Home | History | Annotate | Line # | Download | only in kern
uipc_socket2.c revision 1.109.2.2
      1 /*	$NetBSD: uipc_socket2.c,v 1.109.2.2 2014/05/22 11:41:03 yamt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26  * POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 /*
     30  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     31  *	The Regents of the University of California.  All rights reserved.
     32  *
     33  * Redistribution and use in source and binary forms, with or without
     34  * modification, are permitted provided that the following conditions
     35  * are met:
     36  * 1. Redistributions of source code must retain the above copyright
     37  *    notice, this list of conditions and the following disclaimer.
     38  * 2. Redistributions in binary form must reproduce the above copyright
     39  *    notice, this list of conditions and the following disclaimer in the
     40  *    documentation and/or other materials provided with the distribution.
     41  * 3. Neither the name of the University nor the names of its contributors
     42  *    may be used to endorse or promote products derived from this software
     43  *    without specific prior written permission.
     44  *
     45  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     46  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     47  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     48  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     49  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     50  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     51  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     52  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     53  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     54  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     55  * SUCH DAMAGE.
     56  *
     57  *	@(#)uipc_socket2.c	8.2 (Berkeley) 2/14/95
     58  */
     59 
     60 #include <sys/cdefs.h>
     61 __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.109.2.2 2014/05/22 11:41:03 yamt Exp $");
     62 
     63 #include "opt_mbuftrace.h"
     64 #include "opt_sb_max.h"
     65 
     66 #include <sys/param.h>
     67 #include <sys/systm.h>
     68 #include <sys/proc.h>
     69 #include <sys/file.h>
     70 #include <sys/buf.h>
     71 #include <sys/mbuf.h>
     72 #include <sys/protosw.h>
     73 #include <sys/domain.h>
     74 #include <sys/poll.h>
     75 #include <sys/socket.h>
     76 #include <sys/socketvar.h>
     77 #include <sys/signalvar.h>
     78 #include <sys/kauth.h>
     79 #include <sys/pool.h>
     80 #include <sys/uidinfo.h>
     81 
     82 /*
     83  * Primitive routines for operating on sockets and socket buffers.
     84  *
     85  * Locking rules and assumptions:
     86  *
     87  * o socket::so_lock can change on the fly.  The low level routines used
     88  *   to lock sockets are aware of this.  When so_lock is acquired, the
     89  *   routine locking must check to see if so_lock still points to the
     90  *   lock that was acquired.  If so_lock has changed in the meantime, the
     91  *   now irellevant lock that was acquired must be dropped and the lock
     92  *   operation retried.  Although not proven here, this is completely safe
     93  *   on a multiprocessor system, even with relaxed memory ordering, given
     94  *   the next two rules:
     95  *
     96  * o In order to mutate so_lock, the lock pointed to by the current value
     97  *   of so_lock must be held: i.e., the socket must be held locked by the
     98  *   changing thread.  The thread must issue membar_exit() to prevent
     99  *   memory accesses being reordered, and can set so_lock to the desired
    100  *   value.  If the lock pointed to by the new value of so_lock is not
    101  *   held by the changing thread, the socket must then be considered
    102  *   unlocked.
    103  *
    104  * o If so_lock is mutated, and the previous lock referred to by so_lock
    105  *   could still be visible to other threads in the system (e.g. via file
    106  *   descriptor or protocol-internal reference), then the old lock must
    107  *   remain valid until the socket and/or protocol control block has been
    108  *   torn down.
    109  *
    110  * o If a socket has a non-NULL so_head value (i.e. is in the process of
    111  *   connecting), then locking the socket must also lock the socket pointed
    112  *   to by so_head: their lock pointers must match.
    113  *
    114  * o If a socket has connections in progress (so_q, so_q0 not empty) then
    115  *   locking the socket must also lock the sockets attached to both queues.
    116  *   Again, their lock pointers must match.
    117  *
    118  * o Beyond the initial lock assigment in socreate(), assigning locks to
    119  *   sockets is the responsibility of the individual protocols / protocol
    120  *   domains.
    121  */
    122 
    123 static pool_cache_t socket_cache;
    124 
    125 u_long	sb_max = SB_MAX;	/* maximum socket buffer size */
    126 static u_long sb_max_adj;	/* adjusted sb_max */
    127 
    128 /*
    129  * Procedures to manipulate state flags of socket
    130  * and do appropriate wakeups.  Normal sequence from the
    131  * active (originating) side is that soisconnecting() is
    132  * called during processing of connect() call,
    133  * resulting in an eventual call to soisconnected() if/when the
    134  * connection is established.  When the connection is torn down
    135  * soisdisconnecting() is called during processing of disconnect() call,
    136  * and soisdisconnected() is called when the connection to the peer
    137  * is totally severed.  The semantics of these routines are such that
    138  * connectionless protocols can call soisconnected() and soisdisconnected()
    139  * only, bypassing the in-progress calls when setting up a ``connection''
    140  * takes no time.
    141  *
    142  * From the passive side, a socket is created with
    143  * two queues of sockets: so_q0 for connections in progress
    144  * and so_q for connections already made and awaiting user acceptance.
    145  * As a protocol is preparing incoming connections, it creates a socket
    146  * structure queued on so_q0 by calling sonewconn().  When the connection
    147  * is established, soisconnected() is called, and transfers the
    148  * socket structure to so_q, making it available to accept().
    149  *
    150  * If a socket is closed with sockets on either
    151  * so_q0 or so_q, these sockets are dropped.
    152  *
    153  * If higher level protocols are implemented in
    154  * the kernel, the wakeups done here will sometimes
    155  * cause software-interrupt process scheduling.
