uipc_socket2.c revision 1.112.2.3 1 /* $NetBSD: uipc_socket2.c,v 1.112.2.3 2013/10/17 23:52:18 rmind Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*
30 * Copyright (c) 1982, 1986, 1988, 1990, 1993
31 * The Regents of the University of California. All rights reserved.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 * 3. Neither the name of the University nor the names of its contributors
42 * may be used to endorse or promote products derived from this software
43 * without specific prior written permission.
44 *
45 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 * SUCH DAMAGE.
56 *
57 * @(#)uipc_socket2.c 8.2 (Berkeley) 2/14/95
58 */
59
60 #include <sys/cdefs.h>
61 __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.112.2.3 2013/10/17 23:52:18 rmind Exp $");
62
63 #include "opt_mbuftrace.h"
64 #include "opt_sb_max.h"
65
66 #include <sys/param.h>
67 #include <sys/systm.h>
68 #include <sys/proc.h>
69 #include <sys/file.h>
70 #include <sys/buf.h>
71 #include <sys/mbuf.h>
72 #include <sys/protosw.h>
73 #include <sys/domain.h>
74 #include <sys/poll.h>
75 #include <sys/socket.h>
76 #include <sys/socketvar.h>
77 #include <sys/signalvar.h>
78 #include <sys/kauth.h>
79 #include <sys/pool.h>
80 #include <sys/uidinfo.h>
81
82 /*
83 * Primitive routines for operating on sockets and socket buffers.
84 *
85 * Connection life-cycle:
86 *
87 * Normal sequence from the active (originating) side:
88 *
89 * - soisconnecting() is called during processing of connect() call,
90 * - resulting in an eventual call to soisconnected() if/when the
91 * connection is established.
92 *
93 * When the connection is torn down during processing of disconnect():
94 *
95 * - soisdisconnecting() is called and,
96 * - soisdisconnected() is called when the connection to the peer
97 * is totally severed.
98 *
99 * The semantics of these routines are such that connectionless protocols
100 * can call soisconnected() and soisdisconnected() only, bypassing the
101 * in-progress calls when setting up a ``connection'' takes no time.
102 *
103 * From the passive side, a socket is created with two queues of sockets:
104 *
105 * - so_q0 (0) for partial connections (i.e. connections in progress)
106 * - so_q (1) for connections already made and awaiting user acceptance.
107 *
108 * As a protocol is preparing incoming connections, it creates a socket
109 * structure queued on so_q0 by calling sonewconn(). When the connection
110 * is established, soisconnected() is called, and transfers the
111 * socket structure to so_q, making it available to accept().
112 *
113 * If a socket is closed with sockets on either so_q0 or so_q, these
114 * sockets are dropped.
115 *
116 * Locking rules and assumptions:
117 *
118 * o socket::so_lock can change on the fly. The low level routines used
119 * to lock sockets are aware of this. When so_lock is acquired, the
120 * routine locking must check to see if so_lock still points to the
121 * lock that was acquired. If so_lock has changed in the meantime, the
122 * now irrelevant lock that was acquired must be dropped and the lock
123 * operation retried. Although not proven here, this is completely safe
124 * on a multiprocessor system, even with relaxed memory ordering, given
125 * the next two rules:
126 *
127 * o In order to mutate so_lock, the lock pointed to by the current value
128 * of so_lock must be held: i.e., the socket must be held locked by the
129 * changing thread. The thread must issue membar_exit() to prevent
130 * memory accesses being reordered, and can set so_lock to the desired
131 * value. If the lock pointed to by the new value of so_lock is not
132 * held by the changing thread, the socket must then be considered
133 * unlocked.
134 *
135 * o If so_lock is mutated, and the previous lock referred to by so_lock
136 * could still be visible to other threads in the system (e.g. via file
137 * descriptor or protocol-internal reference), then the old lock must
138 * remain valid until the socket and/or protocol control block has been
139 * torn down.
140 *
141 * o If a socket has a non-NULL so_head value (i.e. is in the process of
142 * connecting), then locking the socket must also lock the socket pointed
143 * to by so_head: their lock pointers must match.
144 *
145 * o If a socket has connections in progress (so_q, so_q0 not empty) then
146 * locking the socket must also lock the sockets attached to both queues.
147 * Again, their lock pointers must match.
148 *
149 * o Beyond the initial lock assignment in socreate(), assigning locks to
150 * sockets is the responsibility of the individual protocols / protocol
151 * domains.
152 */
153
154 static pool_cache_t socket_cache;
155 u_long sb_max = SB_MAX;/* maximum socket buffer size */
156 static u_long sb_max_adj; /* adjusted sb_max */
157
158 void
159 soisconnecting(struct socket *so)
160 {
161
162 KASSERT(solocked(so));
163
164 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
165 so->so_state |= SS_ISCONNECTING;
166 }
167
168 void
169 soisconnected(struct socket *so)
170 {
171 struct socket *head;
172
173 head = so->so_head;
174
175 KASSERT(solocked(so));
176 KASSERT(head == NULL || solocked2(so, head));
177
178 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
179 so->so_state |= SS_ISCONNECTED;
180 if (head && so->so_onq == &head->so_q0) {
181 if ((so->so_options & SO_ACCEPTFILTER) == 0) {
182 /*
183 * Re-enqueue and wake up any waiters, e.g.
184 * processes blocking on accept().
