uipc_socket2.c revision 1.111 1 /* $NetBSD: uipc_socket2.c,v 1.111 2013/06/27 18:53:17 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*
30 * Copyright (c) 1982, 1986, 1988, 1990, 1993
31 * The Regents of the University of California. All rights reserved.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 * 3. Neither the name of the University nor the names of its contributors
42 * may be used to endorse or promote products derived from this software
43 * without specific prior written permission.
44 *
45 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 * SUCH DAMAGE.
56 *
57 * @(#)uipc_socket2.c 8.2 (Berkeley) 2/14/95
58 */
59
60 #include <sys/cdefs.h>
61 __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.111 2013/06/27 18:53:17 christos Exp $");
62
63 #include "opt_mbuftrace.h"
64 #include "opt_sb_max.h"
65
66 #include <sys/param.h>
67 #include <sys/systm.h>
68 #include <sys/proc.h>
69 #include <sys/file.h>
70 #include <sys/buf.h>
71 #include <sys/mbuf.h>
72 #include <sys/protosw.h>
73 #include <sys/domain.h>
74 #include <sys/poll.h>
75 #include <sys/socket.h>
76 #include <sys/socketvar.h>
77 #include <sys/signalvar.h>
78 #include <sys/kauth.h>
79 #include <sys/pool.h>
80 #include <sys/uidinfo.h>
81
82 /*
83 * Primitive routines for operating on sockets and socket buffers.
84 *
85 * Locking rules and assumptions:
86 *
87 * o socket::so_lock can change on the fly. The low level routines used
88 * to lock sockets are aware of this. When so_lock is acquired, the
89 * routine locking must check to see if so_lock still points to the
90 * lock that was acquired. If so_lock has changed in the meantime, the
91 * now irellevant lock that was acquired must be dropped and the lock
92 * operation retried. Although not proven here, this is completely safe
93 * on a multiprocessor system, even with relaxed memory ordering, given
94 * the next two rules:
95 *
96 * o In order to mutate so_lock, the lock pointed to by the current value
97 * of so_lock must be held: i.e., the socket must be held locked by the
98 * changing thread. The thread must issue membar_exit() to prevent
99 * memory accesses being reordered, and can set so_lock to the desired
100 * value. If the lock pointed to by the new value of so_lock is not
101 * held by the changing thread, the socket must then be considered
102 * unlocked.
103 *
104 * o If so_lock is mutated, and the previous lock referred to by so_lock
105 * could still be visible to other threads in the system (e.g. via file
106 * descriptor or protocol-internal reference), then the old lock must
107 * remain valid until the socket and/or protocol control block has been
108 * torn down.
109 *
110 * o If a socket has a non-NULL so_head value (i.e. is in the process of
111 * connecting), then locking the socket must also lock the socket pointed
112 * to by so_head: their lock pointers must match.
113 *
114 * o If a socket has connections in progress (so_q, so_q0 not empty) then
115 * locking the socket must also lock the sockets attached to both queues.
116 * Again, their lock pointers must match.
117 *
118 * o Beyond the initial lock assigment in socreate(), assigning locks to
119 * sockets is the responsibility of the individual protocols / protocol
120 * domains.
121 */
122
123 static pool_cache_t socket_cache;
124
125 u_long sb_max = SB_MAX; /* maximum socket buffer size */
126 static u_long sb_max_adj; /* adjusted sb_max */
127
128 /*
129 * Procedures to manipulate state flags of socket
130 * and do appropriate wakeups. Normal sequence from the
131 * active (originating) side is that soisconnecting() is
132 * called during processing of connect() call,
133 * resulting in an eventual call to soisconnected() if/when the
134 * connection is established. When the connection is torn down
135 * soisdisconnecting() is called during processing of disconnect() call,
136 * and soisdisconnected() is called when the connection to the peer
137 * is totally severed. The semantics of these routines are such that
138 * connectionless protocols can call soisconnected() and soisdisconnected()
139 * only, bypassing the in-progress calls when setting up a ``connection''
140 * takes no time.
141 *
142 * From the passive side, a socket is created with
143 * two queues of sockets: so_q0 for connections in progress
144 * and so_q for connections already made and awaiting user acceptance.
145 * As a protocol is preparing incoming connections, it creates a socket
146 * structure queued on so_q0 by calling sonewconn(). When the connection
147 * is established, soisconnected() is called, and transfers the
148 * socket structure to so_q, making it available to accept().
149 *
150 * If a socket is closed with sockets on either
151 * so_q0 or so_q, these sockets are dropped.
152 *
153 * If higher level protocols are implemented in
154 * the kernel, the wakeups done here will sometimes
155 * cause software-interrupt process scheduling.
156 */
157
158 void
159 soisconnecting(struct socket *so)
160 {
161
162 KASSERT(solocked(so));
163
164 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
165 so->so_state |= SS_ISCONNECTING;
166 }
167
168 void
169 soisconnected(struct socket *so)
170 {
171 struct socket *head;
172
173 head = so->so_head;
174
175 KASSERT(solocked(so));
176 KASSERT(head == NULL || solocked2(so, head));
177
178 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
179 so->so_state |= SS_ISCONNECTED;
180 if (head && so->so_onq == &head->so_q0) {
181 if ((so->so_options & SO_ACCEPTFILTER) == 0) {
182 soqremque(so, 0);
183 soqinsque(head, so, 1);
184 sorwakeup(head);
185 cv_broadcast(&head->so_cv);
186 } else {
187 so->so_upcall =
188 head->so_accf->so_accept_filter->accf_callback;
189 so->so_upcallarg = head->so_accf->so_accept_filter_arg;
190 so->so_rcv.sb_flags |= SB_UPCALL;
191 so->so_options &= ~SO_ACCEPTFILTER;
192 (*so->so_upcall)(so, so->so_upcallarg,
193 POLLIN|POLLRDNORM, M_DONTWAIT);
194 }
195 } else {
196 cv_broadcast(&so->so_cv);
197 sorwakeup(so);
198 sowwakeup(so);
199 }
200 }
201
202 void
203 soisdisconnecting(struct socket *so)
204 {
205
206 KASSERT(solocked(so));
207
208 so->so_state &= ~SS_ISCONNECTING;
209 so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
210 cv_broadcast(&so->so_cv);
211 sowwakeup(so);
212 sorwakeup(so);
213 }
214
215 void
216 soisdisconnected(struct socket *so)
217 {
218
219 KASSERT(solocked(so));
220
221 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
222 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
223 cv_broadcast(&so->so_cv);
224 sowwakeup(so);
225 sorwakeup(so);
226 }
227
228 void
229 soinit2(void)
230 {
231
232 socket_cache = pool_cache_init(sizeof(struct socket), 0, 0, 0,
233 "socket", NULL, IPL_SOFTNET, NULL, NULL, NULL);
234 }
235
236 /*
237 * When an attempt at a new connection is noted on a socket
238 * which accepts connections, sonewconn is called. If the
239 * connection is possible (subject to space constraints, etc.)
