Home | History | Annotate | Line # | Download | only in kern
uipc_socket2.c revision 1.112.2.4
      1 /*	$NetBSD: uipc_socket2.c,v 1.112.2.4 2014/05/18 17:46:08 rmind Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26  * POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 /*
     30  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     31  *	The Regents of the University of California.  All rights reserved.
     32  *
     33  * Redistribution and use in source and binary forms, with or without
     34  * modification, are permitted provided that the following conditions
     35  * are met:
     36  * 1. Redistributions of source code must retain the above copyright
     37  *    notice, this list of conditions and the following disclaimer.
     38  * 2. Redistributions in binary form must reproduce the above copyright
     39  *    notice, this list of conditions and the following disclaimer in the
     40  *    documentation and/or other materials provided with the distribution.
     41  * 3. Neither the name of the University nor the names of its contributors
     42  *    may be used to endorse or promote products derived from this software
     43  *    without specific prior written permission.
     44  *
     45  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     46  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     47  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     48  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     49  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     50  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     51  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     52  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     53  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     54  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     55  * SUCH DAMAGE.
     56  *
     57  *	@(#)uipc_socket2.c	8.2 (Berkeley) 2/14/95
     58  */
     59 
     60 #include <sys/cdefs.h>
     61 __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.112.2.4 2014/05/18 17:46:08 rmind Exp $");
     62 
     63 #include "opt_mbuftrace.h"
     64 #include "opt_sb_max.h"
     65 
     66 #include <sys/param.h>
     67 #include <sys/systm.h>
     68 #include <sys/proc.h>
     69 #include <sys/file.h>
     70 #include <sys/buf.h>
     71 #include <sys/mbuf.h>
     72 #include <sys/protosw.h>
     73 #include <sys/domain.h>
     74 #include <sys/poll.h>
     75 #include <sys/socket.h>
     76 #include <sys/socketvar.h>
     77 #include <sys/signalvar.h>
     78 #include <sys/kauth.h>
     79 #include <sys/pool.h>
     80 #include <sys/uidinfo.h>
     81 
     82 /*
     83  * Primitive routines for operating on sockets and socket buffers.
     84  *
     85  * Connection life-cycle:
     86  *
     87  *	Normal sequence from the active (originating) side:
     88  *
     89  *	- soisconnecting() is called during processing of connect() call,
     90  *	- resulting in an eventual call to soisconnected() if/when the
     91  *	  connection is established.
     92  *
     93  *	When the connection is torn down during processing of disconnect():
     94  *
     95  *	- soisdisconnecting() is called and,
     96  *	- soisdisconnected() is called when the connection to the peer
     97  *	  is totally severed.
     98  *
     99  *	The semantics of these routines are such that connectionless protocols
    100  *	can call soisconnected() and soisdisconnected() only, bypassing the
    101  *	in-progress calls when setting up a ``connection'' takes no time.
    102  *
    103  *	From the passive side, a socket is created with two queues of sockets:
    104  *
    105  *	- so_q0 (0) for partial connections (i.e. connections in progress)
    106  *	- so_q (1) for connections already made and awaiting user acceptance.
    107  *
    108  *	As a protocol is preparing incoming connections, it creates a socket
    109  *	structure queued on so_q0 by calling sonewconn().  When the connection
    110  *	is established, soisconnected() is called, and transfers the
    111  *	socket structure to so_q, making it available to accept().
    112  *
    113  *	If a socket is closed with sockets on either so_q0 or so_q, these
    114  *	sockets are dropped.
    115  *
    116  * Locking rules and assumptions:
    117  *
    118  * o socket::so_lock can change on the fly.  The low level routines used
    119  *   to lock sockets are aware of this.  When so_lock is acquired, the
    120  *   routine locking must check to see if so_lock still points to the
    121  *   lock that was acquired.  If so_lock has changed in the meantime, the
    122  *   now irrelevant lock that was acquired must be dropped and the lock
    123  *   operation retried.  Although not proven here, this is completely safe
    124  *   on a multiprocessor system, even with relaxed memory ordering, given
    125  *   the next two rules:
    126  *
    127  * o In order to mutate so_lock, the lock pointed to by the current value
    128  *   of so_lock must be held: i.e., the socket must be held locked by the
    129  *   changing thread.  The thread must issue membar_exit() to prevent
    130  *   memory accesses being reordered, and can set so_lock to the desired
    131  *   value.  If the lock pointed to by the new value of so_lock is not
    132  *   held by the changing thread, the socket must then be considered
    133  *   unlocked.