    156  */
    157 
    158 void
    159 soisconnecting(struct socket *so)
    160 {
    161 
    162 	KASSERT(solocked(so));
    163 
    164 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
    165 	so->so_state |= SS_ISCONNECTING;
    166 }
    167 
    168 void
    169 soisconnected(struct socket *so)
    170 {
    171 	struct socket	*head;
    172 
    173 	head = so->so_head;
    174 
    175 	KASSERT(solocked(so));
    176 	KASSERT(head == NULL || solocked2(so, head));
    177 
    178 	so->so_state &= ~(SS_ISCONNECTING | SS_ISDISCONNECTING);
    179 	so->so_state |= SS_ISCONNECTED;
    180 	if (head && so->so_onq == &head->so_q0) {
    181 		if ((so->so_options & SO_ACCEPTFILTER) == 0) {
    182 			soqremque(so, 0);
    183 			soqinsque(head, so, 1);
    184 			sorwakeup(head);
    185 			cv_broadcast(&head->so_cv);
    186 		} else {
    187 			so->so_upcall =
    188 			    head->so_accf->so_accept_filter->accf_callback;
    189 			so->so_upcallarg = head->so_accf->so_accept_filter_arg;
    190 			so->so_rcv.sb_flags |= SB_UPCALL;
    191 			so->so_options &= ~SO_ACCEPTFILTER;
    192 			(*so->so_upcall)(so, so->so_upcallarg,
    193 					 POLLIN|POLLRDNORM, M_DONTWAIT);
    194 		}
    195 	} else {
    196 		cv_broadcast(&so->so_cv);
    197 		sorwakeup(so);
    198 		sowwakeup(so);
    199 	}
    200 }
    201 
    202 void
    203 soisdisconnecting(struct socket *so)
    204 {
    205 
    206 	KASSERT(solocked(so));
    207 
    208 	so->so_state &= ~SS_ISCONNECTING;
    209 	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
    210 	cv_broadcast(&so->so_cv);
    211 	sowwakeup(so);
    212 	sorwakeup(so);
    213 }
    214 
    215 void
    216 soisdisconnected(struct socket *so)
    217 {
    218 
    219 	KASSERT(solocked(so));
    220 
    221 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
    222 	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
    223 	cv_broadcast(&so->so_cv);
    224 	sowwakeup(so);
    225 	sorwakeup(so);
    226 }
    227 
    228 void
    229 soinit2(void)
    230 {
    231 
    232 	socket_cache = pool_cache_init(sizeof(struct socket), 0, 0, 0,
    233 	    "socket", NULL, IPL_SOFTNET, NULL, NULL, NULL);
    234 }
    235 
    236 /*
    237  * When an attempt at a new connection is noted on a socket
    238  * which accepts connections, sonewconn is called.  If the
    239  * connection is possible (subject to space constraints, etc.)
    240  * then we allocate a new structure, propoerly linked into the
    241  * data structure of the original socket, and return this.
    242  */
    243 struct socket *
    244 sonewconn(struct socket *head, bool conncomplete)
    245 {
    246 	struct socket	*so;
    247 	int		soqueue, error;
    248 
    249 	KASSERT(solocked(head));
    250 
    251 	if ((head->so_options & SO_ACCEPTFILTER) != 0)
    252 		conncomplete = false;
    253 	soqueue = conncomplete ? 1 : 0;
    254 
    255 	if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
    256 		return NULL;
    257 	so = soget(false);
    258 	if (so == NULL)
    259 		return NULL;
    260 	mutex_obj_hold(head->so_lock);
    261 	so->so_lock = head->so_lock;
    262 	so->so_type = head->so_type;
    263 	so->so_options = head->so_options &~ SO_ACCEPTCONN;
    264 	so->so_linger = head->so_linger;
    265 	so->so_state = head->so_state | SS_NOFDREF;
    266 	so->so_proto = head->so_proto;
    267 	so->so_timeo = head->so_timeo;
    268 	so->so_pgid = head->so_pgid;
    269 	so->so_send = head->so_send;
    270 	so->so_receive = head->so_receive;
    271 	so->so_uidinfo = head->so_uidinfo;
    272 	so->so_cpid = head->so_cpid;
    273 #ifdef MBUFTRACE
    274 	so->so_mowner = head->so_mowner;
    275 	so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
    276 	so->so_snd.sb_mowner = head->so_snd.sb_mowner;
    277 #endif
    278 	if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat) != 0)
    279 		goto out;
    280 	so->so_snd.sb_lowat = head->so_snd.sb_lowat;
    281 	so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
    282 	so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
    283 	so->so_snd.sb_timeo = head->so_snd.sb_timeo;
    284 	so->so_rcv.sb_flags |= head->so_rcv.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
    285 	so->so_snd.sb_flags |= head->so_snd.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
    286 	soqinsque(head, so, soqueue);
    287 	error = (*so->so_proto->pr_usrreq)(so, PRU_ATTACH, NULL, NULL,
    288 	    NULL, NULL);
    289 	KASSERT(solocked(so));
    290 	if (error != 0) {
    291 		(void) soqremque(so, soqueue);
    292 out:
    293 		/*
    294 		 * Remove acccept filter if one is present.
    295 		 * XXX Is this really needed?
    296 		 */
    297 		if (so->so_accf != NULL)
    298 			(void)accept_filt_clear(so);
    299 		soput(so);
    300 		return NULL;
    301 	}
    302 	if (conncomplete) {
    303 		sorwakeup(head);
    304 		cv_broadcast(&head->so_cv);
    305 		so->so_state |= SS_ISCONNECTED;
    306 	}
    307 	return so;
    308 }
    309 
    310 struct socket *
    311 soget(bool waitok)
    312 {
    313 	struct socket *so;
    314 
    315 	so = pool_cache_get(socket_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
    316 	if (__predict_false(so == NULL))
    317 		return (NULL);
    318 	memset(so, 0, sizeof(*so));
    319 	TAILQ_INIT(&so->so_q0);
    320 	TAILQ_INIT(&so->so_q);
    321 	cv_init(&so->so_cv, "socket");
    322 	cv_init(&so->so_rcv.sb_cv, "netio");
    323 	cv_init(&so->so_snd.sb_cv, "netio");
    324 	selinit(&so->so_rcv.sb_sel);
    325 	selinit(&so->so_snd.sb_sel);
    326 	so->so_rcv.sb_so = so;
    327 	so->so_snd.sb_so = so;
    328 	return so;
    329 }
    330 
    331 void
    332 soput(struct socket *so)
    333 {
    334 
    335 	KASSERT(!cv_has_waiters(&so->so_cv));
    336 	KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
    337 	KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
    338 	seldestroy(&so->so_rcv.sb_sel);
    339 	seldestroy(&so->so_snd.sb_sel);
    340 	mutex_obj_free(so->so_lock);
    341 	cv_destroy(&so->so_cv);
    342 	cv_destroy(&so->so_rcv.sb_cv);
    343 	cv_destroy(&so->so_snd.sb_cv);
    344 	pool_cache_put(socket_cache, so);
    345 }
    346 
    347 void
    348 soqinsque(struct socket *head, struct socket *so, int q)
    349 {
    350 
    351 	KASSERT(solocked2(head, so));
    352 
    353 #ifdef DIAGNOSTIC
    354 	if (so->so_onq != NULL)
    355 		panic("soqinsque");
    356 #endif
    357 
    358 	so->so_head = head;
    359 	if (q == 0) {
    360 		head->so_q0len++;
    361 		so->so_onq = &head->so_q0;
    362 	} else {
    363 		head->so_qlen++;
    364 		so->so_onq = &head->so_q;
    365 	}
    366 	TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
    367 }
    368 
    369 int
    370 soqremque(struct socket *so, int q)
    371 {
    372 	struct socket	*head;
    373 
    374 	head = so->so_head;
    375 
    376 	KASSERT(solocked(so));
    377 	if (q == 0) {
    378 		if (so->so_onq != &head->so_q0)
    379 			return (0);
    380 		head->so_q0len--;
    381 	} else {
    382 		if (so->so_onq != &head->so_q)
    383 			return (0);
    384 		head->so_qlen--;
    385 	}
    386 	KASSERT(solocked2(so, head));
    387 	TAILQ_REMOVE(so->so_onq, so, so_qe);
    388 	so->so_onq = NULL;
    389 	so->so_head = NULL;
    390 	return (1);
    391 }
    392 
    393 /*
    394  * Socantsendmore indicates that no more data will be sent on the
    395  * socket; it would normally be applied to a socket when the user
    396  * informs the system that no more data is to be sent, by the protocol
    397  * code (in case PRU_SHUTDOWN).  Socantrcvmore indicates that no more data
    398  * will be received, and will normally be applied to the socket by a
    399  * protocol when it detects that the peer will send no more data.