185 */
186 soqremque(so, 0);
187 soqinsque(head, so, 1);
188 sorwakeup(head);
189 cv_broadcast(&head->so_cv);
190 } else {
191 so->so_upcall =
192 head->so_accf->so_accept_filter->accf_callback;
193 so->so_upcallarg = head->so_accf->so_accept_filter_arg;
194 so->so_rcv.sb_flags |= SB_UPCALL;
195 so->so_options &= ~SO_ACCEPTFILTER;
196 (*so->so_upcall)(so, so->so_upcallarg,
197 POLLIN|POLLRDNORM, M_DONTWAIT);
198 }
199 } else {
200 cv_broadcast(&so->so_cv);
201 sorwakeup(so);
202 sowwakeup(so);
203 }
204 }
205
206 void
207 soisdisconnecting(struct socket *so)
208 {
209
210 KASSERT(solocked(so));
211
212 so->so_state &= ~SS_ISCONNECTING;
213 so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
214 cv_broadcast(&so->so_cv);
215 sowwakeup(so);
216 sorwakeup(so);
217 }
218
219 void
220 soisdisconnected(struct socket *so)
221 {
222
223 KASSERT(solocked(so));
224
225 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
226 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
227 cv_broadcast(&so->so_cv);
228 sowwakeup(so);
229 sorwakeup(so);
230 }
231
232 void
233 soinit2(void)
234 {
235
236 socket_cache = pool_cache_init(sizeof(struct socket), 0, 0, 0,
237 "socket", NULL, IPL_SOFTNET, NULL, NULL, NULL);
238 }
239
240 /*
241 * sonewconn: accept a new connection.
242 *
243 * When an attempt at a new connection is noted on a socket which accepts
244 * connections, sonewconn(9) is called. If the connection is possible
245 * (subject to space constraints, etc) then we allocate a new structure,
246 * properly linked into the data structure of the original socket.
247 *
248 * => Connection status may be 0, SS_ISCONFIRMING, or SS_ISCONNECTED.
249 * => May be called from soft-interrupt context.
250 * => Listening socket should be locked.
251 * => Returns the new socket locked.
252 */
253 struct socket *
254 sonewconn(struct socket *head, int connstatus)
255 {
256 struct socket *so;
257 int soqueue, error;
258
259 KASSERT(connstatus == 0 || connstatus == SS_ISCONFIRMING ||
260 connstatus == SS_ISCONNECTED);
261 KASSERT(solocked(head));
262
263 if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2) {
264 /* Listen queue overflow. */
265 return NULL;
266 }
267
268 if ((head->so_options & SO_ACCEPTFILTER) != 0) {
269 connstatus = 0;
270 }
271 soqueue = connstatus ? 1 : 0;
272
273 if ((so = soget(false)) == NULL) {
274 return NULL;
275 }
276 so->so_type = head->so_type;
277 so->so_options = head->so_options & ~SO_ACCEPTCONN;
278 so->so_linger = head->so_linger;
279 so->so_state = head->so_state | SS_NOFDREF;
280 so->so_proto = head->so_proto;
281 so->so_timeo = head->so_timeo;
282 so->so_pgid = head->so_pgid;
283 so->so_send = head->so_send;
284 so->so_receive = head->so_receive;
285 so->so_uidinfo = head->so_uidinfo;
286 so->so_cpid = head->so_cpid;
287 #ifdef MBUFTRACE
288 so->so_mowner = head->so_mowner;
289 so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
290 so->so_snd.sb_mowner = head->so_snd.sb_mowner;
291 #endif
292 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat) != 0)
293 goto out;
294 so->so_snd.sb_lowat = head->so_snd.sb_lowat;
295 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
296 so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
297 so->so_snd.sb_timeo = head->so_snd.sb_timeo;
298 so->so_rcv.sb_flags |= head->so_rcv.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
299 so->so_snd.sb_flags |= head->so_snd.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
300
301 /*
302 * Share the lock with the listening-socket, it may get unshared
303 * once the connection is complete.
304 */
305 mutex_obj_hold(head->so_lock);
306 so->so_lock = head->so_lock;
307 sounlock(head);
308
309 /* Finally, perform the protocol attach and re-acquire the lock. */
310 error = (*so->so_proto->pr_usrreqs->pr_attach)(so, 0);
311 solock(head);
312
313 if (error) {
314 out:
315 /*
316 * Remove accept filter if one is present.
317 * XXX Is this really needed?
318 */
319 if (so->so_accf != NULL)
320 (void)accept_filt_clear(so);
321 soput(so);
322
323 /* Note: listening socket shall stay locked. */
324 KASSERT(solocked(head));
325 return NULL;
326 }
327
328 /*
329 * Update the connection status and wake up any waiters,
330 * e.g. processes blocking on accept().
331 */
332 soqinsque(head, so, soqueue);
333 if (connstatus) {
334 so->so_state |= connstatus;
335 sorwakeup(head);
336 cv_broadcast(&head->so_cv);
337 }
338 KASSERT(solocked2(head, so));
339 return so;
340 }
341
342 struct socket *
343 soget(bool waitok)
344 {
345 struct socket *so;
346
347 so = pool_cache_get(socket_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
348 if (__predict_false(so == NULL))
349 return (NULL);
350 memset(so, 0, sizeof(*so));
351 TAILQ_INIT(&so->so_q0);
352 TAILQ_INIT(&so->so_q);
353 cv_init(&so->so_cv, "socket");
354 cv_init(&so->so_rcv.sb_cv, "netio");
355 cv_init(&so->so_snd.sb_cv, "netio");
356 selinit(&so->so_rcv.sb_sel);
357 selinit(&so->so_snd.sb_sel);
358 so->so_rcv.sb_so = so;
359 so->so_snd.sb_so = so;
360 return so;
361 }
362
363 void
364 soput(struct socket *so)
365 {
366
367 KASSERT(!cv_has_waiters(&so->so_cv));
368 KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
369 KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
370 seldestroy(&so->so_rcv.sb_sel);
371 seldestroy(&so->so_snd.sb_sel);
372 mutex_obj_free(so->so_lock);
373 cv_destroy(&so->so_cv);
374 cv_destroy(&so->so_rcv.sb_cv);
375 cv_destroy(&so->so_snd.sb_cv);
376 pool_cache_put(socket_cache, so);
377 }
378
379 /*
380 * soqinsque: insert socket of a new connection into the specified
381 * accept queue of the listening socket (head).
