour normal sb limits
1017 * SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space,
1018 * take whole chain. Intended for large requests
1019 * that should be delivered atomically (all, or none).
1020 * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow
1021 * over normal socket limits, for messages indicating
1022 * buffer overflow in earlier normal/lower-priority messages
1023 * SB_PRIO_BESTEFFORT --> ignore limits entirely.
1024 * Intended for kernel-generated messages only.
1025 * Up to generator to avoid total mbuf resource exhaustion.
1026 */
1027 (void)sbprio;
1028
1029 if (m0 && (m0->m_flags & M_PKTHDR) == 0)
1030 panic("sbappendaddrchain");
1031
1032 #ifdef notyet
1033 space = sbspace(sb);
1034
1035 /*
1036 * Enforce SB_PRIO_* limits as described above.
1037 */
1038 #endif
1039
1040 n0 = NULL;
1041 nlast = NULL;
1042 for (m = m0; m; m = m->m_nextpkt) {
1043 struct mbuf *np;
1044
1045 #ifdef MBUFTRACE
1046 m_claimm(m, sb->sb_mowner);
1047 #endif
1048
1049 /* Prepend sockaddr to this record (m) of input chain m0 */
1050 n = m_prepend_sockaddr(sb, m, asa);
1051 if (n == NULL) {
1052 error = ENOBUFS;
1053 goto bad;
1054 }
1055
1056 /* Append record (asa+m) to end of new chain n0 */
1057 if (n0 == NULL) {
1058 n0 = n;
1059 } else {
1060 nlast->m_nextpkt = n;
1061 }
1062 /* Keep track of last record on new chain */
1063 nlast = n;
1064
1065 for (np = n; np; np = np->m_next)
1066 sballoc(sb, np);
1067 }
1068
1069 SBLASTRECORDCHK(sb, "sbappendaddrchain 1");
1070
1071 /* Drop the entire chain of (asa+m) records onto the socket */
1072 SBLINKRECORDCHAIN(sb, n0, nlast);
1073
1074 SBLASTRECORDCHK(sb, "sbappendaddrchain 2");
1075
1076 for (m = nlast; m->m_next; m = m->m_next)
1077 ;
1078 sb->sb_mbtail = m;
1079 SBLASTMBUFCHK(sb, "sbappendaddrchain");
1080
1081 return (1);
1082
1083 bad:
1084 /*
1085 * On error, free the prepended addreseses. For consistency
1086 * with sbappendaddr(), leave it to our caller to free
1087 * the input record chain passed to us as m0.
1088 */
1089 while ((n = n0) != NULL) {
1090 struct mbuf *np;
1091
1092 /* Undo the sballoc() of this record */
1093 for (np = n; np; np = np->m_next)
1094 sbfree(sb, np);
1095
1096 n0 = n->m_nextpkt; /* iterate at next prepended address */
1097 MFREE(n, np); /* free prepended address (not data) */
1098 }
1099 return error;
1100 }
1101
1102
1103 int
1104 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
1105 {
1106 struct mbuf *m, *mlast, *n;
1107 int space;
1108
1109 KASSERT(solocked(sb->sb_so));
1110
1111 space = 0;
1112 if (control == NULL)
1113 panic("sbappendcontrol");
1114 for (m = control; ; m = m->m_next) {
1115 space += m->m_len;
1116 MCLAIM(m, sb->sb_mowner);
1117 if (m->m_next == NULL)
1118 break;
1119 }
1120 n = m; /* save pointer to last control buffer */
1121 for (m = m0; m; m = m->m_next) {
1122 MCLAIM(m, sb->sb_mowner);
1123 space += m->m_len;
1124 }
1125 if (space > sbspace(sb))
1126 return (0);
1127 n->m_next = m0; /* concatenate data to control */
1128
1129 SBLASTRECORDCHK(sb, "sbappendcontrol 1");
1130
1131 for (m = control; m->m_next != NULL; m = m->m_next)
1132 sballoc(sb, m);
1133 sballoc(sb, m);
1134 mlast = m;
1135 SBLINKRECORD(sb, control);
1136
1137 sb->sb_mbtail = mlast;
1138 SBLASTMBUFCHK(sb, "sbappendcontrol");
1139 SBLASTRECORDCHK(sb, "sbappendcontrol 2");
1140
1141 return (1);
1142 }
1143
1144 /*
1145 * Compress mbuf chain m into the socket
1146 * buffer sb following mbuf n. If n
1147 * is null, the buffer is presumed empty.
