uipc_socket2.c revision 1.112.2.1 1 /* $NetBSD: uipc_socket2.c,v 1.112.2.1 2013/08/28 15:21:48 rmind Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*
30 * Copyright (c) 1982, 1986, 1988, 1990, 1993
31 * The Regents of the University of California. All rights reserved.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 * 3. Neither the name of the University nor the names of its contributors
42 * may be used to endorse or promote products derived from this software
43 * without specific prior written permission.
44 *
45 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 * SUCH DAMAGE.
56 *
57 * @(#)uipc_socket2.c 8.2 (Berkeley) 2/14/95
58 */
59
60 #include <sys/cdefs.h>
61 __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.112.2.1 2013/08/28 15:21:48 rmind Exp $");
62
63 #include "opt_mbuftrace.h"
64 #include "opt_sb_max.h"
65
66 #include <sys/param.h>
67 #include <sys/systm.h>
68 #include <sys/proc.h>
69 #include <sys/file.h>
70 #include <sys/buf.h>
71 #include <sys/mbuf.h>
72 #include <sys/protosw.h>
73 #include <sys/domain.h>
74 #include <sys/poll.h>
75 #include <sys/socket.h>
76 #include <sys/socketvar.h>
77 #include <sys/signalvar.h>
78 #include <sys/kauth.h>
79 #include <sys/pool.h>
80 #include <sys/uidinfo.h>
81
82 /*
83 * Primitive routines for operating on sockets and socket buffers.
84 *
85 * Locking rules and assumptions:
86 *
87 * o socket::so_lock can change on the fly. The low level routines used
88 * to lock sockets are aware of this. When so_lock is acquired, the
89 * routine locking must check to see if so_lock still points to the
90 * lock that was acquired. If so_lock has changed in the meantime, the
91 * now irrelevant lock that was acquired must be dropped and the lock
92 * operation retried. Although not proven here, this is completely safe
93 * on a multiprocessor system, even with relaxed memory ordering, given
94 * the next two rules:
95 *
96 * o In order to mutate so_lock, the lock pointed to by the current value
97 * of so_lock must be held: i.e., the socket must be held locked by the
98 * changing thread. The thread must issue membar_exit() to prevent
99 * memory accesses being reordered, and can set so_lock to the desired
100 * value. If the lock pointed to by the new value of so_lock is not
101 * held by the changing thread, the socket must then be considered
102 * unlocked.
103 *
104 * o If so_lock is mutated, and the previous lock referred to by so_lock
105 * could still be visible to other threads in the system (e.g. via file
106 * descriptor or protocol-internal reference), then the old lock must
107 * remain valid until the socket and/or protocol control block has been
108 * torn down.
109 *
110 * o If a socket has a non-NULL so_head value (i.e. is in the process of
111 * connecting), then locking the socket must also lock the socket pointed
112 * to by so_head: their lock pointers must match.
113 *
114 * o If a socket has connections in progress (so_q, so_q0 not empty) then
115 * locking the socket must also lock the sockets attached to both queues.
116 * Again, their lock pointers must match.
117 *
118 * o Beyond the initial lock assignment in socreate(), assigning locks to
119 * sockets is the responsibility of the individual protocols / protocol
120 * domains.
121 */
122
123 static pool_cache_t socket_cache;
124
125 u_long sb_max = SB_MAX; /* maximum socket buffer size */
126 static u_long sb_max_adj; /* adjusted sb_max */
127
128 /*
129 * Procedures to manipulate state flags of socket
130 * and do appropriate wakeups. Normal sequence from the
131 * active (originating) side is that soisconnecting() is
132 * called during processing of connect() call,
133 * resulting in an eventual call to soisconnected() if/when the
134 * connection is established. When the connection is torn down
135 * soisdisconnecting() is called during processing of disconnect() call,
136 * and soisdisconnected() is called when the connection to the peer
137 * is totally severed. The semantics of these routines are such that
138 * connectionless protocols can call soisconnected() and soisdisconnected()
139 * only, bypassing the in-progress calls when setting up a ``connection''
140 * takes no time.
141 *
142 * From the passive side, a socket is created with
143 * two queues of sockets: so_q0 for connections in progress
144 * and so_q for connections already made and awaiting user acceptance.
145 * As a protocol is preparing incoming connections, it creates a socket
146 * structure queued on so_q0 by calling sonewconn(). When the connection
147 * is established, soisconnected() is called, and transfers the
148 * socket structure to so_q, making it available to accept().
149 *
150 * If a socket is closed with sockets on either
151 * so_q0 or so_q, these sockets are dropped.
152 *
153 * If higher level protocols are implemented in
154 * the kernel, the wakeups done here will sometimes
155 * cause software-interrupt process scheduling.
156 */
157
158 void
159 soisconnecting(struct socket *so)
160 {
161
162 KASSERT(solocked(so));
163
164 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
165 so->so_state |= SS_ISCONNECTING;
166 }
167
168 void
169 soisconnected(struct socket *so)
170 {
171 struct socket *head;
172
173 head = so->so_head;
174
175 KASSERT(solocked(so));
176 KASSERT(head == NULL || solocked2(so, head));
177
178 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
179 so->so_state |= SS_ISCONNECTED;
180 if (head && so->so_onq == &head->so_q0) {
181 if ((so->so_options & SO_ACCEPTFILTER) == 0) {
182 soqremque(so, 0);
183 soqinsque(head, so, 1);
184 sorwakeup(head);
185 cv_broadcast(&head->so_cv);
186 } else {
187 so->so_upcall =
188 head->so_accf->so_accept_filter->accf_callback;
189 so->so_upcallarg = head->so_accf->so_accept_filter_arg;
190 so->so_rcv.sb_flags |= SB_UPCALL;
191 so->so_options &= ~SO_ACCEPTFILTER;
192 (*so->so_upcall)(so, so->so_upcallarg,
193 POLLIN|POLLRDNORM, M_DONTWAIT);
194 }
195 } else {
196 cv_broadcast(&so->so_cv);
197 sorwakeup(so);
198 sowwakeup(so);
199 }
200 }
201
202 void
203 soisdisconnecting(struct socket *so)
204 {
205
206 KASSERT(solocked(so));
207
208 so->so_state &= ~SS_ISCONNECTING;
209 so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
210 cv_broadcast(&so->so_cv);
211 sowwakeup(so);
212 sorwakeup(so);
213 }
214
215 void
216 soisdisconnected(struct socket *so)
217 {
218
219 KASSERT(solocked(so));
220
221 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
222 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
223 cv_broadcast(&so->so_cv);
224 sowwakeup(so);
225 sorwakeup(so);
226 }
227
228 void
229 soinit2(void)
230 {
231
232 socket_cache = pool_cache_init(sizeof(struct socket), 0, 0, 0,
233 "socket", NULL, IPL_SOFTNET, NULL, NULL, NULL);
234 }
235
236 /*
237 * sonewconn: accept a new connection.