    400  * Data queued for reading in the socket may yet be read.
    401  */
    402 
    403 void
    404 socantsendmore(struct socket *so)
    405 {
    406 
    407 	KASSERT(solocked(so));
    408 
    409 	so->so_state |= SS_CANTSENDMORE;
    410 	sowwakeup(so);
    411 }
    412 
    413 void
    414 socantrcvmore(struct socket *so)
    415 {
    416 
    417 	KASSERT(solocked(so));
    418 
    419 	so->so_state |= SS_CANTRCVMORE;
    420 	sorwakeup(so);
    421 }
    422 
    423 /*
    424  * Wait for data to arrive at/drain from a socket buffer.
    425  */
    426 int
    427 sbwait(struct sockbuf *sb)
    428 {
    429 	struct socket *so;
    430 	kmutex_t *lock;
    431 	int error;
    432 
    433 	so = sb->sb_so;
    434 
    435 	KASSERT(solocked(so));
    436 
    437 	sb->sb_flags |= SB_NOTIFY;
    438 	lock = so->so_lock;
    439 	if ((sb->sb_flags & SB_NOINTR) != 0)
    440 		error = cv_timedwait(&sb->sb_cv, lock, sb->sb_timeo);
    441 	else
    442 		error = cv_timedwait_sig(&sb->sb_cv, lock, sb->sb_timeo);
    443 	if (__predict_false(lock != so->so_lock))
    444 		solockretry(so, lock);
    445 	return error;
    446 }
    447 
    448 /*
    449  * Wakeup processes waiting on a socket buffer.
    450  * Do asynchronous notification via SIGIO
    451  * if the socket buffer has the SB_ASYNC flag set.
    452  */
    453 void
    454 sowakeup(struct socket *so, struct sockbuf *sb, int code)
    455 {
    456 	int band;
    457 
    458 	KASSERT(solocked(so));
    459 	KASSERT(sb->sb_so == so);
    460 
    461 	if (code == POLL_IN)
    462 		band = POLLIN|POLLRDNORM;
    463 	else
    464 		band = POLLOUT|POLLWRNORM;
    465 	sb->sb_flags &= ~SB_NOTIFY;
    466 	selnotify(&sb->sb_sel, band, NOTE_SUBMIT);
    467 	cv_broadcast(&sb->sb_cv);
    468 	if (sb->sb_flags & SB_ASYNC)
    469 		fownsignal(so->so_pgid, SIGIO, code, band, so);
    470 	if (sb->sb_flags & SB_UPCALL)
    471 		(*so->so_upcall)(so, so->so_upcallarg, band, M_DONTWAIT);
    472 }
    473 
    474 /*
    475  * Reset a socket's lock pointer.  Wake all threads waiting on the
    476  * socket's condition variables so that they can restart their waits
    477  * using the new lock.  The existing lock must be held.
    478  */
    479 void
    480 solockreset(struct socket *so, kmutex_t *lock)
    481 {
    482 
    483 	KASSERT(solocked(so));
    484 
    485 	so->so_lock = lock;
    486 	cv_broadcast(&so->so_snd.sb_cv);
    487 	cv_broadcast(&so->so_rcv.sb_cv);
    488 	cv_broadcast(&so->so_cv);
    489 }
    490 
    491 /*
    492  * Socket buffer (struct sockbuf) utility routines.
    493  *
    494  * Each socket contains two socket buffers: one for sending data and
    495  * one for receiving data.  Each buffer contains a queue of mbufs,
    496  * information about the number of mbufs and amount of data in the
    497  * queue, and other fields allowing poll() statements and notification
    498  * on data availability to be implemented.
    499  *
    500  * Data stored in a socket buffer is maintained as a list of records.
    501  * Each record is a list of mbufs chained together with the m_next
    502  * field.  Records are chained together with the m_nextpkt field. The upper
    503  * level routine soreceive() expects the following conventions to be
    504  * observed when placing information in the receive buffer:
    505  *
    506  * 1. If the protocol requires each message be preceded by the sender's
    507  *    name, then a record containing that name must be present before
    508  *    any associated data (mbuf's must be of type MT_SONAME).
    509  * 2. If the protocol supports the exchange of ``access rights'' (really
    510  *    just additional data associated with the message), and there are
    511  *    ``rights'' to be received, then a record containing this data
    512  *    should be present (mbuf's must be of type MT_CONTROL).
    513  * 3. If a name or rights record exists, then it must be followed by
    514  *    a data record, perhaps of zero length.
    515  *
    516  * Before using a new socket structure it is first necessary to reserve
    517  * buffer space to the socket, by calling sbreserve().  This should commit
    518  * some of the available buffer space in the system buffer pool for the
    519  * socket (currently, it does nothing but enforce limits).  The space
    520  * should be released by calling sbrelease() when the socket is destroyed.
    521  */
    522 
    523 int
    524 sb_max_set(u_long new_sbmax)
    525 {
    526 	int s;
    527 
    528 	if (new_sbmax < (16 * 1024))
    529 		return (EINVAL);
    530 
    531 	s = splsoftnet();
    532 	sb_max = new_sbmax;
    533 	sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
    534 	splx(s);
    535 
    536 	return (0);
    537 }
    538 
    539 int
    540 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
    541 {
    542 
    543 	KASSERT(so->so_lock == NULL || solocked(so));
    544 
    545 	/*
    546 	 * there's at least one application (a configure script of screen)
    547 	 * which expects a fifo is writable even if it has "some" bytes
    548 	 * in its buffer.
    549 	 * so we want to make sure (hiwat - lowat) >= (some bytes).
    550 	 *
    551 	 * PIPE_BUF here is an arbitrary value chosen as (some bytes) above.
    552 	 * we expect it's large enough for such applications.