    134  *
    135  * o If so_lock is mutated, and the previous lock referred to by so_lock
    136  *   could still be visible to other threads in the system (e.g. via file
    137  *   descriptor or protocol-internal reference), then the old lock must
    138  *   remain valid until the socket and/or protocol control block has been
    139  *   torn down.
    140  *
    141  * o If a socket has a non-NULL so_head value (i.e. is in the process of
    142  *   connecting), then locking the socket must also lock the socket pointed
    143  *   to by so_head: their lock pointers must match.
    144  *
    145  * o If a socket has connections in progress (so_q, so_q0 not empty) then
    146  *   locking the socket must also lock the sockets attached to both queues.
    147  *   Again, their lock pointers must match.
    148  *
    149  * o Beyond the initial lock assignment in socreate(), assigning locks to
    150  *   sockets is the responsibility of the individual protocols / protocol
    151  *   domains.
    152  */
    153 
    154 static pool_cache_t	socket_cache;
    155 u_long			sb_max = SB_MAX;/* maximum socket buffer size */
    156 static u_long		sb_max_adj;	/* adjusted sb_max */
    157 
    158 void
    159 soisconnecting(struct socket *so)
    160 {
    161 
    162 	KASSERT(solocked(so));
    163 
    164 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
    165 	so->so_state |= SS_ISCONNECTING;
    166 }
    167 
    168 void
    169 soisconnected(struct socket *so)
    170 {
    171 	struct socket	*head;
    172 
    173 	head = so->so_head;
    174 
    175 	KASSERT(solocked(so));
    176 	KASSERT(head == NULL || solocked2(so, head));
    177 
    178 	so->so_state &= ~(SS_ISCONNECTING | SS_ISDISCONNECTING);
    179 	so->so_state |= SS_ISCONNECTED;
    180 	if (head && so->so_onq == &head->so_q0) {
    181 		if ((so->so_options & SO_ACCEPTFILTER) == 0) {
    182 			/*
    183 			 * Re-enqueue and wake up any waiters, e.g.
    184 			 * processes blocking on accept().
    185 			 */
    186 			soqremque(so, 0);
    187 			soqinsque(head, so, 1);
    188 			sorwakeup(head);
    189 			cv_broadcast(&head->so_cv);
    190 		} else {
    191 			so->so_upcall =
    192 			    head->so_accf->so_accept_filter->accf_callback;
    193 			so->so_upcallarg = head->so_accf->so_accept_filter_arg;
    194 			so->so_rcv.sb_flags |= SB_UPCALL;
    195 			so->so_options &= ~SO_ACCEPTFILTER;
    196 			(*so->so_upcall)(so, so->so_upcallarg,
    197 					 POLLIN|POLLRDNORM, M_DONTWAIT);
    198 		}
    199 	} else {
    200 		cv_broadcast(&so->so_cv);
    201 		sorwakeup(so);
    202 		sowwakeup(so);
    203 	}
    204 }
    205 
    206 void
    207 soisdisconnecting(struct socket *so)
    208 {
    209 
    210 	KASSERT(solocked(so));
    211 
    212 	so->so_state &= ~SS_ISCONNECTING;
    213 	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
    214 	cv_broadcast(&so->so_cv);
    215 	sowwakeup(so);
    216 	sorwakeup(so);
    217 }
    218 
    219 void
    220 soisdisconnected(struct socket *so)
    221 {
    222 
    223 	KASSERT(solocked(so));
    224 
    225 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
    226 	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
    227 	cv_broadcast(&so->so_cv);
    228 	sowwakeup(so);
    229 	sorwakeup(so);
    230 }
    231 
    232 void
    233 soinit2(void)
    234 {
    235 
    236 	socket_cache = pool_cache_init(sizeof(struct socket), 0, 0, 0,
    237 	    "socket", NULL, IPL_SOFTNET, NULL, NULL, NULL);
    238 }
    239 
    240 /*
    241  * sonewconn: accept a new connection.
    242  *
    243  * When an attempt at a new connection is noted on a socket which accepts
    244  * connections, sonewconn(9) is called.  If the connection is possible
    245  * (subject to space constraints, etc) then we allocate a new structure,
    246  * properly linked into the data structure of the original socket.
    247  *
    248  * => If 'soready' is true, then socket will become ready for accept() i.e.
    249  *    inserted into the so_q queue, SS_ISCONNECTED set and waiters awoken.