382 *
383 * q = 0: queue of partial connections
384 * q = 1: queue of incoming connections
385 */
386 void
387 soqinsque(struct socket *head, struct socket *so, int q)
388 {
389 KASSERT(q == 0 || q == 1);
390 KASSERT(solocked2(head, so));
391 KASSERT(so->so_onq == NULL);
392 KASSERT(so->so_head == NULL);
393
394 so->so_head = head;
395 if (q == 0) {
396 head->so_q0len++;
397 so->so_onq = &head->so_q0;
398 } else {
399 head->so_qlen++;
400 so->so_onq = &head->so_q;
401 }
402 TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
403 }
404
405 /*
406 * soqremque: remove socket from the specified queue.
407 *
408 * => Returns true if socket was removed from the specified queue.
409 * => False if socket was not removed (because it was in other queue).
410 */
411 bool
412 soqremque(struct socket *so, int q)
413 {
414 struct socket *head = so->so_head;
415
416 KASSERT(q == 0 || q == 1);
417 KASSERT(solocked(so));
418 KASSERT(so->so_onq != NULL);
419 KASSERT(head != NULL);
420
421 if (q == 0) {
422 if (so->so_onq != &head->so_q0)
423 return false;
424 head->so_q0len--;
425 } else {
426 if (so->so_onq != &head->so_q)
427 return false;
428 head->so_qlen--;
429 }
430 KASSERT(solocked2(so, head));
431 TAILQ_REMOVE(so->so_onq, so, so_qe);
432 so->so_onq = NULL;
433 so->so_head = NULL;
434 return true;
435 }
436
437 /*
438 * socantsendmore(): indicates that no more data will be sent on the
439 * socket; it would normally be applied to a socket when the user
440 * informs the system that no more data is to be sent, by the protocol
441 * code (in case PRU_SHUTDOWN).
442 */
443 void
444 socantsendmore(struct socket *so)
445 {
446 KASSERT(solocked(so));
447
448 so->so_state |= SS_CANTSENDMORE;
449 sowwakeup(so);
450 }
451
452 /*
453 * socantrcvmore(): indicates that no more data will be received and
454 * will normally be applied to the socket by a protocol when it detects
455 * that the peer will send no more data. Data queued for reading in
456 * the socket may yet be read.
457 */
458 void
459 socantrcvmore(struct socket *so)
460 {
461 KASSERT(solocked(so));
462
463 so->so_state |= SS_CANTRCVMORE;
464 sorwakeup(so);
465 }
466
467 /*
468 * Wait for data to arrive at/drain from a socket buffer.
469 */
470 int
471 sbwait(struct sockbuf *sb)
472 {
473 struct socket *so;
474 kmutex_t *lock;
475 int error;
476
477 so = sb->sb_so;
478
479 KASSERT(solocked(so));
480
481 sb->sb_flags |= SB_NOTIFY;
482 lock = so->so_lock;
483 if ((sb->sb_flags & SB_NOINTR) != 0)
484 error = cv_timedwait(&sb->sb_cv, lock, sb->sb_timeo);
485 else
486 error = cv_timedwait_sig(&sb->sb_cv, lock, sb->sb_timeo);
487 if (__predict_false(lock != so->so_lock))
488 solockretry(so, lock);
489 return error;
490 }
491
492 /*
493 * Wakeup processes waiting on a socket buffer.
494 * Do asynchronous notification via SIGIO
495 * if the socket buffer has the SB_ASYNC flag set.
496 */
497 void
498 sowakeup(struct socket *so, struct sockbuf *sb, int code)
499 {
500 int band;
501
502 KASSERT(solocked(so));
503 KASSERT(sb->sb_so == so);
504
505 if (code == POLL_IN)
506 band = POLLIN|POLLRDNORM;
507 else
508 band = POLLOUT|POLLWRNORM;
509 sb->sb_flags &= ~SB_NOTIFY;
510 selnotify(&sb->sb_sel, band, NOTE_SUBMIT);
511 cv_broadcast(&sb->sb_cv);
512 if (sb->sb_flags & SB_ASYNC)
513 fownsignal(so->so_pgid, SIGIO, code, band, so);
514 if (sb->sb_flags & SB_UPCALL)
515 (*so->so_upcall)(so, so->so_upcallarg, band, M_DONTWAIT);
516 }
517
518 /*
519 * Reset a socket's lock pointer. Wake all threads waiting on the
520 * socket's condition variables so that they can restart their waits
521 * using the new lock. The existing lock must be held.
522 */
523 void
524 solockreset(struct socket *so, kmutex_t *lock)
525 {
526
527 KASSERT(solocked(so));
528
529 so->so_lock = lock;
530 cv_broadcast(&so->so_snd.sb_cv);
531 cv_broadcast(&so->so_rcv.sb_cv);
532 cv_broadcast(&so->so_cv);
533 }
534
535 /*
536 * Socket buffer (struct sockbuf) utility routines.
537 *
538 * Each socket contains two socket buffers: one for sending data and
539 * one for receiving data. Each buffer contains a queue of mbufs,
540 * information about the number of mbufs and amount of data in the
541 * queue, and other fields allowing poll() statements and notification
542 * on data availability to be implemented.
543 *
544 * Data stored in a socket buffer is maintained as a list of records.
545 * Each record is a list of mbufs chained together with the m_next
546 * field. Records are chained together with the m_nextpkt field. The upper
547 * level routine soreceive() expects the following conventions to be
548 * observed when placing information in the receive buffer:
549 *
550 * 1. If the protocol requires each message be preceded by the sender's
551 * name, then a record containing that name must be present before
552 * any associated data (mbuf's must be of type MT_SONAME).
553 * 2. If the protocol supports the exchange of ``access rights'' (really
554 * just additional data associated with the message), and there are
555 * ``rights'' to be received, then a record containing this data
556 * should be present (mbuf's must be of type MT_CONTROL).
557 * 3. If a name or rights record exists, then it must be followed by
558 * a data record, perhaps of zero length.
559 *
560 * Before using a new socket structure it is first necessary to reserve
561 * buffer space to the socket, by calling sbreserve(). This should commit
562 * some of the available buffer space in the system buffer pool for the
563 * socket (currently, it does nothing but enforce limits). The space
564 * should be released by calling sbrelease() when the socket is destroyed.