238 *
239 * When an attempt at a new connection is noted on a socket which accepts
240 * connections, sonewconn(9) is called. If the connection is possible
241 * (subject to space constraints, etc) then we allocate a new structure,
242 * properly linked into the data structure of the original socket.
243 *
244 * => Connection status may be 0, SS_ISCONFIRMING, or SS_ISCONNECTED.
245 * => Listening socket should be locked.
246 * => Returns the new socket locked.
247 */
248 struct socket *
249 sonewconn(struct socket *head, int connstatus)
250 {
251 struct socket *so;
252 int soqueue, error;
253
254 KASSERT(connstatus == 0 || connstatus == SS_ISCONFIRMING ||
255 connstatus == SS_ISCONNECTED);
256 KASSERT(solocked(head));
257
258 if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2) {
259 /* Listen queue overflow. */
260 return NULL;
261 }
262
263 if ((head->so_options & SO_ACCEPTFILTER) != 0) {
264 connstatus = 0;
265 }
266 soqueue = connstatus ? 1 : 0;
267
268 if ((so = soget(false)) == NULL) {
269 return NULL;
270 }
271 so->so_type = head->so_type;
272 so->so_options = head->so_options &~ SO_ACCEPTCONN;
273 so->so_linger = head->so_linger;
274 so->so_state = head->so_state | SS_NOFDREF;
275 so->so_proto = head->so_proto;
276 so->so_timeo = head->so_timeo;
277 so->so_pgid = head->so_pgid;
278 so->so_send = head->so_send;
279 so->so_receive = head->so_receive;
280 so->so_uidinfo = head->so_uidinfo;
281 so->so_cpid = head->so_cpid;
282 #ifdef MBUFTRACE
283 so->so_mowner = head->so_mowner;
284 so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
285 so->so_snd.sb_mowner = head->so_snd.sb_mowner;
286 #endif
287 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat) != 0)
288 goto out;
289 so->so_snd.sb_lowat = head->so_snd.sb_lowat;
290 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
291 so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
292 so->so_snd.sb_timeo = head->so_snd.sb_timeo;
293 so->so_rcv.sb_flags |= head->so_rcv.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
294 so->so_snd.sb_flags |= head->so_snd.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
295
296 /*
297 * Share the lock the listening-socket, it may get unshared
298 * once the connection is complete.
299 */
300 mutex_obj_hold(head->so_lock);
301 so->so_lock = head->so_lock;
302 sounlock(head);
303
304 /* Finally, perform the protocol attach and re-acquire the lock. */
305 error = (*so->so_proto->pr_usrreqs->pr_attach)(so, 0);
306 solock(head);
307
308 if (error) {
309 out:
310 /*
311 * Remove accept filter if one is present.
312 * XXX Is this really needed?
313 */
314 if (so->so_accf != NULL)
315 (void)accept_filt_clear(so);
316 soput(so);
317
318 /* Note: listening socket shall stay locked. */
319 KASSERT(solocked(head));
320 return NULL;
321 }
322
323 /*
324 * Update the connection status and wake up any waiters,
325 * e.g. processes blocking on accept().
326 */
327 soqinsque(head, so, soqueue);
328 if (connstatus) {
329 so->so_state |= connstatus;
330 sorwakeup(head);
331 cv_broadcast(&head->so_cv);
332 }
333 KASSERT(solocked2(head, so));
334 return so;
335 }
336
337 struct socket *
338 soget(bool waitok)
339 {
340 struct socket *so;
341
342 so = pool_cache_get(socket_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
343 if (__predict_false(so == NULL))
344 return (NULL);
345 memset(so, 0, sizeof(*so));
346 TAILQ_INIT(&so->so_q0);
347 TAILQ_INIT(&so->so_q);
348 cv_init(&so->so_cv, "socket");
349 cv_init(&so->so_rcv.sb_cv, "netio");
350 cv_init(&so->so_snd.sb_cv, "netio");
351 selinit(&so->so_rcv.sb_sel);
352 selinit(&so->so_snd.sb_sel);
353 so->so_rcv.sb_so = so;
354 so->so_snd.sb_so = so;
355 return so;
356 }
357
358 void
359 soput(struct socket *so)
360 {
361
362 KASSERT(!cv_has_waiters(&so->so_cv));
363 KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
364 KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
365 seldestroy(&so->so_rcv.sb_sel);
366 seldestroy(&so->so_snd.sb_sel);
367 mutex_obj_free(so->so_lock);
368 cv_destroy(&so->so_cv);
369 cv_destroy(&so->so_rcv.sb_cv);
370 cv_destroy(&so->so_snd.sb_cv);
371 pool_cache_put(socket_cache, so);
372 }
373
374 /*
375 * soqinsque: insert socket of a new connection into the specified
376 * accept queue of the listening socket (head).