    250  * => May be called from soft-interrupt context.
    251  * => Listening socket should be locked.
    252  * => Returns the new socket locked.
    253  */
    254 struct socket *
    255 sonewconn(struct socket *head, bool soready)
    256 {
    257 	struct socket *so;
    258 	int soqueue, error;
    259 
    260 	KASSERT(solocked(head));
    261 
    262 	if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2) {
    263 		/* Listen queue overflow. */
    264 		return NULL;
    265 	}
    266 	if ((head->so_options & SO_ACCEPTFILTER) != 0) {
    267 		soready = false;
    268 	}
    269 	soqueue = soready ? 1 : 0;
    270 
    271 	if ((so = soget(false)) == NULL) {
    272 		return NULL;
    273 	}
    274 	so->so_type = head->so_type;
    275 	so->so_options = head->so_options & ~SO_ACCEPTCONN;
    276 	so->so_linger = head->so_linger;
    277 	so->so_state = head->so_state | SS_NOFDREF;
    278 	so->so_proto = head->so_proto;
    279 	so->so_timeo = head->so_timeo;
    280 	so->so_pgid = head->so_pgid;
    281 	so->so_send = head->so_send;
    282 	so->so_receive = head->so_receive;
    283 	so->so_uidinfo = head->so_uidinfo;
    284 	so->so_cpid = head->so_cpid;
    285 #ifdef MBUFTRACE
    286 	so->so_mowner = head->so_mowner;
    287 	so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
    288 	so->so_snd.sb_mowner = head->so_snd.sb_mowner;
    289 #endif
    290 	if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat) != 0)
    291 		goto out;
    292 	so->so_snd.sb_lowat = head->so_snd.sb_lowat;
    293 	so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
    294 	so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
    295 	so->so_snd.sb_timeo = head->so_snd.sb_timeo;
    296 	so->so_rcv.sb_flags |= head->so_rcv.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
    297 	so->so_snd.sb_flags |= head->so_snd.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
    298 
    299 	/*
    300 	 * Share the lock with the listening-socket, it may get unshared
    301 	 * once the connection is complete.
    302 	 */
    303 	mutex_obj_hold(head->so_lock);
    304 	so->so_lock = head->so_lock;
    305 	sounlock(head);
    306 
    307 	/* Finally, perform the protocol attach and re-acquire the lock. */
    308 	error = (*so->so_proto->pr_usrreqs->pr_attach)(so, 0);
    309 	solock(head);
    310 
    311 	if (error) {
    312 out:
    313 		KASSERT(so->so_accf == NULL);
    314 		soput(so);
    315 
    316 		/* Note: the listening socket shall stay locked. */
    317 		KASSERT(solocked(head));
    318 		return NULL;
    319 	}
    320 
    321 	/*
    322 	 * Insert into the queue.  If ready, update the connection status
    323 	 * and wake up any waiters, e.g. processes blocking on accept().
    324 	 */
    325 	soqinsque(head, so, soqueue);
    326 	if (soready) {
    327 		so->so_state |= SS_ISCONNECTED;
    328 		sorwakeup(head);
    329 		cv_broadcast(&head->so_cv);
    330 	}
    331 	KASSERT(solocked2(head, so));
    332 	return so;
    333 }
    334 
    335 struct socket *
    336 soget(bool waitok)
    337 {
    338 	struct socket *so;
    339 
    340 	so = pool_cache_get(socket_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
    341 	if (__predict_false(so == NULL))
    342 		return (NULL);
    343 	memset(so, 0, sizeof(*so));
    344 	TAILQ_INIT(&so->so_q0);
    345 	TAILQ_INIT(&so->so_q);
    346 	cv_init(&so->so_cv, "socket");
    347 	cv_init(&so->so_rcv.sb_cv, "netio");
    348 	cv_init(&so->so_snd.sb_cv, "netio");
    349 	selinit(&so->so_rcv.sb_sel);
    350 	selinit(&so->so_snd.sb_sel);
    351 	so->so_rcv.sb_so = so;
    352 	so->so_snd.sb_so = so;
    353 	return so;
    354 }
    355 
    356 void
    357 soput(struct socket *so)
    358 {
    359 
    360 	KASSERT(!cv_has_waiters(&so->so_cv));
    361 	KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
    362 	KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
    363 	seldestroy(&so->so_rcv.sb_sel);
    364 	seldestroy(&so->so_snd.sb_sel);
    365 	mutex_obj_free(so->so_lock);
    366 	cv_destroy(&so->so_cv);
    367 	cv_destroy(&so->so_rcv.sb_cv);
    368 	cv_destroy(&so->so_snd.sb_cv);
    369 	pool_cache_put(socket_cache, so);
    370 }
    371 
    372 /*
    373  * soqinsque: insert socket of a new connection into the specified
    374  * accept queue of the listening socket (head).