240 * then we allocate a new structure, propoerly linked into the
241 * data structure of the original socket, and return this.
242 * Connstatus may be 0, SS_ISCONFIRMING, or SS_ISCONNECTED.
243 */
244 struct socket *
245 sonewconn(struct socket *head, int connstatus)
246 {
247 struct socket *so;
248 int soqueue, error;
249
250 KASSERT(connstatus == 0 || connstatus == SS_ISCONFIRMING ||
251 connstatus == SS_ISCONNECTED);
252 KASSERT(solocked(head));
253
254 if ((head->so_options & SO_ACCEPTFILTER) != 0)
255 connstatus = 0;
256 soqueue = connstatus ? 1 : 0;
257 if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
258 return NULL;
259 so = soget(false);
260 if (so == NULL)
261 return NULL;
262 mutex_obj_hold(head->so_lock);
263 so->so_lock = head->so_lock;
264 so->so_type = head->so_type;
265 so->so_options = head->so_options &~ SO_ACCEPTCONN;
266 so->so_linger = head->so_linger;
267 so->so_state = head->so_state | SS_NOFDREF;
268 so->so_proto = head->so_proto;
269 so->so_timeo = head->so_timeo;
270 so->so_pgid = head->so_pgid;
271 so->so_send = head->so_send;
272 so->so_receive = head->so_receive;
273 so->so_uidinfo = head->so_uidinfo;
274 so->so_cpid = head->so_cpid;
275 #ifdef MBUFTRACE
276 so->so_mowner = head->so_mowner;
277 so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
278 so->so_snd.sb_mowner = head->so_snd.sb_mowner;
279 #endif
280 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat) != 0)
281 goto out;
282 so->so_snd.sb_lowat = head->so_snd.sb_lowat;
283 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
284 so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
285 so->so_snd.sb_timeo = head->so_snd.sb_timeo;
286 so->so_rcv.sb_flags |= head->so_rcv.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
287 so->so_snd.sb_flags |= head->so_snd.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
288 soqinsque(head, so, soqueue);
289 error = (*so->so_proto->pr_usrreq)(so, PRU_ATTACH, NULL, NULL,
290 NULL, NULL);
291 KASSERT(solocked(so));
292 if (error != 0) {
293 (void) soqremque(so, soqueue);
294 out:
295 /*
296 * Remove acccept filter if one is present.
297 * XXX Is this really needed?
298 */
299 if (so->so_accf != NULL)
300 (void)accept_filt_clear(so);
301 soput(so);
302 return NULL;
303 }
304 if (connstatus) {
305 sorwakeup(head);
306 cv_broadcast(&head->so_cv);
307 so->so_state |= connstatus;
308 }
309 return so;
310 }
311
312 struct socket *
313 soget(bool waitok)
314 {
315 struct socket *so;
316
317 so = pool_cache_get(socket_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
318 if (__predict_false(so == NULL))
319 return (NULL);
320 memset(so, 0, sizeof(*so));
321 TAILQ_INIT(&so->so_q0);
322 TAILQ_INIT(&so->so_q);
323 cv_init(&so->so_cv, "socket");
324 cv_init(&so->so_rcv.sb_cv, "netio");
325 cv_init(&so->so_snd.sb_cv, "netio");
326 selinit(&so->so_rcv.sb_sel);
327 selinit(&so->so_snd.sb_sel);
328 so->so_rcv.sb_so = so;
329 so->so_snd.sb_so = so;
330 return so;
331 }
332
333 void
334 soput(struct socket *so)
335 {
336
337 KASSERT(!cv_has_waiters(&so->so_cv));
338 KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
339 KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
340 seldestroy(&so->so_rcv.sb_sel);
341 seldestroy(&so->so_snd.sb_sel);
342 mutex_obj_free(so->so_lock);
343 cv_destroy(&so->so_cv);
344 cv_destroy(&so->so_rcv.sb_cv);
345 cv_destroy(&so->so_snd.sb_cv);
346 pool_cache_put(socket_cache, so);
347 }
348
349 void
350 soqinsque(struct socket *head, struct socket *so, int q)
351 {
352
353 KASSERT(solocked2(head, so));
354
355 #ifdef DIAGNOSTIC
356 if (so->so_onq != NULL)
357 panic("soqinsque");
358 #endif
359
360 so->so_head = head;
361 if (q == 0) {
362 head->so_q0len++;
363 so->so_onq = &head->so_q0;
364 } else {
365 head->so_qlen++;
366 so->so_onq = &head->so_q;
367 }
368 TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
369 }
370
371 int
372 soqremque(struct socket *so, int q)
373 {
374 struct socket *head;
375
376 head = so->so_head;
377
378 KASSERT(solocked(so));
379 if (q == 0) {
380 if (so->so_onq != &head->so_q0)
381 return (0);
382 head->so_q0len--;
383 } else {
384 if (so->so_onq != &head->so_q)
385 return (0);
386 head->so_qlen--;
387 }
388 KASSERT(solocked2(so, head));
389 TAILQ_REMOVE(so->so_onq, so, so_qe);
390 so->so_onq = NULL;
391 so->so_head = NULL;
392 return (1);
393 }
394
395 /*
396 * Socantsendmore indicates that no more data will be sent on the
397 * socket; it would normally be applied to a socket when the user
398 * informs the system that no more data is to be sent, by the protocol
399 * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data
400 * will be received, and will normally be applied to the socket by a
401 * protocol when it detects that the peer will send no more data.