377 *
378 * q = 0: queue of partial connections
379 * q = 1: queue of incoming connections
380 */
381 void
382 soqinsque(struct socket *head, struct socket *so, int q)
383 {
384 KASSERT(q == 0 || q == 1);
385 KASSERT(solocked2(head, so));
386 KASSERT(so->so_onq == NULL);
387 KASSERT(so->so_head == NULL);
388
389 so->so_head = head;
390 if (q == 0) {
391 head->so_q0len++;
392 so->so_onq = &head->so_q0;
393 } else {
394 head->so_qlen++;
395 so->so_onq = &head->so_q;
396 }
397 TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
398 }
399
400 /*
401 * soqremque: remove socket from the specified queue.
402 *
403 * => Returns true if socket was removed from the specified queue.
404 * => False if socket was not removed (because it was in other queue).
405 */
406 bool
407 soqremque(struct socket *so, int q)
408 {
409 struct socket *head = so->so_head;
410
411 KASSERT(q == 0 || q == 1);
412 KASSERT(solocked(so));
413 KASSERT(so->so_onq != NULL);
414 KASSERT(head != NULL);
415
416 if (q == 0) {
417 if (so->so_onq != &head->so_q0)
418 return false;
419 head->so_q0len--;
420 } else {
421 if (so->so_onq != &head->so_q)
422 return false;
423 head->so_qlen--;
424 }
425 KASSERT(solocked2(so, head));
426 TAILQ_REMOVE(so->so_onq, so, so_qe);
427 so->so_onq = NULL;
428 so->so_head = NULL;
429 return true;
430 }
431
432 /*
433 * Socantsendmore indicates that no more data will be sent on the
434 * socket; it would normally be applied to a socket when the user
435 * informs the system that no more data is to be sent, by the protocol
436 * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data
437 * will be received, and will normally be applied to the socket by a
438 * protocol when it detects that the peer will send no more data.
439 * Data queued for reading in the socket may yet be read.
440 */
441
442 void
443 socantsendmore(struct socket *so)
444 {
445
446 KASSERT(solocked(so));
447
448 so->so_state |= SS_CANTSENDMORE;
449 sowwakeup(so);
450 }
451
452 void
453 socantrcvmore(struct socket *so)
454 {
455
456 KASSERT(solocked(so));
457
458 so->so_state |= SS_CANTRCVMORE;
459 sorwakeup(so);
460 }
461
462 /*
463 * Wait for data to arrive at/drain from a socket buffer.
464 */
465 int
466 sbwait(struct sockbuf *sb)
467 {
468 struct socket *so;
469 kmutex_t *lock;
470 int error;
471
472 so = sb->sb_so;
473
474 KASSERT(solocked(so));
475
476 sb->sb_flags |= SB_NOTIFY;
477 lock = so->so_lock;
478 if ((sb->sb_flags & SB_NOINTR) != 0)
479 error = cv_timedwait(&sb->sb_cv, lock, sb->sb_timeo);
480 else
481 error = cv_timedwait_sig(&sb->sb_cv, lock, sb->sb_timeo);
482 if (__predict_false(lock != so->so_lock))
483 solockretry(so, lock);
484 return error;
485 }
486
487 /*
488 * Wakeup processes waiting on a socket buffer.
489 * Do asynchronous notification via SIGIO
490 * if the socket buffer has the SB_ASYNC flag set.
491 */
492 void
493 sowakeup(struct socket *so, struct sockbuf *sb, int code)
494 {
495 int band;
496
497 KASSERT(solocked(so));
498 KASSERT(sb->sb_so == so);
499
500 if (code == POLL_IN)
501 band = POLLIN|POLLRDNORM;
502 else
503 band = POLLOUT|POLLWRNORM;
504 sb->sb_flags &= ~SB_NOTIFY;
505 selnotify(&sb->sb_sel, band, NOTE_SUBMIT);
506 cv_broadcast(&sb->sb_cv);
507 if (sb->sb_flags & SB_ASYNC)
508 fownsignal(so->so_pgid, SIGIO, code, band, so);
509 if (sb->sb_flags & SB_UPCALL)
510 (*so->so_upcall)(so, so->so_upcallarg, band, M_DONTWAIT);
511 }
512
513 /*
514 * Reset a socket's lock pointer. Wake all threads waiting on the
515 * socket's condition variables so that they can restart their waits
516 * using the new lock. The existing lock must be held.
517 */
518 void
519 solockreset(struct socket *so, kmutex_t *lock)
520 {
521
522 KASSERT(solocked(so));
523
524 so->so_lock = lock;
525 cv_broadcast(&so->so_snd.sb_cv);
526 cv_broadcast(&so->so_rcv.sb_cv);
527 cv_broadcast(&so->so_cv);
528 }
529
530 /*
531 * Socket buffer (struct sockbuf) utility routines.
532 *
533 * Each socket contains two socket buffers: one for sending data and
534 * one for receiving data. Each buffer contains a queue of mbufs,
535 * information about the number of mbufs and amount of data in the
536 * queue, and other fields allowing poll() statements and notification
537 * on data availability to be implemented.
538 *
539 * Data stored in a socket buffer is maintained as a list of records.
540 * Each record is a list of mbufs chained together with the m_next
541 * field. Records are chained together with the m_nextpkt field. The upper
542 * level routine soreceive() expects the following conventions to be
543 * observed when placing information in the receive buffer:
544 *
545 * 1. If the protocol requires each message be preceded by the sender's
546 * name, then a record containing that name must be present before
547 * any associated data (mbuf's must be of type MT_SONAME).
548 * 2. If the protocol supports the exchange of ``access rights'' (really
549 * just additional data associated with the message), and there are
550 * ``rights'' to be received, then a record containing this data
551 * should be present (mbuf's must be of type MT_CONTROL).
552 * 3. If a name or rights record exists, then it must be followed by
553 * a data record, perhaps of zero length.
554 *
555 * Before using a new socket structure it is first necessary to reserve
556 * buffer space to the socket, by calling sbreserve(). This should commit
557 * some of the available buffer space in the system buffer pool for the
558 * socket (currently, it does nothing but enforce limits). The space
559 * should be released by calling sbrelease() when the socket is destroyed.