565 */
566
567 int
568 sb_max_set(u_long new_sbmax)
569 {
570 int s;
571
572 if (new_sbmax < (16 * 1024))
573 return (EINVAL);
574
575 s = splsoftnet();
576 sb_max = new_sbmax;
577 sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
578 splx(s);
579
580 return (0);
581 }
582
583 int
584 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
585 {
586 KASSERT(so->so_pcb == NULL || solocked(so));
587
588 /*
589 * there's at least one application (a configure script of screen)
590 * which expects a fifo is writable even if it has "some" bytes
591 * in its buffer.
592 * so we want to make sure (hiwat - lowat) >= (some bytes).
593 *
594 * PIPE_BUF here is an arbitrary value chosen as (some bytes) above.
595 * we expect it's large enough for such applications.
596 */
597 u_long lowat = MAX(sock_loan_thresh, MCLBYTES);
598 u_long hiwat = lowat + PIPE_BUF;
599
600 if (sndcc < hiwat)
601 sndcc = hiwat;
602 if (sbreserve(&so->so_snd, sndcc, so) == 0)
603 goto bad;
604 if (sbreserve(&so->so_rcv, rcvcc, so) == 0)
605 goto bad2;
606 if (so->so_rcv.sb_lowat == 0)
607 so->so_rcv.sb_lowat = 1;
608 if (so->so_snd.sb_lowat == 0)
609 so->so_snd.sb_lowat = lowat;
610 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
611 so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
612 return (0);
613 bad2:
614 sbrelease(&so->so_snd, so);
615 bad:
616 return (ENOBUFS);
617 }
618
619 /*
620 * Allot mbufs to a sockbuf.
621 * Attempt to scale mbmax so that mbcnt doesn't become limiting
622 * if buffering efficiency is near the normal case.
623 */
624 int
625 sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
626 {
627 struct lwp *l = curlwp; /* XXX */
628 rlim_t maxcc;
629 struct uidinfo *uidinfo;
630
631 KASSERT(so->so_pcb == NULL || solocked(so));
632 KASSERT(sb->sb_so == so);
633 KASSERT(sb_max_adj != 0);
634
635 if (cc == 0 || cc > sb_max_adj)
636 return (0);
637
638 maxcc = l->l_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur;
639
640 uidinfo = so->so_uidinfo;
641 if (!chgsbsize(uidinfo, &sb->sb_hiwat, cc, maxcc))
642 return 0;
643 sb->sb_mbmax = min(cc * 2, sb_max);
644 if (sb->sb_lowat > sb->sb_hiwat)
645 sb->sb_lowat = sb->sb_hiwat;
646 return (1);
647 }
648
649 /*
650 * Free mbufs held by a socket, and reserved mbuf space. We do not assert
651 * that the socket is held locked here: see sorflush().
652 */
653 void
654 sbrelease(struct sockbuf *sb, struct socket *so)
655 {
656
657 KASSERT(sb->sb_so == so);
658
659 sbflush(sb);
660 (void)chgsbsize(so->so_uidinfo, &sb->sb_hiwat, 0, RLIM_INFINITY);
661 sb->sb_mbmax = 0;
662 }
663
664 /*
665 * Routines to add and remove
666 * data from an mbuf queue.
667 *
668 * The routines sbappend() or sbappendrecord() are normally called to
669 * append new mbufs to a socket buffer, after checking that adequate
670 * space is available, comparing the function sbspace() with the amount
671 * of data to be added. sbappendrecord() differs from sbappend() in
672 * that data supplied is treated as the beginning of a new record.
673 * To place a sender's address, optional access rights, and data in a
674 * socket receive buffer, sbappendaddr() should be used. To place
675 * access rights and data in a socket receive buffer, sbappendrights()
676 * should be used. In either case, the new data begins a new record.
677 * Note that unlike sbappend() and sbappendrecord(), these routines check
678 * for the caller that there will be enough space to store the data.
679 * Each fails if there is not enough space, or if it cannot find mbufs
680 * to store additional information in.
681 *
682 * Reliable protocols may use the socket send buffer to hold data
683 * awaiting acknowledgement. Data is normally copied from a socket
684 * send buffer in a protocol with m_copy for output to a peer,
685 * and then removing the data from the socket buffer with sbdrop()
686 * or sbdroprecord() when the data is acknowledged by the peer.
687 */
688
689 #ifdef SOCKBUF_DEBUG
690 void
691 sblastrecordchk(struct sockbuf *sb, const char *where)
692 {
693 struct mbuf *m = sb->sb_mb;
694
695 KASSERT(solocked(sb->sb_so));
696
697 while (m && m->m_nextpkt)
698 m = m->m_nextpkt;
699
700 if (m != sb->sb_lastrecord) {
701 printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
702 sb->sb_mb, sb->sb_lastrecord, m);
703 printf("packet chain:\n");
704 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
705 printf("\t%p\n", m);
706 panic("sblastrecordchk from %s", where);
707 }
708 }
709
710 void
711 sblastmbufchk(struct sockbuf *sb, const char *where)
712 {
713 struct mbuf *m = sb->sb_mb;
714 struct mbuf *n;
715
716 KASSERT(solocked(sb->sb_so));
717
718 while (m && m->m_nextpkt)
719 m = m->m_nextpkt;
720
721 while (m && m->m_next)
722 m = m->m_next;
723
724 if (m != sb->sb_mbtail) {
725 printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
726 sb->sb_mb, sb->sb_mbtail, m);
727 printf("packet tree:\n");
728 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
729 printf("\t");
730 for (n = m; n != NULL; n = n->m_next)
731 printf("%p ", n);
732 printf("\n");
733 }
734 panic("sblastmbufchk from %s", where);
735 }
736 }
737 #endif /* SOCKBUF_DEBUG */
738
739 /*
740 * Link a chain of records onto a socket buffer
741 */
742 #define SBLINKRECORDCHAIN(sb, m0, mlast) \
743 do { \
744 if ((sb)->sb_lastrecord != NULL) \
745 (sb)->sb_lastrecord->m_nextpkt = (m0); \
746 else \
747 (sb)->sb_mb = (m0); \
748 (sb)->sb_lastrecord = (mlast); \
749 } while (/*CONSTCOND*/0)
750
751
752 #define SBLINKRECORD(sb, m0) \
753 SBLINKRECORDCHAIN(sb, m0, m0)
754
755 /*
756 * Append mbuf chain m to the last record in the
757 * socket buffer sb. The additional space associated
758 * the mbuf chain is recorded in sb. Empty mbufs are
759 * discarded and mbufs are compacted where possible.