402 * Data queued for reading in the socket may yet be read.
403 */
404
405 void
406 socantsendmore(struct socket *so)
407 {
408
409 KASSERT(solocked(so));
410
411 so->so_state |= SS_CANTSENDMORE;
412 sowwakeup(so);
413 }
414
415 void
416 socantrcvmore(struct socket *so)
417 {
418
419 KASSERT(solocked(so));
420
421 so->so_state |= SS_CANTRCVMORE;
422 sorwakeup(so);
423 }
424
425 /*
426 * Wait for data to arrive at/drain from a socket buffer.
427 */
428 int
429 sbwait(struct sockbuf *sb)
430 {
431 struct socket *so;
432 kmutex_t *lock;
433 int error;
434
435 so = sb->sb_so;
436
437 KASSERT(solocked(so));
438
439 sb->sb_flags |= SB_NOTIFY;
440 lock = so->so_lock;
441 if ((sb->sb_flags & SB_NOINTR) != 0)
442 error = cv_timedwait(&sb->sb_cv, lock, sb->sb_timeo);
443 else
444 error = cv_timedwait_sig(&sb->sb_cv, lock, sb->sb_timeo);
445 if (__predict_false(lock != so->so_lock))
446 solockretry(so, lock);
447 return error;
448 }
449
450 /*
451 * Wakeup processes waiting on a socket buffer.
452 * Do asynchronous notification via SIGIO
453 * if the socket buffer has the SB_ASYNC flag set.
454 */
455 void
456 sowakeup(struct socket *so, struct sockbuf *sb, int code)
457 {
458 int band;
459
460 KASSERT(solocked(so));
461 KASSERT(sb->sb_so == so);
462
463 if (code == POLL_IN)
464 band = POLLIN|POLLRDNORM;
465 else
466 band = POLLOUT|POLLWRNORM;
467 sb->sb_flags &= ~SB_NOTIFY;
468 selnotify(&sb->sb_sel, band, NOTE_SUBMIT);
469 cv_broadcast(&sb->sb_cv);
470 if (sb->sb_flags & SB_ASYNC)
471 fownsignal(so->so_pgid, SIGIO, code, band, so);
472 if (sb->sb_flags & SB_UPCALL)
473 (*so->so_upcall)(so, so->so_upcallarg, band, M_DONTWAIT);
474 }
475
476 /*
477 * Reset a socket's lock pointer. Wake all threads waiting on the
478 * socket's condition variables so that they can restart their waits
479 * using the new lock. The existing lock must be held.
480 */
481 void
482 solockreset(struct socket *so, kmutex_t *lock)
483 {
484
485 KASSERT(solocked(so));
486
487 so->so_lock = lock;
488 cv_broadcast(&so->so_snd.sb_cv);
489 cv_broadcast(&so->so_rcv.sb_cv);
490 cv_broadcast(&so->so_cv);
491 }
492
493 /*
494 * Socket buffer (struct sockbuf) utility routines.
495 *
496 * Each socket contains two socket buffers: one for sending data and
497 * one for receiving data. Each buffer contains a queue of mbufs,
498 * information about the number of mbufs and amount of data in the
499 * queue, and other fields allowing poll() statements and notification
500 * on data availability to be implemented.
501 *
502 * Data stored in a socket buffer is maintained as a list of records.
503 * Each record is a list of mbufs chained together with the m_next
504 * field. Records are chained together with the m_nextpkt field. The upper
505 * level routine soreceive() expects the following conventions to be
506 * observed when placing information in the receive buffer:
507 *
508 * 1. If the protocol requires each message be preceded by the sender's
509 * name, then a record containing that name must be present before
510 * any associated data (mbuf's must be of type MT_SONAME).
511 * 2. If the protocol supports the exchange of ``access rights'' (really
512 * just additional data associated with the message), and there are
513 * ``rights'' to be received, then a record containing this data
514 * should be present (mbuf's must be of type MT_CONTROL).
515 * 3. If a name or rights record exists, then it must be followed by
516 * a data record, perhaps of zero length.
517 *
518 * Before using a new socket structure it is first necessary to reserve
519 * buffer space to the socket, by calling sbreserve(). This should commit
520 * some of the available buffer space in the system buffer pool for the
521 * socket (currently, it does nothing but enforce limits). The space
522 * should be released by calling sbrelease() when the socket is destroyed.
523 */
524
525 int
526 sb_max_set(u_long new_sbmax)
527 {
528 int s;
529
530 if (new_sbmax < (16 * 1024))
531 return (EINVAL);
532
533 s = splsoftnet();
534 sb_max = new_sbmax;
535 sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
536 splx(s);
537
538 return (0);
539 }
540
541 int
542 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
543 {
544
545 KASSERT(so->so_lock == NULL || solocked(so));
546
547 /*
548 * there's at least one application (a configure script of screen)
549 * which expects a fifo is writable even if it has "some" bytes
550 * in its buffer.
551 * so we want to make sure (hiwat - lowat) >= (some bytes).
552 *
553 * PIPE_BUF here is an arbitrary value chosen as (some bytes) above.
554 * we expect it's large enough for such applications.