560 */
561
562 int
563 sb_max_set(u_long new_sbmax)
564 {
565 int s;
566
567 if (new_sbmax < (16 * 1024))
568 return (EINVAL);
569
570 s = splsoftnet();
571 sb_max = new_sbmax;
572 sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
573 splx(s);
574
575 return (0);
576 }
577
578 int
579 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
580 {
581 KASSERT(so->so_pcb == NULL || solocked(so));
582
583 /*
584 * there's at least one application (a configure script of screen)
585 * which expects a fifo is writable even if it has "some" bytes
586 * in its buffer.
587 * so we want to make sure (hiwat - lowat) >= (some bytes).
588 *
589 * PIPE_BUF here is an arbitrary value chosen as (some bytes) above.
590 * we expect it's large enough for such applications.
591 */
592 u_long lowat = MAX(sock_loan_thresh, MCLBYTES);
593 u_long hiwat = lowat + PIPE_BUF;
594
595 if (sndcc < hiwat)
596 sndcc = hiwat;
597 if (sbreserve(&so->so_snd, sndcc, so) == 0)
598 goto bad;
599 if (sbreserve(&so->so_rcv, rcvcc, so) == 0)
600 goto bad2;
601 if (so->so_rcv.sb_lowat == 0)
602 so->so_rcv.sb_lowat = 1;
603 if (so->so_snd.sb_lowat == 0)
604 so->so_snd.sb_lowat = lowat;
605 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
606 so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
607 return (0);
608 bad2:
609 sbrelease(&so->so_snd, so);
610 bad:
611 return (ENOBUFS);
612 }
613
614 /*
615 * Allot mbufs to a sockbuf.
616 * Attempt to scale mbmax so that mbcnt doesn't become limiting
617 * if buffering efficiency is near the normal case.
618 */
619 int
620 sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
621 {
622 struct lwp *l = curlwp; /* XXX */
623 rlim_t maxcc;
624 struct uidinfo *uidinfo;
625
626 KASSERT(so->so_pcb == NULL || solocked(so));
627 KASSERT(sb->sb_so == so);
628 KASSERT(sb_max_adj != 0);
629
630 if (cc == 0 || cc > sb_max_adj)
631 return (0);
632
633 maxcc = l->l_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur;
634
635 uidinfo = so->so_uidinfo;
636 if (!chgsbsize(uidinfo, &sb->sb_hiwat, cc, maxcc))
637 return 0;
638 sb->sb_mbmax = min(cc * 2, sb_max);
639 if (sb->sb_lowat > sb->sb_hiwat)
640 sb->sb_lowat = sb->sb_hiwat;
641 return (1);
642 }
643
644 /*
645 * Free mbufs held by a socket, and reserved mbuf space. We do not assert
646 * that the socket is held locked here: see sorflush().
647 */
648 void
649 sbrelease(struct sockbuf *sb, struct socket *so)
650 {
651
652 KASSERT(sb->sb_so == so);
653
654 sbflush(sb);
655 (void)chgsbsize(so->so_uidinfo, &sb->sb_hiwat, 0, RLIM_INFINITY);
656 sb->sb_mbmax = 0;
657 }
658
659 /*
660 * Routines to add and remove
661 * data from an mbuf queue.
662 *
663 * The routines sbappend() or sbappendrecord() are normally called to
664 * append new mbufs to a socket buffer, after checking that adequate
665 * space is available, comparing the function sbspace() with the amount
666 * of data to be added. sbappendrecord() differs from sbappend() in
667 * that data supplied is treated as the beginning of a new record.
668 * To place a sender's address, optional access rights, and data in a
669 * socket receive buffer, sbappendaddr() should be used. To place
670 * access rights and data in a socket receive buffer, sbappendrights()
671 * should be used. In either case, the new data begins a new record.
672 * Note that unlike sbappend() and sbappendrecord(), these routines check
673 * for the caller that there will be enough space to store the data.
674 * Each fails if there is not enough space, or if it cannot find mbufs
675 * to store additional information in.
676 *
677 * Reliable protocols may use the socket send buffer to hold data
678 * awaiting acknowledgement. Data is normally copied from a socket
679 * send buffer in a protocol with m_copy for output to a peer,
680 * and then removing the data from the socket buffer with sbdrop()
681 * or sbdroprecord() when the data is acknowledged by the peer.
682 */
683
684 #ifdef SOCKBUF_DEBUG
685 void
686 sblastrecordchk(struct sockbuf *sb, const char *where)
687 {
688 struct mbuf *m = sb->sb_mb;
689
690 KASSERT(solocked(sb->sb_so));
691
692 while (m && m->m_nextpkt)
693 m = m->m_nextpkt;
694
695 if (m != sb->sb_lastrecord) {
696 printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
697 sb->sb_mb, sb->sb_lastrecord, m);
698 printf("packet chain:\n");
699 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
700 printf("\t%p\n", m);
701 panic("sblastrecordchk from %s", where);
702 }
703 }
704
705 void
706 sblastmbufchk(struct sockbuf *sb, const char *where)
707 {
708 struct mbuf *m = sb->sb_mb;
709 struct mbuf *n;
710
711 KASSERT(solocked(sb->sb_so));
712
713 while (m && m->m_nextpkt)
714 m = m->m_nextpkt;
715
716 while (m && m->m_next)
717 m = m->m_next;
718
719 if (m != sb->sb_mbtail) {
720 printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
721 sb->sb_mb, sb->sb_mbtail, m);
722 printf("packet tree:\n");
723 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
724 printf("\t");
725 for (n = m; n != NULL; n = n->m_next)
726 printf("%p ", n);
727 printf("\n");
728 }
729 panic("sblastmbufchk from %s", where);
730 }
731 }
732 #endif /* SOCKBUF_DEBUG */
733
734 /*
735 * Link a chain of records onto a socket buffer
736 */
737 #define SBLINKRECORDCHAIN(sb, m0, mlast) \
738 do { \
739 if ((sb)->sb_lastrecord != NULL) \
740 (sb)->sb_lastrecord->m_nextpkt = (m0); \
741 else \
742 (sb)->sb_mb = (m0); \
743 (sb)->sb_lastrecord = (mlast); \
744 } while (/*CONSTCOND*/0)
745
746
747 #define SBLINKRECORD(sb, m0) \
748 SBLINKRECORDCHAIN(sb, m0, m0)
749
750 /*
751 * Append mbuf chain m to the last record in the
752 * socket buffer sb. The additional space associated
753 * the mbuf chain is recorded in sb. Empty mbufs are
754 * discarded and mbufs are compacted where possible.