    375  *
    376  *	q = 0: queue of partial connections
    377  *	q = 1: queue of incoming connections
    378  */
    379 void
    380 soqinsque(struct socket *head, struct socket *so, int q)
    381 {
    382 	KASSERT(q == 0 || q == 1);
    383 	KASSERT(solocked2(head, so));
    384 	KASSERT(so->so_onq == NULL);
    385 	KASSERT(so->so_head == NULL);
    386 
    387 	so->so_head = head;
    388 	if (q == 0) {
    389 		head->so_q0len++;
    390 		so->so_onq = &head->so_q0;
    391 	} else {
    392 		head->so_qlen++;
    393 		so->so_onq = &head->so_q;
    394 	}
    395 	TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
    396 }
    397 
    398 /*
    399  * soqremque: remove socket from the specified queue.
    400  *
    401  * => Returns true if socket was removed from the specified queue.
    402  * => False if socket was not removed (because it was in other queue).
    403  */
    404 bool
    405 soqremque(struct socket *so, int q)
    406 {
    407 	struct socket *head = so->so_head;
    408 
    409 	KASSERT(q == 0 || q == 1);
    410 	KASSERT(solocked(so));
    411 	KASSERT(so->so_onq != NULL);
    412 	KASSERT(head != NULL);
    413 
    414 	if (q == 0) {
    415 		if (so->so_onq != &head->so_q0)
    416 			return false;
    417 		head->so_q0len--;
    418 	} else {
    419 		if (so->so_onq != &head->so_q)
    420 			return false;
    421 		head->so_qlen--;
    422 	}
    423 	KASSERT(solocked2(so, head));
    424 	TAILQ_REMOVE(so->so_onq, so, so_qe);
    425 	so->so_onq = NULL;
    426 	so->so_head = NULL;
    427 	return true;
    428 }
    429 
    430 /*
    431  * socantsendmore: indicates that no more data will be sent on the
    432  * socket; it would normally be applied to a socket when the user
    433  * informs the system that no more data is to be sent, by the protocol
    434  * code (in case PRU_SHUTDOWN).
    435  */
    436 void
    437 socantsendmore(struct socket *so)
    438 {
    439 	KASSERT(solocked(so));
    440 
    441 	so->so_state |= SS_CANTSENDMORE;
    442 	sowwakeup(so);
    443 }
    444 
    445 /*
    446  * socantrcvmore(): indicates that no more data will be received and
    447  * will normally be applied to the socket by a protocol when it detects
    448  * that the peer will send no more data.  Data queued for reading in
    449  * the socket may yet be read.
    450  */
    451 void
    452 socantrcvmore(struct socket *so)
    453 {
    454 	KASSERT(solocked(so));
    455 
    456 	so->so_state |= SS_CANTRCVMORE;
    457 	sorwakeup(so);
    458 }
    459 
    460 /*
    461  * Wait for data to arrive at/drain from a socket buffer.
    462  */
    463 int
    464 sbwait(struct sockbuf *sb)
    465 {
    466 	struct socket *so;
    467 	kmutex_t *lock;
    468 	int error;
    469 
    470 	so = sb->sb_so;
    471 
    472 	KASSERT(solocked(so));
    473 
    474 	sb->sb_flags |= SB_NOTIFY;
    475 	lock = so->so_lock;
    476 	if ((sb->sb_flags & SB_NOINTR) != 0)
    477 		error = cv_timedwait(&sb->sb_cv, lock, sb->sb_timeo);
    478 	else
    479 		error = cv_timedwait_sig(&sb->sb_cv, lock, sb->sb_timeo);
    480 	if (__predict_false(lock != so->so_lock))
    481 		solockretry(so, lock);
    482 	return error;
    483 }
    484 
    485 /*
    486  * Wakeup processes waiting on a socket buffer.
    487  * Do asynchronous notification via SIGIO
    488  * if the socket buffer has the SB_ASYNC flag set.