760 */
761 void
762 sbappend(struct sockbuf *sb, struct mbuf *m)
763 {
764 struct mbuf *n;
765
766 KASSERT(solocked(sb->sb_so));
767
768 if (m == 0)
769 return;
770
771 #ifdef MBUFTRACE
772 m_claimm(m, sb->sb_mowner);
773 #endif
774
775 SBLASTRECORDCHK(sb, "sbappend 1");
776
777 if ((n = sb->sb_lastrecord) != NULL) {
778 /*
779 * XXX Would like to simply use sb_mbtail here, but
780 * XXX I need to verify that I won't miss an EOR that
781 * XXX way.
782 */
783 do {
784 if (n->m_flags & M_EOR) {
785 sbappendrecord(sb, m); /* XXXXXX!!!! */
786 return;
787 }
788 } while (n->m_next && (n = n->m_next));
789 } else {
790 /*
791 * If this is the first record in the socket buffer, it's
792 * also the last record.
793 */
794 sb->sb_lastrecord = m;
795 }
796 sbcompress(sb, m, n);
797 SBLASTRECORDCHK(sb, "sbappend 2");
798 }
799
800 /*
801 * This version of sbappend() should only be used when the caller
802 * absolutely knows that there will never be more than one record
803 * in the socket buffer, that is, a stream protocol (such as TCP).
804 */
805 void
806 sbappendstream(struct sockbuf *sb, struct mbuf *m)
807 {
808
809 KASSERT(solocked(sb->sb_so));
810 KDASSERT(m->m_nextpkt == NULL);
811 KASSERT(sb->sb_mb == sb->sb_lastrecord);
812
813 SBLASTMBUFCHK(sb, __func__);
814
815 #ifdef MBUFTRACE
816 m_claimm(m, sb->sb_mowner);
817 #endif
818
819 sbcompress(sb, m, sb->sb_mbtail);
820
821 sb->sb_lastrecord = sb->sb_mb;
822 SBLASTRECORDCHK(sb, __func__);
823 }
824
825 #ifdef SOCKBUF_DEBUG
826 void
827 sbcheck(struct sockbuf *sb)
828 {
829 struct mbuf *m, *m2;
830 u_long len, mbcnt;
831
832 KASSERT(solocked(sb->sb_so));
833
834 len = 0;
835 mbcnt = 0;
836 for (m = sb->sb_mb; m; m = m->m_nextpkt) {
837 for (m2 = m; m2 != NULL; m2 = m2->m_next) {
838 len += m2->m_len;
839 mbcnt += MSIZE;
840 if (m2->m_flags & M_EXT)
841 mbcnt += m2->m_ext.ext_size;
842 if (m2->m_nextpkt != NULL)
843 panic("sbcheck nextpkt");
844 }
845 }
846 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
847 printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
848 mbcnt, sb->sb_mbcnt);
849 panic("sbcheck");
850 }
851 }
852 #endif
853
854 /*
855 * As above, except the mbuf chain
856 * begins a new record.
857 */
858 void
859 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
860 {
861 struct mbuf *m;
862
863 KASSERT(solocked(sb->sb_so));
864
865 if (m0 == 0)
866 return;
867
868 #ifdef MBUFTRACE
869 m_claimm(m0, sb->sb_mowner);
870 #endif
871 /*
872 * Put the first mbuf on the queue.
873 * Note this permits zero length records.
874 */
875 sballoc(sb, m0);
876 SBLASTRECORDCHK(sb, "sbappendrecord 1");
877 SBLINKRECORD(sb, m0);
878 m = m0->m_next;
879 m0->m_next = 0;
880 if (m && (m0->m_flags & M_EOR)) {
881 m0->m_flags &= ~M_EOR;
882 m->m_flags |= M_EOR;
883 }
884 sbcompress(sb, m, m0);
885 SBLASTRECORDCHK(sb, "sbappendrecord 2");
886 }
887
888 /*
889 * As above except that OOB data
890 * is inserted at the beginning of the sockbuf,
891 * but after any other OOB data.
892 */
893 void
894 sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
895 {
896 struct mbuf *m, **mp;
897
898 KASSERT(solocked(sb->sb_so));
899
900 if (m0 == 0)
901 return;
902
903 SBLASTRECORDCHK(sb, "sbinsertoob 1");
904
905 for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
906 again:
907 switch (m->m_type) {
908
909 case MT_OOBDATA:
910 continue; /* WANT next train */
911
912 case MT_CONTROL:
913 if ((m = m->m_next) != NULL)
914 goto again; /* inspect THIS train further */
915 }
916 break;
917 }
918 /*
919 * Put the first mbuf on the queue.
920 * Note this permits zero length records.
921 */
922 sballoc(sb, m0);
923 m0->m_nextpkt = *mp;
924 if (*mp == NULL) {
925 /* m0 is actually the new tail */
926 sb->sb_lastrecord = m0;
927 }
928 *mp = m0;
929 m = m0->m_next;
930 m0->m_next = 0;
931 if (m && (m0->m_flags & M_EOR)) {
932 m0->m_flags &= ~M_EOR;
933 m->m_flags |= M_EOR;
934 }
935 sbcompress(sb, m, m0);
936 SBLASTRECORDCHK(sb, "sbinsertoob 2");
937 }
938
939 /*
940 * Append address and data, and optionally, control (ancillary) data
941 * to the receive queue of a socket. If present,
942 * m0 must include a packet header with total length.