755 */
756 void
757 sbappend(struct sockbuf *sb, struct mbuf *m)
758 {
759 struct mbuf *n;
760
761 KASSERT(solocked(sb->sb_so));
762
763 if (m == 0)
764 return;
765
766 #ifdef MBUFTRACE
767 m_claimm(m, sb->sb_mowner);
768 #endif
769
770 SBLASTRECORDCHK(sb, "sbappend 1");
771
772 if ((n = sb->sb_lastrecord) != NULL) {
773 /*
774 * XXX Would like to simply use sb_mbtail here, but
775 * XXX I need to verify that I won't miss an EOR that
776 * XXX way.
777 */
778 do {
779 if (n->m_flags & M_EOR) {
780 sbappendrecord(sb, m); /* XXXXXX!!!! */
781 return;
782 }
783 } while (n->m_next && (n = n->m_next));
784 } else {
785 /*
786 * If this is the first record in the socket buffer, it's
787 * also the last record.
788 */
789 sb->sb_lastrecord = m;
790 }
791 sbcompress(sb, m, n);
792 SBLASTRECORDCHK(sb, "sbappend 2");
793 }
794
795 /*
796 * This version of sbappend() should only be used when the caller
797 * absolutely knows that there will never be more than one record
798 * in the socket buffer, that is, a stream protocol (such as TCP).
799 */
800 void
801 sbappendstream(struct sockbuf *sb, struct mbuf *m)
802 {
803
804 KASSERT(solocked(sb->sb_so));
805 KDASSERT(m->m_nextpkt == NULL);
806 KASSERT(sb->sb_mb == sb->sb_lastrecord);
807
808 SBLASTMBUFCHK(sb, __func__);
809
810 #ifdef MBUFTRACE
811 m_claimm(m, sb->sb_mowner);
812 #endif
813
814 sbcompress(sb, m, sb->sb_mbtail);
815
816 sb->sb_lastrecord = sb->sb_mb;
817 SBLASTRECORDCHK(sb, __func__);
818 }
819
820 #ifdef SOCKBUF_DEBUG
821 void
822 sbcheck(struct sockbuf *sb)
823 {
824 struct mbuf *m, *m2;
825 u_long len, mbcnt;
826
827 KASSERT(solocked(sb->sb_so));
828
829 len = 0;
830 mbcnt = 0;
831 for (m = sb->sb_mb; m; m = m->m_nextpkt) {
832 for (m2 = m; m2 != NULL; m2 = m2->m_next) {
833 len += m2->m_len;
834 mbcnt += MSIZE;
835 if (m2->m_flags & M_EXT)
836 mbcnt += m2->m_ext.ext_size;
837 if (m2->m_nextpkt != NULL)
838 panic("sbcheck nextpkt");
839 }
840 }
841 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
842 printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
843 mbcnt, sb->sb_mbcnt);
844 panic("sbcheck");
845 }
846 }
847 #endif
848
849 /*
850 * As above, except the mbuf chain
851 * begins a new record.
852 */
853 void
854 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
855 {
856 struct mbuf *m;
857
858 KASSERT(solocked(sb->sb_so));
859
860 if (m0 == 0)
861 return;
862
863 #ifdef MBUFTRACE
864 m_claimm(m0, sb->sb_mowner);
865 #endif
866 /*
867 * Put the first mbuf on the queue.
868 * Note this permits zero length records.
869 */
870 sballoc(sb, m0);
871 SBLASTRECORDCHK(sb, "sbappendrecord 1");
872 SBLINKRECORD(sb, m0);
873 m = m0->m_next;
874 m0->m_next = 0;
875 if (m && (m0->m_flags & M_EOR)) {
876 m0->m_flags &= ~M_EOR;
877 m->m_flags |= M_EOR;
878 }
879 sbcompress(sb, m, m0);
880 SBLASTRECORDCHK(sb, "sbappendrecord 2");
881 }
882
883 /*
884 * As above except that OOB data
885 * is inserted at the beginning of the sockbuf,
886 * but after any other OOB data.
887 */
888 void
889 sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
890 {
891 struct mbuf *m, **mp;
892
893 KASSERT(solocked(sb->sb_so));
894
895 if (m0 == 0)
896 return;
897
898 SBLASTRECORDCHK(sb, "sbinsertoob 1");
899
900 for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
901 again:
902 switch (m->m_type) {
903
904 case MT_OOBDATA:
905 continue; /* WANT next train */
906
907 case MT_CONTROL:
908 if ((m = m->m_next) != NULL)
909 goto again; /* inspect THIS train further */
910 }
911 break;
912 }
913 /*
914 * Put the first mbuf on the queue.
915 * Note this permits zero length records.
916 */
917 sballoc(sb, m0);
918 m0->m_nextpkt = *mp;
919 if (*mp == NULL) {
920 /* m0 is actually the new tail */
921 sb->sb_lastrecord = m0;
922 }
923 *mp = m0;
924 m = m0->m_next;
925 m0->m_next = 0;
926 if (m && (m0->m_flags & M_EOR)) {
927 m0->m_flags &= ~M_EOR;
928 m->m_flags |= M_EOR;
929 }
930 sbcompress(sb, m, m0);
931 SBLASTRECORDCHK(sb, "sbinsertoob 2");
932 }
933
934 /*
935 * Append address and data, and optionally, control (ancillary) data
936 * to the receive queue of a socket. If present,
937 * m0 must include a packet header with total length.