1148 */
1149 void
1150 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
1151 {
1152 int eor;
1153 struct mbuf *o;
1154
1155 KASSERT(solocked(sb->sb_so));
1156
1157 eor = 0;
1158 while (m) {
1159 eor |= m->m_flags & M_EOR;
1160 if (m->m_len == 0 &&
1161 (eor == 0 ||
1162 (((o = m->m_next) || (o = n)) &&
1163 o->m_type == m->m_type))) {
1164 if (sb->sb_lastrecord == m)
1165 sb->sb_lastrecord = m->m_next;
1166 m = m_free(m);
1167 continue;
1168 }
1169 if (n && (n->m_flags & M_EOR) == 0 &&
1170 /* M_TRAILINGSPACE() checks buffer writeability */
1171 m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
1172 m->m_len <= M_TRAILINGSPACE(n) &&
1173 n->m_type == m->m_type) {
1174 memcpy(mtod(n, char *) + n->m_len, mtod(m, void *),
1175 (unsigned)m->m_len);
1176 n->m_len += m->m_len;
1177 sb->sb_cc += m->m_len;
1178 m = m_free(m);
1179 continue;
1180 }
1181 if (n)
1182 n->m_next = m;
1183 else
1184 sb->sb_mb = m;
1185 sb->sb_mbtail = m;
1186 sballoc(sb, m);
1187 n = m;
1188 m->m_flags &= ~M_EOR;
1189 m = m->m_next;
1190 n->m_next = 0;
1191 }
1192 if (eor) {
1193 if (n)
1194 n->m_flags |= eor;
1195 else
1196 printf("semi-panic: sbcompress\n");
1197 }
1198 SBLASTMBUFCHK(sb, __func__);
1199 }
1200
1201 /*
1202 * Free all mbufs in a sockbuf.
1203 * Check that all resources are reclaimed.
1204 */
1205 void
1206 sbflush(struct sockbuf *sb)
1207 {
1208
1209 KASSERT(solocked(sb->sb_so));
1210 KASSERT((sb->sb_flags & SB_LOCK) == 0);
1211
1212 while (sb->sb_mbcnt)
1213 sbdrop(sb, (int)sb->sb_cc);
1214
1215 KASSERT(sb->sb_cc == 0);
1216 KASSERT(sb->sb_mb == NULL);
1217 KASSERT(sb->sb_mbtail == NULL);
1218 KASSERT(sb->sb_lastrecord == NULL);
1219 }
1220
1221 /*
1222 * Drop data from (the front of) a sockbuf.
1223 */
1224 void
1225 sbdrop(struct sockbuf *sb, int len)
1226 {
1227 struct mbuf *m, *mn, *next;
1228
1229 KASSERT(solocked(sb->sb_so));
1230
1231 next = (m = sb->sb_mb) ? m->m_nextpkt : NULL;
1232 while (len > 0) {
1233 if (m == NULL) {
1234 if (next == NULL)
1235 panic("sbdrop(%p,%d): cc=%lu",
1236 sb, len, sb->sb_cc);
1237 m = next;
1238 next = m->m_nextpkt;
1239 continue;
1240 }
1241 if (m->m_len > len) {
1242 m->m_len -= len;
1243 m->m_data += len;
1244 sb->sb_cc -= len;
1245 break;
1246 }
1247 len -= m->m_len;
1248 sbfree(sb, m);
1249 MFREE(m, mn);
1250 m = mn;
1251 }
1252 while (m && m->m_len == 0) {
1253 sbfree(sb, m);
1254 MFREE(m, mn);
1255 m = mn;
1256 }
1257 if (m) {
1258 sb->sb_mb = m;
1259 m->m_nextpkt = next;
1260 } else
1261 sb->sb_mb = next;
1262 /*
1263 * First part is an inline SB_EMPTY_FIXUP(). Second part
1264 * makes sure sb_lastrecord is up-to-date if we dropped
1265 * part of the last record.
1266 */
1267 m = sb->sb_mb;
1268 if (m == NULL) {
1269 sb->sb_mbtail = NULL;
1270 sb->sb_lastrecord = NULL;
1271 } else if (m->m_nextpkt == NULL)
1272 sb->sb_lastrecord = m;
1273 }
1274
1275 /*
1276 * Drop a record off the front of a sockbuf
1277 * and move the next record to the front.
1278 */
1279 void
1280 sbdroprecord(struct sockbuf *sb)
1281 {
1282 struct mbuf *m, *mn;
1283
1284 KASSERT(solocked(sb->sb_so));
1285
1286 m = sb->sb_mb;
1287 if (m) {
1288 sb->sb_mb = m->m_nextpkt;
1289 do {
1290 sbfree(sb, m);
1291 MFREE(m, mn);
1292 } while ((m = mn) != NULL);
1293 }
1294 SB_EMPTY_FIXUP(sb);
1295 }
1296
1297 /*
1298 * Create a "control" mbuf containing the specified data
1299 * with the specified type for presentation on a socket buffer.