    553 	 */
    554 	u_long  lowat = MAX(sock_loan_thresh, MCLBYTES);
    555 	u_long  hiwat = lowat + PIPE_BUF;
    556 
    557 	if (sndcc < hiwat)
    558 		sndcc = hiwat;
    559 	if (sbreserve(&so->so_snd, sndcc, so) == 0)
    560 		goto bad;
    561 	if (sbreserve(&so->so_rcv, rcvcc, so) == 0)
    562 		goto bad2;
    563 	if (so->so_rcv.sb_lowat == 0)
    564 		so->so_rcv.sb_lowat = 1;
    565 	if (so->so_snd.sb_lowat == 0)
    566 		so->so_snd.sb_lowat = lowat;
    567 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
    568 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
    569 	return (0);
    570  bad2:
    571 	sbrelease(&so->so_snd, so);
    572  bad:
    573 	return (ENOBUFS);
    574 }
    575 
    576 /*
    577  * Allot mbufs to a sockbuf.
    578  * Attempt to scale mbmax so that mbcnt doesn't become limiting
    579  * if buffering efficiency is near the normal case.
    580  */
    581 int
    582 sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
    583 {
    584 	struct lwp *l = curlwp; /* XXX */
    585 	rlim_t maxcc;
    586 	struct uidinfo *uidinfo;
    587 
    588 	KASSERT(so->so_lock == NULL || solocked(so));
    589 	KASSERT(sb->sb_so == so);
    590 	KASSERT(sb_max_adj != 0);
    591 
    592 	if (cc == 0 || cc > sb_max_adj)
    593 		return (0);
    594 
    595 	maxcc = l->l_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur;
    596 
    597 	uidinfo = so->so_uidinfo;
    598 	if (!chgsbsize(uidinfo, &sb->sb_hiwat, cc, maxcc))
    599 		return 0;
    600 	sb->sb_mbmax = min(cc * 2, sb_max);
    601 	if (sb->sb_lowat > sb->sb_hiwat)
    602 		sb->sb_lowat = sb->sb_hiwat;
    603 	return (1);
    604 }
    605 
    606 /*
    607  * Free mbufs held by a socket, and reserved mbuf space.  We do not assert
    608  * that the socket is held locked here: see sorflush().
    609  */
    610 void
    611 sbrelease(struct sockbuf *sb, struct socket *so)
    612 {
    613 
    614 	KASSERT(sb->sb_so == so);
    615 
    616 	sbflush(sb);
    617 	(void)chgsbsize(so->so_uidinfo, &sb->sb_hiwat, 0, RLIM_INFINITY);
    618 	sb->sb_mbmax = 0;
    619 }
    620 
    621 /*
    622  * Routines to add and remove
    623  * data from an mbuf queue.
    624  *
    625  * The routines sbappend() or sbappendrecord() are normally called to
    626  * append new mbufs to a socket buffer, after checking that adequate
    627  * space is available, comparing the function sbspace() with the amount
    628  * of data to be added.  sbappendrecord() differs from sbappend() in
    629  * that data supplied is treated as the beginning of a new record.
    630  * To place a sender's address, optional access rights, and data in a
    631  * socket receive buffer, sbappendaddr() should be used.  To place
    632  * access rights and data in a socket receive buffer, sbappendrights()
    633  * should be used.  In either case, the new data begins a new record.
    634  * Note that unlike sbappend() and sbappendrecord(), these routines check
    635  * for the caller that there will be enough space to store the data.
    636  * Each fails if there is not enough space, or if it cannot find mbufs
    637  * to store additional information in.
    638  *
    639  * Reliable protocols may use the socket send buffer to hold data
    640  * awaiting acknowledgement.  Data is normally copied from a socket
    641  * send buffer in a protocol with m_copy for output to a peer,
    642  * and then removing the data from the socket buffer with sbdrop()
    643  * or sbdroprecord() when the data is acknowledged by the peer.
    644  */
    645 
    646 #ifdef SOCKBUF_DEBUG
    647 void
    648 sblastrecordchk(struct sockbuf *sb, const char *where)
    649 {
    650 	struct mbuf *m = sb->sb_mb;
    651 
    652 	KASSERT(solocked(sb->sb_so));
    653 
    654 	while (m && m->m_nextpkt)
    655 		m = m->m_nextpkt;
    656 
    657 	if (m != sb->sb_lastrecord) {
    658 		printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
    659 		    sb->sb_mb, sb->sb_lastrecord, m);
    660 		printf("packet chain:\n");
    661 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
    662 			printf("\t%p\n", m);
    663 		panic("sblastrecordchk from %s", where);
    664 	}
    665 }
    666 
    667 void
    668 sblastmbufchk(struct sockbuf *sb, const char *where)
    669 {
    670 	struct mbuf *m = sb->sb_mb;
    671 	struct mbuf *n;
    672 
    673 	KASSERT(solocked(sb->sb_so));
    674 
    675 	while (m && m->m_nextpkt)
    676 		m = m->m_nextpkt;
    677 
    678 	while (m && m->m_next)
    679 		m = m->m_next;
    680 
    681 	if (m != sb->sb_mbtail) {
    682 		printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
    683 		    sb->sb_mb, sb->sb_mbtail, m);
    684 		printf("packet tree:\n");
    685 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
    686 			printf("\t");
    687 			for (n = m; n != NULL; n = n->m_next)
    688 				printf("%p ", n);
    689 			printf("\n");
    690 		}
    691 		panic("sblastmbufchk from %s", where);
    692 	}
    693 }
    694 #endif /* SOCKBUF_DEBUG */
    695 
    696 /*
    697  * Link a chain of records onto a socket buffer
    698  */
    699 #define	SBLINKRECORDCHAIN(sb, m0, mlast)				\
    700 do {									\
    701 	if ((sb)->sb_lastrecord != NULL)				\
    702 		(sb)->sb_lastrecord->m_nextpkt = (m0);			\
    703 	else								\
    704 		(sb)->sb_mb = (m0);					\
    705 	(sb)->sb_lastrecord = (mlast);					\
    706 } while (/*CONSTCOND*/0)
    707 
    708 
    709 #define	SBLINKRECORD(sb, m0)						\
    710     SBLINKRECORDCHAIN(sb, m0, m0)
    711 
    712 /*
    713  * Append mbuf chain m to the last record in the
    714  * socket buffer sb.  The additional space associated
    715  * the mbuf chain is recorded in sb.  Empty mbufs are
    716  * discarded and mbufs are compacted where possible.