938 * Returns 0 if no space in sockbuf or insufficient mbufs.
939 */
940 int
941 sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0,
942 struct mbuf *control)
943 {
944 struct mbuf *m, *n, *nlast;
945 int space, len;
946
947 KASSERT(solocked(sb->sb_so));
948
949 space = asa->sa_len;
950
951 if (m0 != NULL) {
952 if ((m0->m_flags & M_PKTHDR) == 0)
953 panic("sbappendaddr");
954 space += m0->m_pkthdr.len;
955 #ifdef MBUFTRACE
956 m_claimm(m0, sb->sb_mowner);
957 #endif
958 }
959 for (n = control; n; n = n->m_next) {
960 space += n->m_len;
961 MCLAIM(n, sb->sb_mowner);
962 if (n->m_next == 0) /* keep pointer to last control buf */
963 break;
964 }
965 if (space > sbspace(sb))
966 return (0);
967 MGET(m, M_DONTWAIT, MT_SONAME);
968 if (m == 0)
969 return (0);
970 MCLAIM(m, sb->sb_mowner);
971 /*
972 * XXX avoid 'comparison always true' warning which isn't easily
973 * avoided.
974 */
975 len = asa->sa_len;
976 if (len > MLEN) {
977 MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
978 if ((m->m_flags & M_EXT) == 0) {
979 m_free(m);
980 return (0);
981 }
982 }
983 m->m_len = asa->sa_len;
984 memcpy(mtod(m, void *), asa, asa->sa_len);
985 if (n)
986 n->m_next = m0; /* concatenate data to control */
987 else
988 control = m0;
989 m->m_next = control;
990
991 SBLASTRECORDCHK(sb, "sbappendaddr 1");
992
993 for (n = m; n->m_next != NULL; n = n->m_next)
994 sballoc(sb, n);
995 sballoc(sb, n);
996 nlast = n;
997 SBLINKRECORD(sb, m);
998
999 sb->sb_mbtail = nlast;
1000 SBLASTMBUFCHK(sb, "sbappendaddr");
1001 SBLASTRECORDCHK(sb, "sbappendaddr 2");
1002
1003 return (1);
1004 }
1005
1006 /*
1007 * Helper for sbappendchainaddr: prepend a struct sockaddr* to
1008 * an mbuf chain.
1009 */
1010 static inline struct mbuf *
1011 m_prepend_sockaddr(struct sockbuf *sb, struct mbuf *m0,
1012 const struct sockaddr *asa)
1013 {
1014 struct mbuf *m;
1015 const int salen = asa->sa_len;
1016
1017 KASSERT(solocked(sb->sb_so));
1018
1019 /* only the first in each chain need be a pkthdr */
1020 MGETHDR(m, M_DONTWAIT, MT_SONAME);
1021 if (m == 0)
1022 return (0);
1023 MCLAIM(m, sb->sb_mowner);
1024 #ifdef notyet
1025 if (salen > MHLEN) {
1026 MEXTMALLOC(m, salen, M_NOWAIT);
1027 if ((m->m_flags & M_EXT) == 0) {
1028 m_free(m);
1029 return (0);
1030 }
1031 }
1032 #else
1033 KASSERT(salen <= MHLEN);
1034 #endif
1035 m->m_len = salen;
1036 memcpy(mtod(m, void *), asa, salen);
1037 m->m_next = m0;
1038 m->m_pkthdr.len = salen + m0->m_pkthdr.len;
1039
1040 return m;
1041 }
1042
1043 int
1044 sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa,
1045 struct mbuf *m0, int sbprio)
1046 {
1047 int space;
1048 struct mbuf *m, *n, *n0, *nlast;
1049 int error;
1050
1051 KASSERT(solocked(sb->sb_so));
1052
1053 /*
1054 * XXX sbprio reserved for encoding priority of this* request:
1055 * SB_PRIO_NONE --> honour normal sb limits
1056 * SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space,
1057 * take whole chain. Intended for large requests
1058 * that should be delivered atomically (all, or none).
1059 * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow
1060 * over normal socket limits, for messages indicating
1061 * buffer overflow in earlier normal/lower-priority messages
1062 * SB_PRIO_BESTEFFORT --> ignore limits entirely.
1063 * Intended for kernel-generated messages only.
1064 * Up to generator to avoid total mbuf resource exhaustion.
1065 */
1066 (void)sbprio;
1067
1068 if (m0 && (m0->m_flags & M_PKTHDR) == 0)
1069 panic("sbappendaddrchain");
1070
1071 space = sbspace(sb);
1072
1073 #ifdef notyet
1074 /*
1075 * Enforce SB_PRIO_* limits as described above.
1076 */
1077 #endif
1078
1079 n0 = NULL;
1080 nlast = NULL;
1081 for (m = m0; m; m = m->m_nextpkt) {
1082 struct mbuf *np;
1083
1084 #ifdef MBUFTRACE
1085 m_claimm(m, sb->sb_mowner);
1086 #endif
1087
1088 /* Prepend sockaddr to this record (m) of input chain m0 */
1089 n = m_prepend_sockaddr(sb, m, asa);
1090 if (n == NULL) {
1091 error = ENOBUFS;
1092 goto bad;
1093 }
1094
1095 /* Append record (asa+m) to end of new chain n0 */
1096 if (n0 == NULL) {
1097 n0 = n;
1098 } else {
1099 nlast->m_nextpkt = n;
1100 }
1101 /* Keep track of last record on new chain */
1102 nlast = n;
1103
1104 for (np = n; np; np = np->m_next)
1105 sballoc(sb, np);
1106 }
1107
1108 SBLASTRECORDCHK(sb, "sbappendaddrchain 1");
1109
1110 /* Drop the entire chain of (asa+m) records onto the socket */
1111 SBLINKRECORDCHAIN(sb, n0, nlast);
1112
1113 SBLASTRECORDCHK(sb, "sbappendaddrchain 2");
1114
1115 for (m = nlast; m->m_next; m = m->m_next)
1116 ;
1117 sb->sb_mbtail = m;
1118 SBLASTMBUFCHK(sb, "sbappendaddrchain");
1119
1120 return (1);
1121
1122 bad:
1123 /*
1124 * On error, free the prepended addreseses. For consistency
1125 * with sbappendaddr(), leave it to our caller to free
1126 * the input record chain passed to us as m0.