943 * Returns 0 if no space in sockbuf or insufficient mbufs.
944 */
945 int
946 sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0,
947 struct mbuf *control)
948 {
949 struct mbuf *m, *n, *nlast;
950 int space, len;
951
952 KASSERT(solocked(sb->sb_so));
953
954 space = asa->sa_len;
955
956 if (m0 != NULL) {
957 if ((m0->m_flags & M_PKTHDR) == 0)
958 panic("sbappendaddr");
959 space += m0->m_pkthdr.len;
960 #ifdef MBUFTRACE
961 m_claimm(m0, sb->sb_mowner);
962 #endif
963 }
964 for (n = control; n; n = n->m_next) {
965 space += n->m_len;
966 MCLAIM(n, sb->sb_mowner);
967 if (n->m_next == 0) /* keep pointer to last control buf */
968 break;
969 }
970 if (space > sbspace(sb))
971 return (0);
972 MGET(m, M_DONTWAIT, MT_SONAME);
973 if (m == 0)
974 return (0);
975 MCLAIM(m, sb->sb_mowner);
976 /*
977 * XXX avoid 'comparison always true' warning which isn't easily
978 * avoided.
979 */
980 len = asa->sa_len;
981 if (len > MLEN) {
982 MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
983 if ((m->m_flags & M_EXT) == 0) {
984 m_free(m);
985 return (0);
986 }
987 }
988 m->m_len = asa->sa_len;
989 memcpy(mtod(m, void *), asa, asa->sa_len);
990 if (n)
991 n->m_next = m0; /* concatenate data to control */
992 else
993 control = m0;
994 m->m_next = control;
995
996 SBLASTRECORDCHK(sb, "sbappendaddr 1");
997
998 for (n = m; n->m_next != NULL; n = n->m_next)
999 sballoc(sb, n);
1000 sballoc(sb, n);
1001 nlast = n;
1002 SBLINKRECORD(sb, m);
1003
1004 sb->sb_mbtail = nlast;
1005 SBLASTMBUFCHK(sb, "sbappendaddr");
1006 SBLASTRECORDCHK(sb, "sbappendaddr 2");
1007
1008 return (1);
1009 }
1010
1011 /*
1012 * Helper for sbappendchainaddr: prepend a struct sockaddr* to
1013 * an mbuf chain.
1014 */
1015 static inline struct mbuf *
1016 m_prepend_sockaddr(struct sockbuf *sb, struct mbuf *m0,
1017 const struct sockaddr *asa)
1018 {
1019 struct mbuf *m;
1020 const int salen = asa->sa_len;
1021
1022 KASSERT(solocked(sb->sb_so));
1023
1024 /* only the first in each chain need be a pkthdr */
1025 MGETHDR(m, M_DONTWAIT, MT_SONAME);
1026 if (m == 0)
1027 return (0);
1028 MCLAIM(m, sb->sb_mowner);
1029 #ifdef notyet
1030 if (salen > MHLEN) {
1031 MEXTMALLOC(m, salen, M_NOWAIT);
1032 if ((m->m_flags & M_EXT) == 0) {
1033 m_free(m);
1034 return (0);
1035 }
1036 }
1037 #else
1038 KASSERT(salen <= MHLEN);
1039 #endif
1040 m->m_len = salen;
1041 memcpy(mtod(m, void *), asa, salen);
1042 m->m_next = m0;
1043 m->m_pkthdr.len = salen + m0->m_pkthdr.len;
1044
1045 return m;
1046 }
1047
1048 int
1049 sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa,
1050 struct mbuf *m0, int sbprio)
1051 {
1052 int space;
1053 struct mbuf *m, *n, *n0, *nlast;
1054 int error;
1055
1056 KASSERT(solocked(sb->sb_so));
1057
1058 /*
1059 * XXX sbprio reserved for encoding priority of this* request:
1060 * SB_PRIO_NONE --> honour normal sb limits
1061 * SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space,
1062 * take whole chain. Intended for large requests
1063 * that should be delivered atomically (all, or none).
1064 * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow
1065 * over normal socket limits, for messages indicating
1066 * buffer overflow in earlier normal/lower-priority messages
1067 * SB_PRIO_BESTEFFORT --> ignore limits entirely.
1068 * Intended for kernel-generated messages only.
1069 * Up to generator to avoid total mbuf resource exhaustion.
1070 */
1071 (void)sbprio;
1072
1073 if (m0 && (m0->m_flags & M_PKTHDR) == 0)
1074 panic("sbappendaddrchain");
1075
1076 space = sbspace(sb);
1077
1078 #ifdef notyet
1079 /*
1080 * Enforce SB_PRIO_* limits as described above.
1081 */
1082 #endif
1083
1084 n0 = NULL;
1085 nlast = NULL;
1086 for (m = m0; m; m = m->m_nextpkt) {
1087 struct mbuf *np;
1088
1089 #ifdef MBUFTRACE
1090 m_claimm(m, sb->sb_mowner);
1091 #endif
1092
1093 /* Prepend sockaddr to this record (m) of input chain m0 */
1094 n = m_prepend_sockaddr(sb, m, asa);
1095 if (n == NULL) {
1096 error = ENOBUFS;
1097 goto bad;
1098 }
1099
1100 /* Append record (asa+m) to end of new chain n0 */
1101 if (n0 == NULL) {
1102 n0 = n;
1103 } else {
1104 nlast->m_nextpkt = n;
1105 }
1106 /* Keep track of last record on new chain */
1107 nlast = n;
1108
1109 for (np = n; np; np = np->m_next)
1110 sballoc(sb, np);
1111 }
1112
1113 SBLASTRECORDCHK(sb, "sbappendaddrchain 1");
1114
1115 /* Drop the entire chain of (asa+m) records onto the socket */
1116 SBLINKRECORDCHAIN(sb, n0, nlast);
1117
1118 SBLASTRECORDCHK(sb, "sbappendaddrchain 2");
1119
1120 for (m = nlast; m->m_next; m = m->m_next)
1121 ;
1122 sb->sb_mbtail = m;
1123 SBLASTMBUFCHK(sb, "sbappendaddrchain");
1124
1125 return (1);
1126
1127 bad:
1128 /*
1129 * On error, free the prepended addreseses. For consistency
1130 * with sbappendaddr(), leave it to our caller to free
1131 * the input record chain passed to us as m0.