    717  */
    718 void
    719 sbappend(struct sockbuf *sb, struct mbuf *m)
    720 {
    721 	struct mbuf	*n;
    722 
    723 	KASSERT(solocked(sb->sb_so));
    724 
    725 	if (m == NULL)
    726 		return;
    727 
    728 #ifdef MBUFTRACE
    729 	m_claimm(m, sb->sb_mowner);
    730 #endif
    731 
    732 	SBLASTRECORDCHK(sb, "sbappend 1");
    733 
    734 	if ((n = sb->sb_lastrecord) != NULL) {
    735 		/*
    736 		 * XXX Would like to simply use sb_mbtail here, but
    737 		 * XXX I need to verify that I won't miss an EOR that
    738 		 * XXX way.
    739 		 */
    740 		do {
    741 			if (n->m_flags & M_EOR) {
    742 				sbappendrecord(sb, m); /* XXXXXX!!!! */
    743 				return;
    744 			}
    745 		} while (n->m_next && (n = n->m_next));
    746 	} else {
    747 		/*
    748 		 * If this is the first record in the socket buffer, it's
    749 		 * also the last record.
    750 		 */
    751 		sb->sb_lastrecord = m;
    752 	}
    753 	sbcompress(sb, m, n);
    754 	SBLASTRECORDCHK(sb, "sbappend 2");
    755 }
    756 
    757 /*
    758  * This version of sbappend() should only be used when the caller
    759  * absolutely knows that there will never be more than one record
    760  * in the socket buffer, that is, a stream protocol (such as TCP).
    761  */
    762 void
    763 sbappendstream(struct sockbuf *sb, struct mbuf *m)
    764 {
    765 
    766 	KASSERT(solocked(sb->sb_so));
    767 	KDASSERT(m->m_nextpkt == NULL);
    768 	KASSERT(sb->sb_mb == sb->sb_lastrecord);
    769 
    770 	SBLASTMBUFCHK(sb, __func__);
    771 
    772 #ifdef MBUFTRACE
    773 	m_claimm(m, sb->sb_mowner);
    774 #endif
    775 
    776 	sbcompress(sb, m, sb->sb_mbtail);
    777 
    778 	sb->sb_lastrecord = sb->sb_mb;
    779 	SBLASTRECORDCHK(sb, __func__);
    780 }
    781 
    782 #ifdef SOCKBUF_DEBUG
    783 void
    784 sbcheck(struct sockbuf *sb)
    785 {
    786 	struct mbuf	*m, *m2;
    787 	u_long		len, mbcnt;
    788 
    789 	KASSERT(solocked(sb->sb_so));
    790 
    791 	len = 0;
    792 	mbcnt = 0;
    793 	for (m = sb->sb_mb; m; m = m->m_nextpkt) {
    794 		for (m2 = m; m2 != NULL; m2 = m2->m_next) {
    795 			len += m2->m_len;
    796 			mbcnt += MSIZE;
    797 			if (m2->m_flags & M_EXT)
    798 				mbcnt += m2->m_ext.ext_size;
    799 			if (m2->m_nextpkt != NULL)
    800 				panic("sbcheck nextpkt");
    801 		}
    802 	}
    803 	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
    804 		printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
    805 		    mbcnt, sb->sb_mbcnt);
    806 		panic("sbcheck");
    807 	}
    808 }
    809 #endif
    810 
    811 /*
    812  * As above, except the mbuf chain
    813  * begins a new record.
    814  */
    815 void
    816 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
    817 {
    818 	struct mbuf	*m;
    819 
    820 	KASSERT(solocked(sb->sb_so));
    821 
    822 	if (m0 == NULL)
    823 		return;
    824 
    825 #ifdef MBUFTRACE
    826 	m_claimm(m0, sb->sb_mowner);
    827 #endif
    828 	/*
    829 	 * Put the first mbuf on the queue.
    830 	 * Note this permits zero length records.
    831 	 */
    832 	sballoc(sb, m0);
    833 	SBLASTRECORDCHK(sb, "sbappendrecord 1");
    834 	SBLINKRECORD(sb, m0);
    835 	m = m0->m_next;
    836 	m0->m_next = 0;
    837 	if (m && (m0->m_flags & M_EOR)) {
    838 		m0->m_flags &= ~M_EOR;
    839 		m->m_flags |= M_EOR;
    840 	}
    841 	sbcompress(sb, m, m0);
    842 	SBLASTRECORDCHK(sb, "sbappendrecord 2");
    843 }
    844 
    845 /*
    846  * As above except that OOB data
    847  * is inserted at the beginning of the sockbuf,
    848  * but after any other OOB data.
    849  */
    850 void
    851 sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
    852 {
    853 	struct mbuf	*m, **mp;
    854 
    855 	KASSERT(solocked(sb->sb_so));
    856 
    857 	if (m0 == NULL)
    858 		return;
    859 
    860 	SBLASTRECORDCHK(sb, "sbinsertoob 1");
    861 
    862 	for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
    863 	    again:
    864 		switch (m->m_type) {
    865 
    866 		case MT_OOBDATA:
    867 			continue;		/* WANT next train */
    868 
    869 		case MT_CONTROL:
    870 			if ((m = m->m_next) != NULL)
    871 				goto again;	/* inspect THIS train further */
    872 		}
    873 		break;
    874 	}
    875 	/*
    876 	 * Put the first mbuf on the queue.
    877 	 * Note this permits zero length records.
    878 	 */
    879 	sballoc(sb, m0);
    880 	m0->m_nextpkt = *mp;
    881 	if (*mp == NULL) {
    882 		/* m0 is actually the new tail */
    883 		sb->sb_lastrecord = m0;
    884 	}
    885 	*mp = m0;
    886 	m = m0->m_next;
    887 	m0->m_next = 0;
    888 	if (m && (m0->m_flags & M_EOR)) {
    889 		m0->m_flags &= ~M_EOR;
    890 		m->m_flags |= M_EOR;
    891 	}
    892 	sbcompress(sb, m, m0);
    893 	SBLASTRECORDCHK(sb, "sbinsertoob 2");
    894 }
    895 
    896 /*
    897  * Append address and data, and optionally, control (ancillary) data
    898  * to the receive queue of a socket.  If present,
    899  * m0 must include a packet header with total length.
    900  * Returns 0 if no space in sockbuf or insufficient mbufs.