1127 */
1128 while ((n = n0) != NULL) {
1129 struct mbuf *np;
1130
1131 /* Undo the sballoc() of this record */
1132 for (np = n; np; np = np->m_next)
1133 sbfree(sb, np);
1134
1135 n0 = n->m_nextpkt; /* iterate at next prepended address */
1136 MFREE(n, np); /* free prepended address (not data) */
1137 }
1138 return 0;
1139 }
1140
1141
1142 int
1143 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
1144 {
1145 struct mbuf *m, *mlast, *n;
1146 int space;
1147
1148 KASSERT(solocked(sb->sb_so));
1149
1150 space = 0;
1151 if (control == 0)
1152 panic("sbappendcontrol");
1153 for (m = control; ; m = m->m_next) {
1154 space += m->m_len;
1155 MCLAIM(m, sb->sb_mowner);
1156 if (m->m_next == 0)
1157 break;
1158 }
1159 n = m; /* save pointer to last control buffer */
1160 for (m = m0; m; m = m->m_next) {
1161 MCLAIM(m, sb->sb_mowner);
1162 space += m->m_len;
1163 }
1164 if (space > sbspace(sb))
1165 return (0);
1166 n->m_next = m0; /* concatenate data to control */
1167
1168 SBLASTRECORDCHK(sb, "sbappendcontrol 1");
1169
1170 for (m = control; m->m_next != NULL; m = m->m_next)
1171 sballoc(sb, m);
1172 sballoc(sb, m);
1173 mlast = m;
1174 SBLINKRECORD(sb, control);
1175
1176 sb->sb_mbtail = mlast;
1177 SBLASTMBUFCHK(sb, "sbappendcontrol");
1178 SBLASTRECORDCHK(sb, "sbappendcontrol 2");
1179
1180 return (1);
1181 }
1182
1183 /*
1184 * Compress mbuf chain m into the socket
1185 * buffer sb following mbuf n. If n
1186 * is null, the buffer is presumed empty.
1187 */
1188 void
1189 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
1190 {
1191 int eor;
1192 struct mbuf *o;
1193
1194 KASSERT(solocked(sb->sb_so));
1195
1196 eor = 0;
1197 while (m) {
1198 eor |= m->m_flags & M_EOR;
1199 if (m->m_len == 0 &&
1200 (eor == 0 ||
1201 (((o = m->m_next) || (o = n)) &&
1202 o->m_type == m->m_type))) {
1203 if (sb->sb_lastrecord == m)
1204 sb->sb_lastrecord = m->m_next;
1205 m = m_free(m);
1206 continue;
1207 }
1208 if (n && (n->m_flags & M_EOR) == 0 &&
1209 /* M_TRAILINGSPACE() checks buffer writeability */
1210 m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
1211 m->m_len <= M_TRAILINGSPACE(n) &&
1212 n->m_type == m->m_type) {
1213 memcpy(mtod(n, char *) + n->m_len, mtod(m, void *),
1214 (unsigned)m->m_len);
1215 n->m_len += m->m_len;
1216 sb->sb_cc += m->m_len;
1217 m = m_free(m);
1218 continue;
1219 }
1220 if (n)
1221 n->m_next = m;
1222 else
1223 sb->sb_mb = m;
1224 sb->sb_mbtail = m;
1225 sballoc(sb, m);
1226 n = m;
1227 m->m_flags &= ~M_EOR;
1228 m = m->m_next;
1229 n->m_next = 0;
1230 }
1231 if (eor) {
1232 if (n)
1233 n->m_flags |= eor;
1234 else
1235 printf("semi-panic: sbcompress\n");
1236 }
1237 SBLASTMBUFCHK(sb, __func__);
1238 }
1239
1240 /*
1241 * Free all mbufs in a sockbuf.
1242 * Check that all resources are reclaimed.
1243 */
1244 void
1245 sbflush(struct sockbuf *sb)
1246 {
1247
1248 KASSERT(solocked(sb->sb_so));
1249 KASSERT((sb->sb_flags & SB_LOCK) == 0);
1250
1251 while (sb->sb_mbcnt)
1252 sbdrop(sb, (int)sb->sb_cc);
1253
1254 KASSERT(sb->sb_cc == 0);
1255 KASSERT(sb->sb_mb == NULL);
1256 KASSERT(sb->sb_mbtail == NULL);
1257 KASSERT(sb->sb_lastrecord == NULL);
1258 }
1259
1260 /*
1261 * Drop data from (the front of) a sockbuf.
1262 */
1263 void
1264 sbdrop(struct sockbuf *sb, int len)
1265 {
1266 struct mbuf *m, *mn, *next;
1267
1268 KASSERT(solocked(sb->sb_so));
1269
1270 next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
1271 while (len > 0) {
1272 if (m == 0) {
1273 if (next == 0)
1274 panic("sbdrop(%p,%d): cc=%lu",
1275 sb, len, sb->sb_cc);
1276 m = next;
1277 next = m->m_nextpkt;
1278 continue;
1279 }
1280 if (m->m_len > len) {
1281 m->m_len -= len;
1282 m->m_data += len;
1283 sb->sb_cc -= len;
1284 break;
1285 }
1286 len -= m->m_len;
1287 sbfree(sb, m);
1288 MFREE(m, mn);
1289 m = mn;
1290 }
1291 while (m && m->m_len == 0) {
1292 sbfree(sb, m);
1293 MFREE(m, mn);
1294 m = mn;
1295 }
1296 if (m) {
1297 sb->sb_mb = m;
1298 m->m_nextpkt = next;
1299 } else
1300 sb->sb_mb = next;
1301 /*
1302 * First part is an inline SB_EMPTY_FIXUP(). Second part
1303 * makes sure sb_lastrecord is up-to-date if we dropped
1304 * part of the last record.