1132 */
1133 while ((n = n0) != NULL) {
1134 struct mbuf *np;
1135
1136 /* Undo the sballoc() of this record */
1137 for (np = n; np; np = np->m_next)
1138 sbfree(sb, np);
1139
1140 n0 = n->m_nextpkt; /* iterate at next prepended address */
1141 MFREE(n, np); /* free prepended address (not data) */
1142 }
1143 return 0;
1144 }
1145
1146
1147 int
1148 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
1149 {
1150 struct mbuf *m, *mlast, *n;
1151 int space;
1152
1153 KASSERT(solocked(sb->sb_so));
1154
1155 space = 0;
1156 if (control == 0)
1157 panic("sbappendcontrol");
1158 for (m = control; ; m = m->m_next) {
1159 space += m->m_len;
1160 MCLAIM(m, sb->sb_mowner);
1161 if (m->m_next == 0)
1162 break;
1163 }
1164 n = m; /* save pointer to last control buffer */
1165 for (m = m0; m; m = m->m_next) {
1166 MCLAIM(m, sb->sb_mowner);
1167 space += m->m_len;
1168 }
1169 if (space > sbspace(sb))
1170 return (0);
1171 n->m_next = m0; /* concatenate data to control */
1172
1173 SBLASTRECORDCHK(sb, "sbappendcontrol 1");
1174
1175 for (m = control; m->m_next != NULL; m = m->m_next)
1176 sballoc(sb, m);
1177 sballoc(sb, m);
1178 mlast = m;
1179 SBLINKRECORD(sb, control);
1180
1181 sb->sb_mbtail = mlast;
1182 SBLASTMBUFCHK(sb, "sbappendcontrol");
1183 SBLASTRECORDCHK(sb, "sbappendcontrol 2");
1184
1185 return (1);
1186 }
1187
1188 /*
1189 * Compress mbuf chain m into the socket
1190 * buffer sb following mbuf n. If n
1191 * is null, the buffer is presumed empty.
1192 */
1193 void
1194 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
1195 {
1196 int eor;
1197 struct mbuf *o;
1198
1199 KASSERT(solocked(sb->sb_so));
1200
1201 eor = 0;
1202 while (m) {
1203 eor |= m->m_flags & M_EOR;
1204 if (m->m_len == 0 &&
1205 (eor == 0 ||
1206 (((o = m->m_next) || (o = n)) &&
1207 o->m_type == m->m_type))) {
1208 if (sb->sb_lastrecord == m)
1209 sb->sb_lastrecord = m->m_next;
1210 m = m_free(m);
1211 continue;
1212 }
1213 if (n && (n->m_flags & M_EOR) == 0 &&
1214 /* M_TRAILINGSPACE() checks buffer writeability */
1215 m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
1216 m->m_len <= M_TRAILINGSPACE(n) &&
1217 n->m_type == m->m_type) {
1218 memcpy(mtod(n, char *) + n->m_len, mtod(m, void *),
1219 (unsigned)m->m_len);
1220 n->m_len += m->m_len;
1221 sb->sb_cc += m->m_len;
1222 m = m_free(m);
1223 continue;
1224 }
1225 if (n)
1226 n->m_next = m;
1227 else
1228 sb->sb_mb = m;
1229 sb->sb_mbtail = m;
1230 sballoc(sb, m);
1231 n = m;
1232 m->m_flags &= ~M_EOR;
1233 m = m->m_next;
1234 n->m_next = 0;
1235 }
1236 if (eor) {
1237 if (n)
1238 n->m_flags |= eor;
1239 else
1240 printf("semi-panic: sbcompress\n");
1241 }
1242 SBLASTMBUFCHK(sb, __func__);
1243 }
1244
1245 /*
1246 * Free all mbufs in a sockbuf.
1247 * Check that all resources are reclaimed.
1248 */
1249 void
1250 sbflush(struct sockbuf *sb)
1251 {
1252
1253 KASSERT(solocked(sb->sb_so));
1254 KASSERT((sb->sb_flags & SB_LOCK) == 0);
1255
1256 while (sb->sb_mbcnt)
1257 sbdrop(sb, (int)sb->sb_cc);
1258
1259 KASSERT(sb->sb_cc == 0);
1260 KASSERT(sb->sb_mb == NULL);
1261 KASSERT(sb->sb_mbtail == NULL);
1262 KASSERT(sb->sb_lastrecord == NULL);
1263 }
1264
1265 /*
1266 * Drop data from (the front of) a sockbuf.
1267 */
1268 void
1269 sbdrop(struct sockbuf *sb, int len)
1270 {
1271 struct mbuf *m, *mn, *next;
1272
1273 KASSERT(solocked(sb->sb_so));
1274
1275 next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
1276 while (len > 0) {
1277 if (m == 0) {
1278 if (next == 0)
1279 panic("sbdrop(%p,%d): cc=%lu",
1280 sb, len, sb->sb_cc);
1281 m = next;
1282 next = m->m_nextpkt;
1283 continue;
1284 }
1285 if (m->m_len > len) {
1286 m->m_len -= len;
1287 m->m_data += len;
1288 sb->sb_cc -= len;
1289 break;
1290 }
1291 len -= m->m_len;
1292 sbfree(sb, m);
1293 MFREE(m, mn);
1294 m = mn;
1295 }
1296 while (m && m->m_len == 0) {
1297 sbfree(sb, m);
1298 MFREE(m, mn);
1299 m = mn;
1300 }
1301 if (m) {
1302 sb->sb_mb = m;
1303 m->m_nextpkt = next;
1304 } else
1305 sb->sb_mb = next;
1306 /*
1307 * First part is an inline SB_EMPTY_FIXUP(). Second part
1308 * makes sure sb_lastrecord is up-to-date if we dropped
1309 * part of the last record.