    901  */
    902 int
    903 sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0,
    904 	struct mbuf *control)
    905 {
    906 	struct mbuf	*m, *n, *nlast;
    907 	int		space, len;
    908 
    909 	KASSERT(solocked(sb->sb_so));
    910 
    911 	space = asa->sa_len;
    912 
    913 	if (m0 != NULL) {
    914 		if ((m0->m_flags & M_PKTHDR) == 0)
    915 			panic("sbappendaddr");
    916 		space += m0->m_pkthdr.len;
    917 #ifdef MBUFTRACE
    918 		m_claimm(m0, sb->sb_mowner);
    919 #endif
    920 	}
    921 	for (n = control; n; n = n->m_next) {
    922 		space += n->m_len;
    923 		MCLAIM(n, sb->sb_mowner);
    924 		if (n->m_next == NULL)	/* keep pointer to last control buf */
    925 			break;
    926 	}
    927 	if (space > sbspace(sb))
    928 		return (0);
    929 	m = m_get(M_DONTWAIT, MT_SONAME);
    930 	if (m == NULL)
    931 		return (0);
    932 	MCLAIM(m, sb->sb_mowner);
    933 	/*
    934 	 * XXX avoid 'comparison always true' warning which isn't easily
    935 	 * avoided.
    936 	 */
    937 	len = asa->sa_len;
    938 	if (len > MLEN) {
    939 		MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
    940 		if ((m->m_flags & M_EXT) == 0) {
    941 			m_free(m);
    942 			return (0);
    943 		}
    944 	}
    945 	m->m_len = asa->sa_len;
    946 	memcpy(mtod(m, void *), asa, asa->sa_len);
    947 	if (n)
    948 		n->m_next = m0;		/* concatenate data to control */
    949 	else
    950 		control = m0;
    951 	m->m_next = control;
    952 
    953 	SBLASTRECORDCHK(sb, "sbappendaddr 1");
    954 
    955 	for (n = m; n->m_next != NULL; n = n->m_next)
    956 		sballoc(sb, n);
    957 	sballoc(sb, n);
    958 	nlast = n;
    959 	SBLINKRECORD(sb, m);
    960 
    961 	sb->sb_mbtail = nlast;
    962 	SBLASTMBUFCHK(sb, "sbappendaddr");
    963 	SBLASTRECORDCHK(sb, "sbappendaddr 2");
    964 
    965 	return (1);
    966 }
    967 
    968 /*
    969  * Helper for sbappendchainaddr: prepend a struct sockaddr* to
    970  * an mbuf chain.
    971  */
    972 static inline struct mbuf *
    973 m_prepend_sockaddr(struct sockbuf *sb, struct mbuf *m0,
    974 		   const struct sockaddr *asa)
    975 {
    976 	struct mbuf *m;
    977 	const int salen = asa->sa_len;
    978 
    979 	KASSERT(solocked(sb->sb_so));
    980 
    981 	/* only the first in each chain need be a pkthdr */
    982 	m = m_gethdr(M_DONTWAIT, MT_SONAME);
    983 	if (m == NULL)
    984 		return NULL;
    985 	MCLAIM(m, sb->sb_mowner);
    986 #ifdef notyet
    987 	if (salen > MHLEN) {
    988 		MEXTMALLOC(m, salen, M_NOWAIT);
    989 		if ((m->m_flags & M_EXT) == 0) {
    990 			m_free(m);
    991 			return NULL;
    992 		}
    993 	}
    994 #else
    995 	KASSERT(salen <= MHLEN);
    996 #endif
    997 	m->m_len = salen;
    998 	memcpy(mtod(m, void *), asa, salen);
    999 	m->m_next = m0;
   1000 	m->m_pkthdr.len = salen + m0->m_pkthdr.len;
   1001 
   1002 	return m;
   1003 }
   1004 
   1005 int
   1006 sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa,
   1007 		  struct mbuf *m0, int sbprio)
   1008 {
   1009 	struct mbuf *m, *n, *n0, *nlast;
   1010 	int error;
   1011 
   1012 	KASSERT(solocked(sb->sb_so));
   1013 
   1014 	/*
   1015 	 * XXX sbprio reserved for encoding priority of this* request:
   1016 	 *  SB_PRIO_NONE --> honour normal sb limits
   1017 	 *  SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space,
   1018 	 *	take whole chain. Intended for large requests
   1019 	 *      that should be delivered atomically (all, or none).
   1020 	 * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow
   1021 	 *       over normal socket limits, for messages indicating
   1022 	 *       buffer overflow in earlier normal/lower-priority messages
   1023 	 * SB_PRIO_BESTEFFORT -->  ignore limits entirely.
   1024 	 *       Intended for  kernel-generated messages only.
   1025 	 *        Up to generator to avoid total mbuf resource exhaustion.
   1026 	 */
   1027 	(void)sbprio;
   1028 
   1029 	if (m0 && (m0->m_flags & M_PKTHDR) == 0)
   1030 		panic("sbappendaddrchain");
   1031 
   1032 #ifdef notyet
   1033 	space = sbspace(sb);
   1034 
   1035 	/*
   1036 	 * Enforce SB_PRIO_* limits as described above.
   1037 	 */
   1038 #endif
   1039 
   1040 	n0 = NULL;
   1041 	nlast = NULL;
   1042 	for (m = m0; m; m = m->m_nextpkt) {
   1043 		struct mbuf *np;
   1044 
   1045 #ifdef MBUFTRACE
   1046 		m_claimm(m, sb->sb_mowner);
   1047 #endif
   1048 
   1049 		/* Prepend sockaddr to this record (m) of input chain m0 */
   1050 	  	n = m_prepend_sockaddr(sb, m, asa);
   1051 		if (n == NULL) {
   1052 			error = ENOBUFS;
   1053 			goto bad;
   1054 		}
   1055 
   1056 		/* Append record (asa+m) to end of new chain n0 */
   1057 		if (n0 == NULL) {
   1058 			n0 = n;
   1059 		} else {
   1060 			nlast->m_nextpkt = n;
   1061 		}
   1062 		/* Keep track of last record on new chain */
   1063 		nlast = n;
   1064 
   1065 		for (np = n; np; np = np->m_next)
   1066 			sballoc(sb, np);
   1067 	}
   1068 
   1069 	SBLASTRECORDCHK(sb, "sbappendaddrchain 1");
   1070 
   1071 	/* Drop the entire chain of (asa+m) records onto the socket */
   1072 	SBLINKRECORDCHAIN(sb, n0, nlast);
   1073 
   1074 	SBLASTRECORDCHK(sb, "sbappendaddrchain 2");
   1075 
   1076 	for (m = nlast; m->m_next; m = m->m_next)
   1077 		;
   1078 	sb->sb_mbtail = m;
   1079 	SBLASTMBUFCHK(sb, "sbappendaddrchain");
   1080 
   1081 	return (1);
   1082 
   1083 bad:
   1084 	/*
   1085 	 * On error, free the prepended addreseses. For consistency
   1086 	 * with sbappendaddr(), leave it to our caller to free
   1087 	 * the input record chain passed to us as m0.