555 */
556 u_long lowat = MAX(sock_loan_thresh, MCLBYTES);
557 u_long hiwat = lowat + PIPE_BUF;
558
559 if (sndcc < hiwat)
560 sndcc = hiwat;
561 if (sbreserve(&so->so_snd, sndcc, so) == 0)
562 goto bad;
563 if (sbreserve(&so->so_rcv, rcvcc, so) == 0)
564 goto bad2;
565 if (so->so_rcv.sb_lowat == 0)
566 so->so_rcv.sb_lowat = 1;
567 if (so->so_snd.sb_lowat == 0)
568 so->so_snd.sb_lowat = lowat;
569 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
570 so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
571 return (0);
572 bad2:
573 sbrelease(&so->so_snd, so);
574 bad:
575 return (ENOBUFS);
576 }
577
578 /*
579 * Allot mbufs to a sockbuf.
580 * Attempt to scale mbmax so that mbcnt doesn't become limiting
581 * if buffering efficiency is near the normal case.
582 */
583 int
584 sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
585 {
586 struct lwp *l = curlwp; /* XXX */
587 rlim_t maxcc;
588 struct uidinfo *uidinfo;
589
590 KASSERT(so->so_lock == NULL || solocked(so));
591 KASSERT(sb->sb_so == so);
592 KASSERT(sb_max_adj != 0);
593
594 if (cc == 0 || cc > sb_max_adj)
595 return (0);
596
597 maxcc = l->l_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur;
598
599 uidinfo = so->so_uidinfo;
600 if (!chgsbsize(uidinfo, &sb->sb_hiwat, cc, maxcc))
601 return 0;
602 sb->sb_mbmax = min(cc * 2, sb_max);
603 if (sb->sb_lowat > sb->sb_hiwat)
604 sb->sb_lowat = sb->sb_hiwat;
605 return (1);
606 }
607
608 /*
609 * Free mbufs held by a socket, and reserved mbuf space. We do not assert
610 * that the socket is held locked here: see sorflush().
611 */
612 void
613 sbrelease(struct sockbuf *sb, struct socket *so)
614 {
615
616 KASSERT(sb->sb_so == so);
617
618 sbflush(sb);
619 (void)chgsbsize(so->so_uidinfo, &sb->sb_hiwat, 0, RLIM_INFINITY);
620 sb->sb_mbmax = 0;
621 }
622
623 /*
624 * Routines to add and remove
625 * data from an mbuf queue.
626 *
627 * The routines sbappend() or sbappendrecord() are normally called to
628 * append new mbufs to a socket buffer, after checking that adequate
629 * space is available, comparing the function sbspace() with the amount
630 * of data to be added. sbappendrecord() differs from sbappend() in
631 * that data supplied is treated as the beginning of a new record.
632 * To place a sender's address, optional access rights, and data in a
633 * socket receive buffer, sbappendaddr() should be used. To place
634 * access rights and data in a socket receive buffer, sbappendrights()
635 * should be used. In either case, the new data begins a new record.
636 * Note that unlike sbappend() and sbappendrecord(), these routines check
637 * for the caller that there will be enough space to store the data.
638 * Each fails if there is not enough space, or if it cannot find mbufs
639 * to store additional information in.
640 *
641 * Reliable protocols may use the socket send buffer to hold data
642 * awaiting acknowledgement. Data is normally copied from a socket
643 * send buffer in a protocol with m_copy for output to a peer,
644 * and then removing the data from the socket buffer with sbdrop()
645 * or sbdroprecord() when the data is acknowledged by the peer.
646 */
647
648 #ifdef SOCKBUF_DEBUG
649 void
650 sblastrecordchk(struct sockbuf *sb, const char *where)
651 {
652 struct mbuf *m = sb->sb_mb;
653
654 KASSERT(solocked(sb->sb_so));
655
656 while (m && m->m_nextpkt)
657 m = m->m_nextpkt;
658
659 if (m != sb->sb_lastrecord) {
660 printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
661 sb->sb_mb, sb->sb_lastrecord, m);
662 printf("packet chain:\n");
663 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
664 printf("\t%p\n", m);
665 panic("sblastrecordchk from %s", where);
666 }
667 }
668
669 void
670 sblastmbufchk(struct sockbuf *sb, const char *where)
671 {
672 struct mbuf *m = sb->sb_mb;
673 struct mbuf *n;
674
675 KASSERT(solocked(sb->sb_so));
676
677 while (m && m->m_nextpkt)
678 m = m->m_nextpkt;
679
680 while (m && m->m_next)
681 m = m->m_next;
682
683 if (m != sb->sb_mbtail) {
684 printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
685 sb->sb_mb, sb->sb_mbtail, m);
686 printf("packet tree:\n");
687 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
688 printf("\t");
689 for (n = m; n != NULL; n = n->m_next)
690 printf("%p ", n);
691 printf("\n");
692 }
693 panic("sblastmbufchk from %s", where);
694 }
695 }
696 #endif /* SOCKBUF_DEBUG */
697
698 /*
699 * Link a chain of records onto a socket buffer
700 */
701 #define SBLINKRECORDCHAIN(sb, m0, mlast) \
702 do { \
703 if ((sb)->sb_lastrecord != NULL) \
704 (sb)->sb_lastrecord->m_nextpkt = (m0); \
705 else \
706 (sb)->sb_mb = (m0); \
707 (sb)->sb_lastrecord = (mlast); \
708 } while (/*CONSTCOND*/0)
709
710
711 #define SBLINKRECORD(sb, m0) \
712 SBLINKRECORDCHAIN(sb, m0, m0)
713
714 /*
715 * Append mbuf chain m to the last record in the
716 * socket buffer sb. The additional space associated
717 * the mbuf chain is recorded in sb. Empty mbufs are
718 * discarded and mbufs are compacted where possible.