1300 */
1301 struct mbuf *
1302 sbcreatecontrol1(void **p, int size, int type, int level, int flags)
1303 {
1304 struct cmsghdr *cp;
1305 struct mbuf *m;
1306 int space = CMSG_SPACE(size);
1307
1308 if ((flags & M_DONTWAIT) && space > MCLBYTES) {
1309 printf("%s: message too large %d\n", __func__, space);
1310 return NULL;
1311 }
1312
1313 if ((m = m_get(flags, MT_CONTROL)) == NULL)
1314 return NULL;
1315 if (space > MLEN) {
1316 if (space > MCLBYTES)
1317 MEXTMALLOC(m, space, M_WAITOK);
1318 else
1319 MCLGET(m, flags);
1320 if ((m->m_flags & M_EXT) == 0) {
1321 m_free(m);
1322 return NULL;
1323 }
1324 }
1325 cp = mtod(m, struct cmsghdr *);
1326 *p = CMSG_DATA(cp);
1327 m->m_len = space;
1328 cp->cmsg_len = CMSG_LEN(size);
1329 cp->cmsg_level = level;
1330 cp->cmsg_type = type;
1331 return m;
1332 }
1333
1334 struct mbuf *
1335 sbcreatecontrol(void *p, int size, int type, int level)
1336 {
1337 struct mbuf *m;
1338 void *v;
1339
1340 m = sbcreatecontrol1(&v, size, type, level, M_DONTWAIT);
1341 if (m == NULL)
1342 return NULL;
1343 memcpy(v, p, size);
1344 return m;
1345 }
1346
1347 void
1348 solockretry(struct socket *so, kmutex_t *lock)
1349 {
1350
1351 while (lock != so->so_lock) {
1352 mutex_exit(lock);
1353 lock = so->so_lock;
1354 mutex_enter(lock);
1355 }
1356 }
1357
1358 bool
1359 solocked(struct socket *so)
1360 {
1361
1362 return mutex_owned(so->so_lock);
1363 }
1364
1365 bool
1366 solocked2(struct socket *so1, struct socket *so2)
1367 {
1368 kmutex_t *lock;
1369
1370 lock = so1->so_lock;
1371 if (lock != so2->so_lock)
1372 return false;
1373 return mutex_owned(lock);
1374 }
1375
1376 /*
1377 * Assign a default lock to a new socket. For PRU_ATTACH, and done by
1378 * protocols that do not have special locking requirements.
1379 */
1380 void
1381 sosetlock(struct socket *so)
1382 {
1383 kmutex_t *lock;
1384
1385 if (so->so_lock == NULL) {
1386 lock = softnet_lock;
1387 so->so_lock = lock;
1388 mutex_obj_hold(lock);
1389 mutex_enter(lock);
1390 }
1391
1392 /* In all cases, lock must be held on return from PRU_ATTACH. */
1393 KASSERT(solocked(so));
1394 }
1395
1396 /*
1397 * Set lock on sockbuf sb; sleep if lock is already held.
1398 * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
1399 * Returns error without lock if sleep is interrupted.
1400 */
1401 int
1402 sblock(struct sockbuf *sb, int wf)
1403 {
1404 struct socket *so;
1405 kmutex_t *lock;
1406 int error;
1407
1408 KASSERT(solocked(sb->sb_so));
1409
1410 for (;;) {
1411 if (__predict_true((sb->sb_flags & SB_LOCK) == 0)) {
1412 sb->sb_flags |= SB_LOCK;
1413 return 0;
1414 }
1415 if (wf != M_WAITOK)
1416 return EWOULDBLOCK;
1417 so = sb->sb_so;
1418 lock = so->so_lock;
1419 if ((sb->sb_flags & SB_NOINTR) != 0) {
1420 cv_wait(&so->so_cv, lock);
1421 error = 0;
1422 } else
1423 error = cv_wait_sig(&so->so_cv, lock);
1424 if (__predict_false(lock != so->so_lock))
1425 solockretry(so, lock);
1426 if (error != 0)
1427 return error;
1428 }
1429 }
1430
1431 void
1432 sbunlock(struct sockbuf *sb)
1433 {
1434 struct socket *so;
1435
1436 so = sb->sb_so;
1437
1438 KASSERT(solocked(so));
1439 KASSERT((sb->sb_flags & SB_LOCK) != 0);
1440
1441 sb->sb_flags &= ~SB_LOCK;
1442 cv_broadcast(&so->so_cv);
1443 }
1444
1445 int
1446 sowait(struct socket *so, bool catch, int timo)
1447 {
1448 kmutex_t *lock;
1449 int error;
1450
1451 KASSERT(solocked(so));
1452 KASSERT(catch || timo != 0);
1453
1454 lock = so->so_lock;
1455 if (catch)
1456 error = cv_timedwait_sig(&so->so_cv, lock, timo);
1457 else
1458 error = cv_timedwait(&so->so_cv, lock, timo);
1459 if (__predict_false(lock != so->so_lock))
1460 solockretry(so, lock);
1461 return error;
1462 }
1463