   1088 	 */
   1089 	while ((n = n0) != NULL) {
   1090 	  	struct mbuf *np;
   1091 
   1092 		/* Undo the sballoc() of this record */
   1093 		for (np = n; np; np = np->m_next)
   1094 			sbfree(sb, np);
   1095 
   1096 		n0 = n->m_nextpkt;	/* iterate at next prepended address */
   1097 		MFREE(n, np);		/* free prepended address (not data) */
   1098 	}
   1099 	return error;
   1100 }
   1101 
   1102 
   1103 int
   1104 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
   1105 {
   1106 	struct mbuf	*m, *mlast, *n;
   1107 	int		space;
   1108 
   1109 	KASSERT(solocked(sb->sb_so));
   1110 
   1111 	space = 0;
   1112 	if (control == NULL)
   1113 		panic("sbappendcontrol");
   1114 	for (m = control; ; m = m->m_next) {
   1115 		space += m->m_len;
   1116 		MCLAIM(m, sb->sb_mowner);
   1117 		if (m->m_next == NULL)
   1118 			break;
   1119 	}
   1120 	n = m;			/* save pointer to last control buffer */
   1121 	for (m = m0; m; m = m->m_next) {
   1122 		MCLAIM(m, sb->sb_mowner);
   1123 		space += m->m_len;
   1124 	}
   1125 	if (space > sbspace(sb))
   1126 		return (0);
   1127 	n->m_next = m0;			/* concatenate data to control */
   1128 
   1129 	SBLASTRECORDCHK(sb, "sbappendcontrol 1");
   1130 
   1131 	for (m = control; m->m_next != NULL; m = m->m_next)
   1132 		sballoc(sb, m);
   1133 	sballoc(sb, m);
   1134 	mlast = m;
   1135 	SBLINKRECORD(sb, control);
   1136 
   1137 	sb->sb_mbtail = mlast;
   1138 	SBLASTMBUFCHK(sb, "sbappendcontrol");
   1139 	SBLASTRECORDCHK(sb, "sbappendcontrol 2");
   1140 
   1141 	return (1);
   1142 }
   1143 
   1144 /*
   1145  * Compress mbuf chain m into the socket
   1146  * buffer sb following mbuf n.  If n
   1147  * is null, the buffer is presumed empty.
   1148  */
   1149 void
   1150 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
   1151 {
   1152 	int		eor;
   1153 	struct mbuf	*o;
   1154 
   1155 	KASSERT(solocked(sb->sb_so));
   1156 
   1157 	eor = 0;
   1158 	while (m) {
   1159 		eor |= m->m_flags & M_EOR;
   1160 		if (m->m_len == 0 &&
   1161 		    (eor == 0 ||
   1162 		     (((o = m->m_next) || (o = n)) &&
   1163 		      o->m_type == m->m_type))) {
   1164 			if (sb->sb_lastrecord == m)
   1165 				sb->sb_lastrecord = m->m_next;
   1166 			m = m_free(m);
   1167 			continue;
   1168 		}
   1169 		if (n && (n->m_flags & M_EOR) == 0 &&
   1170 		    /* M_TRAILINGSPACE() checks buffer writeability */
   1171 		    m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
   1172 		    m->m_len <= M_TRAILINGSPACE(n) &&
   1173 		    n->m_type == m->m_type) {
   1174 			memcpy(mtod(n, char *) + n->m_len, mtod(m, void *),
   1175 			    (unsigned)m->m_len);
   1176 			n->m_len += m->m_len;
   1177 			sb->sb_cc += m->m_len;
   1178 			m = m_free(m);
   1179 			continue;
   1180 		}
   1181 		if (n)
   1182 			n->m_next = m;
   1183 		else
   1184 			sb->sb_mb = m;
   1185 		sb->sb_mbtail = m;
   1186 		sballoc(sb, m);
   1187 		n = m;
   1188 		m->m_flags &= ~M_EOR;
   1189 		m = m->m_next;
   1190 		n->m_next = 0;
   1191 	}
   1192 	if (eor) {
   1193 		if (n)
   1194 			n->m_flags |= eor;
   1195 		else
   1196 			printf("semi-panic: sbcompress\n");
   1197 	}
   1198 	SBLASTMBUFCHK(sb, __func__);
   1199 }
   1200 
   1201 /*
   1202  * Free all mbufs in a sockbuf.
   1203  * Check that all resources are reclaimed.
   1204  */
   1205 void
   1206 sbflush(struct sockbuf *sb)
   1207 {
   1208 
   1209 	KASSERT(solocked(sb->sb_so));
   1210 	KASSERT((sb->sb_flags & SB_LOCK) == 0);
   1211 
   1212 	while (sb->sb_mbcnt)
   1213 		sbdrop(sb, (int)sb->sb_cc);
   1214 
   1215 	KASSERT(sb->sb_cc == 0);
   1216 	KASSERT(sb->sb_mb == NULL);
   1217 	KASSERT(sb->sb_mbtail == NULL);
   1218 	KASSERT(sb->sb_lastrecord == NULL);
   1219 }
   1220 
   1221 /*
   1222  * Drop data from (the front of) a sockbuf.
   1223  */
   1224 void
   1225 sbdrop(struct sockbuf *sb, int len)
   1226 {
   1227 	struct mbuf	*m, *mn, *next;
   1228 
   1229 	KASSERT(solocked(sb->sb_so));
   1230 
   1231 	next = (m = sb->sb_mb) ? m->m_nextpkt : NULL;
   1232 	while (len > 0) {
   1233 		if (m == NULL) {
   1234 			if (next == NULL)
   1235 				panic("sbdrop(%p,%d): cc=%lu",
   1236 				    sb, len, sb->sb_cc);
   1237 			m = next;
   1238 			next = m->m_nextpkt;
   1239 			continue;
   1240 		}
   1241 		if (m->m_len > len) {
   1242 			m->m_len -= len;
   1243 			m->m_data += len;
   1244 			sb->sb_cc -= len;
   1245 			break;
   1246 		}
   1247 		len -= m->m_len;
   1248 		sbfree(sb, m);
   1249 		MFREE(m, mn);
   1250 		m = mn;
   1251 	}
   1252 	while (m && m->m_len == 0) {
   1253 		sbfree(sb, m);
   1254 		MFREE(m, mn);
   1255 		m = mn;
   1256 	}
   1257 	if (m) {
   1258 		sb->sb_mb = m;
   1259 		m->m_nextpkt = next;
   1260 	} else
   1261 		sb->sb_mb = next;
   1262 	/*
   1263 	 * First part is an inline SB_EMPTY_FIXUP().  Second part
   1264 	 * makes sure sb_lastrecord is up-to-date if we dropped
   1265 	 * part of the last record.