719 */
720 void
721 sbappend(struct sockbuf *sb, struct mbuf *m)
722 {
723 struct mbuf *n;
724
725 KASSERT(solocked(sb->sb_so));
726
727 if (m == 0)
728 return;
729
730 #ifdef MBUFTRACE
731 m_claimm(m, sb->sb_mowner);
732 #endif
733
734 SBLASTRECORDCHK(sb, "sbappend 1");
735
736 if ((n = sb->sb_lastrecord) != NULL) {
737 /*
738 * XXX Would like to simply use sb_mbtail here, but
739 * XXX I need to verify that I won't miss an EOR that
740 * XXX way.
741 */
742 do {
743 if (n->m_flags & M_EOR) {
744 sbappendrecord(sb, m); /* XXXXXX!!!! */
745 return;
746 }
747 } while (n->m_next && (n = n->m_next));
748 } else {
749 /*
750 * If this is the first record in the socket buffer, it's
751 * also the last record.
752 */
753 sb->sb_lastrecord = m;
754 }
755 sbcompress(sb, m, n);
756 SBLASTRECORDCHK(sb, "sbappend 2");
757 }
758
759 /*
760 * This version of sbappend() should only be used when the caller
761 * absolutely knows that there will never be more than one record
762 * in the socket buffer, that is, a stream protocol (such as TCP).
763 */
764 void
765 sbappendstream(struct sockbuf *sb, struct mbuf *m)
766 {
767
768 KASSERT(solocked(sb->sb_so));
769 KDASSERT(m->m_nextpkt == NULL);
770 KASSERT(sb->sb_mb == sb->sb_lastrecord);
771
772 SBLASTMBUFCHK(sb, __func__);
773
774 #ifdef MBUFTRACE
775 m_claimm(m, sb->sb_mowner);
776 #endif
777
778 sbcompress(sb, m, sb->sb_mbtail);
779
780 sb->sb_lastrecord = sb->sb_mb;
781 SBLASTRECORDCHK(sb, __func__);
782 }
783
784 #ifdef SOCKBUF_DEBUG
785 void
786 sbcheck(struct sockbuf *sb)
787 {
788 struct mbuf *m, *m2;
789 u_long len, mbcnt;
790
791 KASSERT(solocked(sb->sb_so));
792
793 len = 0;
794 mbcnt = 0;
795 for (m = sb->sb_mb; m; m = m->m_nextpkt) {
796 for (m2 = m; m2 != NULL; m2 = m2->m_next) {
797 len += m2->m_len;
798 mbcnt += MSIZE;
799 if (m2->m_flags & M_EXT)
800 mbcnt += m2->m_ext.ext_size;
801 if (m2->m_nextpkt != NULL)
802 panic("sbcheck nextpkt");
803 }
804 }
805 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
806 printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
807 mbcnt, sb->sb_mbcnt);
808 panic("sbcheck");
809 }
810 }
811 #endif
812
813 /*
814 * As above, except the mbuf chain
815 * begins a new record.
816 */
817 void
818 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
819 {
820 struct mbuf *m;
821
822 KASSERT(solocked(sb->sb_so));
823
824 if (m0 == 0)
825 return;
826
827 #ifdef MBUFTRACE
828 m_claimm(m0, sb->sb_mowner);
829 #endif
830 /*
831 * Put the first mbuf on the queue.
832 * Note this permits zero length records.
833 */
834 sballoc(sb, m0);
835 SBLASTRECORDCHK(sb, "sbappendrecord 1");
836 SBLINKRECORD(sb, m0);
837 m = m0->m_next;
838 m0->m_next = 0;
839 if (m && (m0->m_flags & M_EOR)) {
840 m0->m_flags &= ~M_EOR;
841 m->m_flags |= M_EOR;
842 }
843 sbcompress(sb, m, m0);
844 SBLASTRECORDCHK(sb, "sbappendrecord 2");
845 }
846
847 /*
848 * As above except that OOB data
849 * is inserted at the beginning of the sockbuf,
850 * but after any other OOB data.
851 */
852 void
853 sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
854 {
855 struct mbuf *m, **mp;
856
857 KASSERT(solocked(sb->sb_so));
858
859 if (m0 == 0)
860 return;
861
862 SBLASTRECORDCHK(sb, "sbinsertoob 1");
863
864 for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
865 again:
866 switch (m->m_type) {
867
868 case MT_OOBDATA:
869 continue; /* WANT next train */
870
871 case MT_CONTROL:
872 if ((m = m->m_next) != NULL)
873 goto again; /* inspect THIS train further */
874 }
875 break;
876 }
877 /*
878 * Put the first mbuf on the queue.
879 * Note this permits zero length records.
880 */
881 sballoc(sb, m0);
882 m0->m_nextpkt = *mp;
883 if (*mp == NULL) {
884 /* m0 is actually the new tail */
885 sb->sb_lastrecord = m0;
886 }
887 *mp = m0;
888 m = m0->m_next;
889 m0->m_next = 0;
890 if (m && (m0->m_flags & M_EOR)) {
891 m0->m_flags &= ~M_EOR;
892 m->m_flags |= M_EOR;
893 }
894 sbcompress(sb, m, m0);
895 SBLASTRECORDCHK(sb, "sbinsertoob 2");
896 }
897
898 /*
899 * Append address and data, and optionally, control (ancillary) data
900 * to the receive queue of a socket. If present,
901 * m0 must include a packet header with total length.
902 * Returns 0 if no space in sockbuf or insufficient mbufs.