1305 */
1306 m = sb->sb_mb;
1307 if (m == NULL) {
1308 sb->sb_mbtail = NULL;
1309 sb->sb_lastrecord = NULL;
1310 } else if (m->m_nextpkt == NULL)
1311 sb->sb_lastrecord = m;
1312 }
1313
1314 /*
1315 * Drop a record off the front of a sockbuf
1316 * and move the next record to the front.
1317 */
1318 void
1319 sbdroprecord(struct sockbuf *sb)
1320 {
1321 struct mbuf *m, *mn;
1322
1323 KASSERT(solocked(sb->sb_so));
1324
1325 m = sb->sb_mb;
1326 if (m) {
1327 sb->sb_mb = m->m_nextpkt;
1328 do {
1329 sbfree(sb, m);
1330 MFREE(m, mn);
1331 } while ((m = mn) != NULL);
1332 }
1333 SB_EMPTY_FIXUP(sb);
1334 }
1335
1336 /*
1337 * Create a "control" mbuf containing the specified data
1338 * with the specified type for presentation on a socket buffer.
1339 */
1340 struct mbuf *
1341 sbcreatecontrol1(void **p, int size, int type, int level, int flags)
1342 {
1343 struct cmsghdr *cp;
1344 struct mbuf *m;
1345 int space = CMSG_SPACE(size);
1346
1347 if ((flags & M_DONTWAIT) && space > MCLBYTES) {
1348 printf("%s: message too large %d\n", __func__, space);
1349 return NULL;
1350 }
1351
1352 if ((m = m_get(flags, MT_CONTROL)) == NULL)
1353 return NULL;
1354 if (space > MLEN) {
1355 if (space > MCLBYTES)
1356 MEXTMALLOC(m, space, M_WAITOK);
1357 else
1358 MCLGET(m, flags);
1359 if ((m->m_flags & M_EXT) == 0) {
1360 m_free(m);
1361 return NULL;
1362 }
1363 }
1364 cp = mtod(m, struct cmsghdr *);
1365 *p = CMSG_DATA(cp);
1366 m->m_len = space;
1367 cp->cmsg_len = CMSG_LEN(size);
1368 cp->cmsg_level = level;
1369 cp->cmsg_type = type;
1370 return m;
1371 }
1372
1373 struct mbuf *
1374 sbcreatecontrol(void *p, int size, int type, int level)
1375 {
1376 struct mbuf *m;
1377 void *v;
1378
1379 m = sbcreatecontrol1(&v, size, type, level, M_DONTWAIT);
1380 if (m == NULL)
1381 return NULL;
1382 memcpy(v, p, size);
1383 return m;
1384 }
1385
1386 void
1387 solockretry(struct socket *so, kmutex_t *lock)
1388 {
1389
1390 while (lock != so->so_lock) {
1391 mutex_exit(lock);
1392 lock = so->so_lock;
1393 mutex_enter(lock);
1394 }
1395 }
1396
1397 bool
1398 solocked(struct socket *so)
1399 {
1400
1401 return mutex_owned(so->so_lock);
1402 }
1403
1404 bool
1405 solocked2(struct socket *so1, struct socket *so2)
1406 {
1407 kmutex_t *lock;
1408
1409 lock = so1->so_lock;
1410 if (lock != so2->so_lock)
1411 return false;
1412 return mutex_owned(lock);
1413 }
1414
1415 /*
1416 * sosetlock: assign a default lock to a new socket.
1417 */
1418 void
1419 sosetlock(struct socket *so)
1420 {
1421 if (so->so_lock == NULL) {
1422 kmutex_t *lock = softnet_lock;
1423
1424 so->so_lock = lock;
1425 mutex_obj_hold(lock);
1426 }
1427 }
1428
1429 /*
1430 * Set lock on sockbuf sb; sleep if lock is already held.
1431 * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
1432 * Returns error without lock if sleep is interrupted.
1433 */
1434 int
1435 sblock(struct sockbuf *sb, int wf)
1436 {
1437 struct socket *so;
1438 kmutex_t *lock;
1439 int error;
1440
1441 KASSERT(solocked(sb->sb_so));
1442
1443 for (;;) {
1444 if (__predict_true((sb->sb_flags & SB_LOCK) == 0)) {
1445 sb->sb_flags |= SB_LOCK;
1446 return 0;
1447 }
1448 if (wf != M_WAITOK)
1449 return EWOULDBLOCK;
1450 so = sb->sb_so;
1451 lock = so->so_lock;
1452 if ((sb->sb_flags & SB_NOINTR) != 0) {
1453 cv_wait(&so->so_cv, lock);
1454 error = 0;
1455 } else
1456 error = cv_wait_sig(&so->so_cv, lock);
1457 if (__predict_false(lock != so->so_lock))
1458 solockretry(so, lock);
1459 if (error != 0)
1460 return error;
1461 }
1462 }
1463
1464 void
1465 sbunlock(struct sockbuf *sb)
1466 {
1467 struct socket *so;
1468
1469 so = sb->sb_so;
1470
1471 KASSERT(solocked(so));
1472 KASSERT((sb->sb_flags & SB_LOCK) != 0);
1473
1474 sb->sb_flags &= ~SB_LOCK;
1475 cv_broadcast(&so->so_cv);
1476 }
1477
1478 int
1479 sowait(struct socket *so, bool catch, int timo)
1480 {
1481 kmutex_t *lock;
1482 int error;
1483
1484 KASSERT(solocked(so));
1485 KASSERT(catch || timo != 0);
1486
1487 lock = so->so_lock;
1488 if (catch)
1489 error = cv_timedwait_sig(&so->so_cv, lock, timo);
1490 else
1491 error = cv_timedwait(&so->so_cv, lock, timo);
1492 if (__predict_false(lock != so->so_lock))
1493 solockretry(so, lock);
1494 return error;
1495 }
1496