   1266 	 */
   1267 	m = sb->sb_mb;
   1268 	if (m == NULL) {
   1269 		sb->sb_mbtail = NULL;
   1270 		sb->sb_lastrecord = NULL;
   1271 	} else if (m->m_nextpkt == NULL)
   1272 		sb->sb_lastrecord = m;
   1273 }
   1274 
   1275 /*
   1276  * Drop a record off the front of a sockbuf
   1277  * and move the next record to the front.
   1278  */
   1279 void
   1280 sbdroprecord(struct sockbuf *sb)
   1281 {
   1282 	struct mbuf	*m, *mn;
   1283 
   1284 	KASSERT(solocked(sb->sb_so));
   1285 
   1286 	m = sb->sb_mb;
   1287 	if (m) {
   1288 		sb->sb_mb = m->m_nextpkt;
   1289 		do {
   1290 			sbfree(sb, m);
   1291 			MFREE(m, mn);
   1292 		} while ((m = mn) != NULL);
   1293 	}
   1294 	SB_EMPTY_FIXUP(sb);
   1295 }
   1296 
   1297 /*
   1298  * Create a "control" mbuf containing the specified data
   1299  * with the specified type for presentation on a socket buffer.
   1300  */
   1301 struct mbuf *
   1302 sbcreatecontrol1(void **p, int size, int type, int level, int flags)
   1303 {
   1304 	struct cmsghdr	*cp;
   1305 	struct mbuf	*m;
   1306 	int space = CMSG_SPACE(size);
   1307 
   1308 	if ((flags & M_DONTWAIT) && space > MCLBYTES) {
   1309 		printf("%s: message too large %d\n", __func__, space);
   1310 		return NULL;
   1311 	}
   1312 
   1313 	if ((m = m_get(flags, MT_CONTROL)) == NULL)
   1314 		return NULL;
   1315 	if (space > MLEN) {
   1316 		if (space > MCLBYTES)
   1317 			MEXTMALLOC(m, space, M_WAITOK);
   1318 		else
   1319 			MCLGET(m, flags);
   1320 		if ((m->m_flags & M_EXT) == 0) {
   1321 			m_free(m);
   1322 			return NULL;
   1323 		}
   1324 	}
   1325 	cp = mtod(m, struct cmsghdr *);
   1326 	*p = CMSG_DATA(cp);
   1327 	m->m_len = space;
   1328 	cp->cmsg_len = CMSG_LEN(size);
   1329 	cp->cmsg_level = level;
   1330 	cp->cmsg_type = type;
   1331 	return m;
   1332 }
   1333 
   1334 struct mbuf *
   1335 sbcreatecontrol(void *p, int size, int type, int level)
   1336 {
   1337 	struct mbuf *m;
   1338 	void *v;
   1339 
   1340 	m = sbcreatecontrol1(&v, size, type, level, M_DONTWAIT);
   1341 	if (m == NULL)
   1342 		return NULL;
   1343 	memcpy(v, p, size);
   1344 	return m;
   1345 }
   1346 
   1347 void
   1348 solockretry(struct socket *so, kmutex_t *lock)
   1349 {
   1350 
   1351 	while (lock != so->so_lock) {
   1352 		mutex_exit(lock);
   1353 		lock = so->so_lock;
   1354 		mutex_enter(lock);
   1355 	}
   1356 }
   1357 
   1358 bool
   1359 solocked(struct socket *so)
   1360 {
   1361 
   1362 	return mutex_owned(so->so_lock);
   1363 }
   1364 
   1365 bool
   1366 solocked2(struct socket *so1, struct socket *so2)
   1367 {
   1368 	kmutex_t *lock;
   1369 
   1370 	lock = so1->so_lock;
   1371 	if (lock != so2->so_lock)
   1372 		return false;
   1373 	return mutex_owned(lock);
   1374 }
   1375 
   1376 /*
   1377  * Assign a default lock to a new socket.  For PRU_ATTACH, and done by
   1378  * protocols that do not have special locking requirements.
   1379  */
   1380 void
   1381 sosetlock(struct socket *so)
   1382 {
   1383 	kmutex_t *lock;
   1384 
   1385 	if (so->so_lock == NULL) {
   1386 		lock = softnet_lock;
   1387 		so->so_lock = lock;
   1388 		mutex_obj_hold(lock);
   1389 		mutex_enter(lock);
   1390 	}
   1391 
   1392 	/* In all cases, lock must be held on return from PRU_ATTACH. */
   1393 	KASSERT(solocked(so));
   1394 }
   1395 
   1396 /*
   1397  * Set lock on sockbuf sb; sleep if lock is already held.
   1398  * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
   1399  * Returns error without lock if sleep is interrupted.
   1400  */
   1401 int
   1402 sblock(struct sockbuf *sb, int wf)
   1403 {
   1404 	struct socket *so;
   1405 	kmutex_t *lock;
   1406 	int error;
   1407 
   1408 	KASSERT(solocked(sb->sb_so));
   1409 
   1410 	for (;;) {
   1411 		if (__predict_true((sb->sb_flags & SB_LOCK) == 0)) {
   1412 			sb->sb_flags |= SB_LOCK;
   1413 			return 0;
   1414 		}
   1415 		if (wf != M_WAITOK)
   1416 			return EWOULDBLOCK;
   1417 		so = sb->sb_so;
   1418 		lock = so->so_lock;
   1419 		if ((sb->sb_flags & SB_NOINTR) != 0) {
   1420 			cv_wait(&so->so_cv, lock);
   1421 			error = 0;
   1422 		} else
   1423 			error = cv_wait_sig(&so->so_cv, lock);
   1424 		if (__predict_false(lock != so->so_lock))
   1425 			solockretry(so, lock);
   1426 		if (error != 0)
   1427 			return error;
   1428 	}
   1429 }
   1430 
   1431 void
   1432 sbunlock(struct sockbuf *sb)
   1433 {
   1434 	struct socket *so;
   1435 
   1436 	so = sb->sb_so;
   1437 
   1438 	KASSERT(solocked(so));
   1439 	KASSERT((sb->sb_flags & SB_LOCK) != 0);
   1440 
   1441 	sb->sb_flags &= ~SB_LOCK;
   1442 	cv_broadcast(&so->so_cv);
   1443 }
   1444 
   1445 int
   1446 sowait(struct socket *so, bool catch, int timo)
   1447 {
   1448 	kmutex_t *lock;
   1449 	int error;
   1450 
   1451 	KASSERT(solocked(so));
   1452 	KASSERT(catch || timo != 0);
   1453 
   1454 	lock = so->so_lock;
   1455 	if (catch)
   1456 		error = cv_timedwait_sig(&so->so_cv, lock, timo);
   1457 	else
   1458 		error = cv_timedwait(&so->so_cv, lock, timo);
   1459 	if (__predict_false(lock != so->so_lock))
   1460 		solockretry(so, lock);
   1461 	return error;
   1462 }
   1463