903 */
904 int
905 sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0,
906 struct mbuf *control)
907 {
908 struct mbuf *m, *n, *nlast;
909 int space, len;
910
911 KASSERT(solocked(sb->sb_so));
912
913 space = asa->sa_len;
914
915 if (m0 != NULL) {
916 if ((m0->m_flags & M_PKTHDR) == 0)
917 panic("sbappendaddr");
918 space += m0->m_pkthdr.len;
919 #ifdef MBUFTRACE
920 m_claimm(m0, sb->sb_mowner);
921 #endif
922 }
923 for (n = control; n; n = n->m_next) {
924 space += n->m_len;
925 MCLAIM(n, sb->sb_mowner);
926 if (n->m_next == 0) /* keep pointer to last control buf */
927 break;
928 }
929 if (space > sbspace(sb))
930 return (0);
931 MGET(m, M_DONTWAIT, MT_SONAME);
932 if (m == 0)
933 return (0);
934 MCLAIM(m, sb->sb_mowner);
935 /*
936 * XXX avoid 'comparison always true' warning which isn't easily
937 * avoided.
938 */
939 len = asa->sa_len;
940 if (len > MLEN) {
941 MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
942 if ((m->m_flags & M_EXT) == 0) {
943 m_free(m);
944 return (0);
945 }
946 }
947 m->m_len = asa->sa_len;
948 memcpy(mtod(m, void *), asa, asa->sa_len);
949 if (n)
950 n->m_next = m0; /* concatenate data to control */
951 else
952 control = m0;
953 m->m_next = control;
954
955 SBLASTRECORDCHK(sb, "sbappendaddr 1");
956
957 for (n = m; n->m_next != NULL; n = n->m_next)
958 sballoc(sb, n);
959 sballoc(sb, n);
960 nlast = n;
961 SBLINKRECORD(sb, m);
962
963 sb->sb_mbtail = nlast;
964 SBLASTMBUFCHK(sb, "sbappendaddr");
965 SBLASTRECORDCHK(sb, "sbappendaddr 2");
966
967 return (1);
968 }
969
970 /*
971 * Helper for sbappendchainaddr: prepend a struct sockaddr* to
972 * an mbuf chain.
973 */
974 static inline struct mbuf *
975 m_prepend_sockaddr(struct sockbuf *sb, struct mbuf *m0,
976 const struct sockaddr *asa)
977 {
978 struct mbuf *m;
979 const int salen = asa->sa_len;
980
981 KASSERT(solocked(sb->sb_so));
982
983 /* only the first in each chain need be a pkthdr */
984 MGETHDR(m, M_DONTWAIT, MT_SONAME);
985 if (m == 0)
986 return (0);
987 MCLAIM(m, sb->sb_mowner);
988 #ifdef notyet
989 if (salen > MHLEN) {
990 MEXTMALLOC(m, salen, M_NOWAIT);
991 if ((m->m_flags & M_EXT) == 0) {
992 m_free(m);
993 return (0);
994 }
995 }
996 #else
997 KASSERT(salen <= MHLEN);
998 #endif
999 m->m_len = salen;
1000 memcpy(mtod(m, void *), asa, salen);
1001 m->m_next = m0;
1002 m->m_pkthdr.len = salen + m0->m_pkthdr.len;
1003
1004 return m;
1005 }
1006
1007 int
1008 sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa,
1009 struct mbuf *m0, int sbprio)
1010 {
1011 int space;
1012 struct mbuf *m, *n, *n0, *nlast;
1013 int error;
1014
1015 KASSERT(solocked(sb->sb_so));
1016
1017 /*
1018 * XXX sbprio reserved for encoding priority of this* request:
1019 * SB_PRIO_NONE --> honour normal sb limits
1020 * SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space,
1021 * take whole chain. Intended for large requests
1022 * that should be delivered atomically (all, or none).
1023 * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow
1024 * over normal socket limits, for messages indicating
1025 * buffer overflow in earlier normal/lower-priority messages
1026 * SB_PRIO_BESTEFFORT --> ignore limits entirely.
1027 * Intended for kernel-generated messages only.
1028 * Up to generator to avoid total mbuf resource exhaustion.
1029 */
1030 (void)sbprio;
1031
1032 if (m0 && (m0->m_flags & M_PKTHDR) == 0)
1033 panic("sbappendaddrchain");
1034
1035 space = sbspace(sb);
1036
1037 #ifdef notyet
1038 /*
1039 * Enforce SB_PRIO_* limits as described above.
1040 */
1041 #endif
1042
1043 n0 = NULL;
1044 nlast = NULL;
1045 for (m = m0; m; m = m->m_nextpkt) {
1046 struct mbuf *np;
1047
1048 #ifdef MBUFTRACE
1049 m_claimm(m, sb->sb_mowner);
1050 #endif
1051
1052 /* Prepend sockaddr to this record (m) of input chain m0 */
1053 n = m_prepend_sockaddr(sb, m, asa);
1054 if (n == NULL) {
1055 error = ENOBUFS;
1056 goto bad;
1057 }
1058
1059 /* Append record (asa+m) to end of new chain n0 */
1060 if (n0 == NULL) {
1061 n0 = n;
1062 } else {
1063 nlast->m_nextpkt = n;
1064 }
1065 /* Keep track of last record on new chain */
1066 nlast = n;
1067
1068 for (np = n; np; np = np->m_next)
1069 sballoc(sb, np);
1070 }
1071
1072 SBLASTRECORDCHK(sb, "sbappendaddrchain 1");
1073
1074 /* Drop the entire chain of (asa+m) records onto the socket */
1075 SBLINKRECORDCHAIN(sb, n0, nlast);
1076
1077 SBLASTRECORDCHK(sb, "sbappendaddrchain 2");
1078
1079 for (m = nlast; m->m_next; m = m->m_next)
1080 ;
1081 sb->sb_mbtail = m;
1082 SBLASTMBUFCHK(sb, "sbappendaddrchain");
1083
1084 return (1);
1085
1086 bad:
1087 /*
1088 * On error, free the prepended addreseses. For consistency
1089 * with sbappendaddr(), leave it to our caller to free
1090 * the input record chain passed to us as m0.