1310 */
1311 m = sb->sb_mb;
1312 if (m == NULL) {
1313 sb->sb_mbtail = NULL;
1314 sb->sb_lastrecord = NULL;
1315 } else if (m->m_nextpkt == NULL)
1316 sb->sb_lastrecord = m;
1317 }
1318
1319 /*
1320 * Drop a record off the front of a sockbuf
1321 * and move the next record to the front.
1322 */
1323 void
1324 sbdroprecord(struct sockbuf *sb)
1325 {
1326 struct mbuf *m, *mn;
1327
1328 KASSERT(solocked(sb->sb_so));
1329
1330 m = sb->sb_mb;
1331 if (m) {
1332 sb->sb_mb = m->m_nextpkt;
1333 do {
1334 sbfree(sb, m);
1335 MFREE(m, mn);
1336 } while ((m = mn) != NULL);
1337 }
1338 SB_EMPTY_FIXUP(sb);
1339 }
1340
1341 /*
1342 * Create a "control" mbuf containing the specified data
1343 * with the specified type for presentation on a socket buffer.
1344 */
1345 struct mbuf *
1346 sbcreatecontrol1(void **p, int size, int type, int level, int flags)
1347 {
1348 struct cmsghdr *cp;
1349 struct mbuf *m;
1350 int space = CMSG_SPACE(size);
1351
1352 if ((flags & M_DONTWAIT) && space > MCLBYTES) {
1353 printf("%s: message too large %d\n", __func__, space);
1354 return NULL;
1355 }
1356
1357 if ((m = m_get(flags, MT_CONTROL)) == NULL)
1358 return NULL;
1359 if (space > MLEN) {
1360 if (space > MCLBYTES)
1361 MEXTMALLOC(m, space, M_WAITOK);
1362 else
1363 MCLGET(m, flags);
1364 if ((m->m_flags & M_EXT) == 0) {
1365 m_free(m);
1366 return NULL;
1367 }
1368 }
1369 cp = mtod(m, struct cmsghdr *);
1370 *p = CMSG_DATA(cp);
1371 m->m_len = space;
1372 cp->cmsg_len = CMSG_LEN(size);
1373 cp->cmsg_level = level;
1374 cp->cmsg_type = type;
1375 return m;
1376 }
1377
1378 struct mbuf *
1379 sbcreatecontrol(void *p, int size, int type, int level)
1380 {
1381 struct mbuf *m;
1382 void *v;
1383
1384 m = sbcreatecontrol1(&v, size, type, level, M_DONTWAIT);
1385 if (m == NULL)
1386 return NULL;
1387 memcpy(v, p, size);
1388 return m;
1389 }
1390
1391 void
1392 solockretry(struct socket *so, kmutex_t *lock)
1393 {
1394
1395 while (lock != so->so_lock) {
1396 mutex_exit(lock);
1397 lock = so->so_lock;
1398 mutex_enter(lock);
1399 }
1400 }
1401
1402 bool
1403 solocked(struct socket *so)
1404 {
1405
1406 return mutex_owned(so->so_lock);
1407 }
1408
1409 bool
1410 solocked2(struct socket *so1, struct socket *so2)
1411 {
1412 kmutex_t *lock;
1413
1414 lock = so1->so_lock;
1415 if (lock != so2->so_lock)
1416 return false;
1417 return mutex_owned(lock);
1418 }
1419
1420 /*
1421 * sosetlock: assign a default lock to a new socket.
1422 */
1423 void
1424 sosetlock(struct socket *so)
1425 {
1426 if (so->so_lock == NULL) {
1427 kmutex_t *lock = softnet_lock;
1428
1429 so->so_lock = lock;
1430 mutex_obj_hold(lock);
1431 }
1432 }
1433
1434 /*
1435 * Set lock on sockbuf sb; sleep if lock is already held.
1436 * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
1437 * Returns error without lock if sleep is interrupted.
1438 */
1439 int
1440 sblock(struct sockbuf *sb, int wf)
1441 {
1442 struct socket *so;
1443 kmutex_t *lock;
1444 int error;
1445
1446 KASSERT(solocked(sb->sb_so));
1447
1448 for (;;) {
1449 if (__predict_true((sb->sb_flags & SB_LOCK) == 0)) {
1450 sb->sb_flags |= SB_LOCK;
1451 return 0;
1452 }
1453 if (wf != M_WAITOK)
1454 return EWOULDBLOCK;
1455 so = sb->sb_so;
1456 lock = so->so_lock;
1457 if ((sb->sb_flags & SB_NOINTR) != 0) {
1458 cv_wait(&so->so_cv, lock);
1459 error = 0;
1460 } else
1461 error = cv_wait_sig(&so->so_cv, lock);
1462 if (__predict_false(lock != so->so_lock))
1463 solockretry(so, lock);
1464 if (error != 0)
1465 return error;
1466 }
1467 }
1468
1469 void
1470 sbunlock(struct sockbuf *sb)
1471 {
1472 struct socket *so;
1473
1474 so = sb->sb_so;
1475
1476 KASSERT(solocked(so));
1477 KASSERT((sb->sb_flags & SB_LOCK) != 0);
1478
1479 sb->sb_flags &= ~SB_LOCK;
1480 cv_broadcast(&so->so_cv);
1481 }
1482
1483 int
1484 sowait(struct socket *so, bool catch, int timo)
1485 {
1486 kmutex_t *lock;
1487 int error;
1488
1489 KASSERT(solocked(so));
1490 KASSERT(catch || timo != 0);
1491
1492 lock = so->so_lock;
1493 if (catch)
1494 error = cv_timedwait_sig(&so->so_cv, lock, timo);
1495 else
1496 error = cv_timedwait(&so->so_cv, lock, timo);
1497 if (__predict_false(lock != so->so_lock))
1498 solockretry(so, lock);
1499 return error;
1500 }
1501