1091 */
1092 while ((n = n0) != NULL) {
1093 struct mbuf *np;
1094
1095 /* Undo the sballoc() of this record */
1096 for (np = n; np; np = np->m_next)
1097 sbfree(sb, np);
1098
1099 n0 = n->m_nextpkt; /* iterate at next prepended address */
1100 MFREE(n, np); /* free prepended address (not data) */
1101 }
1102 return 0;
1103 }
1104
1105
1106 int
1107 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
1108 {
1109 struct mbuf *m, *mlast, *n;
1110 int space;
1111
1112 KASSERT(solocked(sb->sb_so));
1113
1114 space = 0;
1115 if (control == 0)
1116 panic("sbappendcontrol");
1117 for (m = control; ; m = m->m_next) {
1118 space += m->m_len;
1119 MCLAIM(m, sb->sb_mowner);
1120 if (m->m_next == 0)
1121 break;
1122 }
1123 n = m; /* save pointer to last control buffer */
1124 for (m = m0; m; m = m->m_next) {
1125 MCLAIM(m, sb->sb_mowner);
1126 space += m->m_len;
1127 }
1128 if (space > sbspace(sb))
1129 return (0);
1130 n->m_next = m0; /* concatenate data to control */
1131
1132 SBLASTRECORDCHK(sb, "sbappendcontrol 1");
1133
1134 for (m = control; m->m_next != NULL; m = m->m_next)
1135 sballoc(sb, m);
1136 sballoc(sb, m);
1137 mlast = m;
1138 SBLINKRECORD(sb, control);
1139
1140 sb->sb_mbtail = mlast;
1141 SBLASTMBUFCHK(sb, "sbappendcontrol");
1142 SBLASTRECORDCHK(sb, "sbappendcontrol 2");
1143
1144 return (1);
1145 }
1146
1147 /*
1148 * Compress mbuf chain m into the socket
1149 * buffer sb following mbuf n. If n
1150 * is null, the buffer is presumed empty.
1151 */
1152 void
1153 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
1154 {
1155 int eor;
1156 struct mbuf *o;
1157
1158 KASSERT(solocked(sb->sb_so));
1159
1160 eor = 0;
1161 while (m) {
1162 eor |= m->m_flags & M_EOR;
1163 if (m->m_len == 0 &&
1164 (eor == 0 ||
1165 (((o = m->m_next) || (o = n)) &&
1166 o->m_type == m->m_type))) {
1167 if (sb->sb_lastrecord == m)
1168 sb->sb_lastrecord = m->m_next;
1169 m = m_free(m);
1170 continue;
1171 }
1172 if (n && (n->m_flags & M_EOR) == 0 &&
1173 /* M_TRAILINGSPACE() checks buffer writeability */
1174 m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
1175 m->m_len <= M_TRAILINGSPACE(n) &&
1176 n->m_type == m->m_type) {
1177 memcpy(mtod(n, char *) + n->m_len, mtod(m, void *),
1178 (unsigned)m->m_len);
1179 n->m_len += m->m_len;
1180 sb->sb_cc += m->m_len;
1181 m = m_free(m);
1182 continue;
1183 }
1184 if (n)
1185 n->m_next = m;
1186 else
1187 sb->sb_mb = m;
1188 sb->sb_mbtail = m;
1189 sballoc(sb, m);
1190 n = m;
1191 m->m_flags &= ~M_EOR;
1192 m = m->m_next;
1193 n->m_next = 0;
1194 }
1195 if (eor) {
1196 if (n)
1197 n->m_flags |= eor;
1198 else
1199 printf("semi-panic: sbcompress\n");
1200 }
1201 SBLASTMBUFCHK(sb, __func__);
1202 }
1203
1204 /*
1205 * Free all mbufs in a sockbuf.
1206 * Check that all resources are reclaimed.
1207 */
1208 void
1209 sbflush(struct sockbuf *sb)
1210 {
1211
1212 KASSERT(solocked(sb->sb_so));
1213 KASSERT((sb->sb_flags & SB_LOCK) == 0);
1214
1215 while (sb->sb_mbcnt)
1216 sbdrop(sb, (int)sb->sb_cc);
1217
1218 KASSERT(sb->sb_cc == 0);
1219 KASSERT(sb->sb_mb == NULL);
1220 KASSERT(sb->sb_mbtail == NULL);
1221 KASSERT(sb->sb_lastrecord == NULL);
1222 }
1223
1224 /*
1225 * Drop data from (the front of) a sockbuf.
1226 */
1227 void
1228 sbdrop(struct sockbuf *sb, int len)
1229 {
1230 struct mbuf *m, *mn, *next;
1231
1232 KASSERT(solocked(sb->sb_so));
1233
1234 next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
1235 while (len > 0) {
1236 if (m == 0) {
1237 if (next == 0)
1238 panic("sbdrop");
1239 m = next;
1240 next = m->m_nextpkt;
1241 continue;
1242 }
1243 if (m->m_len > len) {
1244 m->m_len -= len;
1245 m->m_data += len;
1246 sb->sb_cc -= len;
1247 break;
1248 }
1249 len -= m->m_len;
1250 sbfree(sb, m);
1251 MFREE(m, mn);
1252 m = mn;
1253 }
1254 while (m && m->m_len == 0) {
1255 sbfree(sb, m);
1256 MFREE(m, mn);
1257 m = mn;
1258 }
1259 if (m) {
1260 sb->sb_mb = m;
1261 m->m_nextpkt = next;
1262 } else
1263 sb->sb_mb = next;
1264 /*
1265 * First part is an inline SB_EMPTY_FIXUP(). Second part
1266 * makes sure sb_lastrecord is up-to-date if we dropped
1267 * part of the last record.
1268 */
1269 m = sb->sb_mb;
1270 if (m == NULL) {
1271 sb->sb_mbtail = NULL;
1272 sb->sb_lastrecord = NULL;
1273 } else if (m->m_nextpkt == NULL)
1274 sb->sb_lastrecord = m;
1275 }
1276
1277 /*
1278 * Drop a record off the front of a sockbuf
1279 * and move the next record to the front.
1280 */
1281 void
1282 sbdroprecord(struct sockbuf *sb)
1283 {
1284 struct mbuf *m, *mn;
1285
1286 KASSERT(solocked(sb->sb_so));
1287
1288 m = sb->sb_mb;
1289 if (m) {
1290 sb->sb_mb = m->m_nextpkt;
1291 do {
1292 sbfree(sb, m);
1293 MFREE(m, mn);
1294 } while ((m = mn) != NULL);
1295 }
1296 SB_EMPTY_FIXUP(sb);
1297 }
1298
1299 /*
1300 * Create a "control" mbuf containing the specified data
1301 * with the specified type for presentation on a socket buffer.
1302 */
1303 struct mbuf *
1304 sbcreatecontrol1(void **p, int size, int type, int level, int flags)
1305 {
1306 struct cmsghdr *cp;
1307 struct mbuf *m;
1308 int space = CMSG_SPACE(size);
1309
1310 if ((flags & M_DONTWAIT) && space > MCLBYTES) {
1311 printf("%s: message too large %d\n", __func__, space);
1312 return NULL;
1313 }
1314
1315 if ((m = m_get(flags, MT_CONTROL)) == NULL)
1316 return NULL;
1317 if (space > MLEN) {
1318 if (space > MCLBYTES)
1319 MEXTMALLOC(m, space, M_WAITOK);
1320 else
1321 MCLGET(m, flags);
1322 if ((m->m_flags & M_EXT) == 0) {
1323 m_free(m);
1324 return NULL;
1325 }
1326 }
1327 cp = mtod(m, struct cmsghdr *);
1328 *p = CMSG_DATA(cp);
1329 m->m_len = space;
1330 cp->cmsg_len = CMSG_LEN(size);
1331 cp->cmsg_level = level;
1332 cp->cmsg_type = type;
1333 return m;
1334 }
1335
1336 struct mbuf *
1337 sbcreatecontrol(void *p, int size, int type, int level)
1338 {
1339 struct mbuf *m;
1340 void *v;
1341
1342 m = sbcreatecontrol1(&v, size, type, level, M_DONTWAIT);
1343 if (m == NULL)
1344 return NULL;
1345 memcpy(v, p, size);
1346 return m;
1347 }
1348
1349 void
1350 solockretry(struct socket *so, kmutex_t *lock)
1351 {
1352
1353 while (lock != so->so_lock) {
1354 mutex_exit(lock);
1355 lock = so->so_lock;
1356 mutex_enter(lock);
1357 }
1358 }
1359
1360 bool
1361 solocked(struct socket *so)
1362 {
1363
1364 return mutex_owned(so->so_lock);
1365 }
1366
1367 bool
1368 solocked2(struct socket *so1, struct socket *so2)
1369 {
1370 kmutex_t *lock;
1371
1372 lock = so1->so_lock;
1373 if (lock != so2->so_lock)
1374 return false;
1375 return mutex_owned(lock);
1376 }
1377
1378 /*
1379 * Assign a default lock to a new socket. For PRU_ATTACH, and done by
1380 * protocols that do not have special locking requirements.
1381 */
1382 void
1383 sosetlock(struct socket *so)
1384 {
1385 kmutex_t *lock;
1386
1387 if (so->so_lock == NULL) {
1388 lock = softnet_lock;
1389 so->so_lock = lock;
1390 mutex_obj_hold(lock);
1391 mutex_enter(lock);
1392 }
1393
1394 /* In all cases, lock must be held on return from PRU_ATTACH. */
1395 KASSERT(solocked(so));
1396 }
1397
1398 /*
1399 * Set lock on sockbuf sb; sleep if lock is already held.
1400 * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
1401 * Returns error without lock if sleep is interrupted.
1402 */
1403 int
1404 sblock(struct sockbuf *sb, int wf)
1405 {
1406 struct socket *so;
1407 kmutex_t *lock;
1408 int error;
1409
1410 KASSERT(solocked(sb->sb_so));
1411
1412 for (;;) {
1413 if (__predict_true((sb->sb_flags & SB_LOCK) == 0)) {
1414 sb->sb_flags |= SB_LOCK;
1415 return 0;
1416 }
1417 if (wf != M_WAITOK)
1418 return EWOULDBLOCK;
1419 so = sb->sb_so;
1420 lock = so->so_lock;
1421 if ((sb->sb_flags & SB_NOINTR) != 0) {
1422 cv_wait(&so->so_cv, lock);
1423 error = 0;
1424 } else
1425 error = cv_wait_sig(&so->so_cv, lock);
1426 if (__predict_false(lock != so->so_lock))
1427 solockretry(so, lock);
1428 if (error != 0)
1429 return error;
1430 }
1431 }
1432
1433 void
1434 sbunlock(struct sockbuf *sb)
1435 {
1436 struct socket *so;
1437
1438 so = sb->sb_so;
1439
1440 KASSERT(solocked(so));
1441 KASSERT((sb->sb_flags & SB_LOCK) != 0);
1442
1443 sb->sb_flags &= ~SB_LOCK;
1444 cv_broadcast(&so->so_cv);
1445 }
1446
1447 int
1448 sowait(struct socket *so, bool catch, int timo)
1449 {
1450 kmutex_t *lock;
1451 int error;
1452
1453 KASSERT(solocked(so));
1454 KASSERT(catch || timo != 0);
1455
1456 lock = so->so_lock;
1457 if (catch)
1458 error = cv_timedwait_sig(&so->so_cv, lock, timo);
1459 else
1460 error = cv_timedwait(&so->so_cv, lock, timo);
1461 if (__predict_false(lock != so->so_lock))
1462 solockretry(so, lock);
1463 return error;
1464 }
1465