    489  */
    490 void
    491 sowakeup(struct socket *so, struct sockbuf *sb, int code)
    492 {
    493 	int band;
    494 
    495 	KASSERT(solocked(so));
    496 	KASSERT(sb->sb_so == so);
    497 
    498 	if (code == POLL_IN)
    499 		band = POLLIN|POLLRDNORM;
    500 	else
    501 		band = POLLOUT|POLLWRNORM;
    502 	sb->sb_flags &= ~SB_NOTIFY;
    503 	selnotify(&sb->sb_sel, band, NOTE_SUBMIT);
    504 	cv_broadcast(&sb->sb_cv);
    505 	if (sb->sb_flags & SB_ASYNC)
    506 		fownsignal(so->so_pgid, SIGIO, code, band, so);
    507 	if (sb->sb_flags & SB_UPCALL)
    508 		(*so->so_upcall)(so, so->so_upcallarg, band, M_DONTWAIT);
    509 }
    510 
    511 /*
    512  * Reset a socket's lock pointer.  Wake all threads waiting on the
    513  * socket's condition variables so that they can restart their waits
    514  * using the new lock.  The existing lock must be held.
    515  */
    516 void
    517 solockreset(struct socket *so, kmutex_t *lock)
    518 {
    519 
    520 	KASSERT(solocked(so));
    521 
    522 	so->so_lock = lock;
    523 	cv_broadcast(&so->so_snd.sb_cv);
    524 	cv_broadcast(&so->so_rcv.sb_cv);
    525 	cv_broadcast(&so->so_cv);
    526 }
    527 
    528 /*
    529  * Socket buffer (struct sockbuf) utility routines.
    530  *
    531  * Each socket contains two socket buffers: one for sending data and
    532  * one for receiving data.  Each buffer contains a queue of mbufs,
    533  * information about the number of mbufs and amount of data in the
    534  * queue, and other fields allowing poll() statements and notification
    535  * on data availability to be implemented.
    536  *
    537  * Data stored in a socket buffer is maintained as a list of records.
    538  * Each record is a list of mbufs chained together with the m_next
    539  * field.  Records are chained together with the m_nextpkt field. The upper
    540  * level routine soreceive() expects the following conventions to be
    541  * observed when placing information in the receive buffer:
    542  *
    543  * 1. If the protocol requires each message be preceded by the sender's
    544  *    name, then a record containing that name must be present before
    545  *    any associated data (mbuf's must be of type MT_SONAME).
    546  * 2. If the protocol supports the exchange of ``access rights'' (really
    547  *    just additional data associated with the message), and there are
    548  *    ``rights'' to be received, then a record containing this data
    549  *    should be present (mbuf's must be of type MT_CONTROL).
    550  * 3. If a name or rights record exists, then it must be followed by
    551  *    a data record, perhaps of zero length.
    552  *
    553  * Before using a new socket structure it is first necessary to reserve
    554  * buffer space to the socket, by calling sbreserve().  This should commit
    555  * some of the available buffer space in the system buffer pool for the
    556  * socket (currently, it does nothing but enforce limits).  The space
    557  * should be released by calling sbrelease() when the socket is destroyed.
    558  */
    559 
    560 int
    561 sb_max_set(u_long new_sbmax)
    562 {
    563 	int s;
    564 
    565 	if (new_sbmax < (16 * 1024))
    566 		return (EINVAL);
    567 
    568 	s = splsoftnet();
    569 	sb_max = new_sbmax;
    570 	sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
    571 	splx(s);
    572 
    573 	return (0);
    574 }
    575 
    576 int
    577 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
    578 {
    579 	KASSERT(so->so_pcb == NULL || solocked(so));
    580 
    581 	/*
    582 	 * there's at least one application (a configure script of screen)
    583 	 * which expects a fifo is writable even if it has "some" bytes
    584 	 * in its buffer.
    585 	 * so we want to make sure (hiwat - lowat) >= (some bytes).
    586 	 *
    587 	 * PIPE_BUF here is an arbitrary value chosen as (some bytes) above.
    588 	 * we expect it's large enough for such applications.
    589 	 */
    590 	u_long  lowat = MAX(sock_loan_thresh, MCLBYTES);
    591 	u_long  hiwat = lowat + PIPE_BUF;
    592 
    593 	if (sndcc < hiwat)
    594 		sndcc = hiwat;
    595 	if (sbreserve(&so->so_snd, sndcc, so) == 0)
    596 		goto bad;
    597 	if (sbreserve(&so->so_rcv, rcvcc, so) == 0)
    598 		goto bad2;
    599 	if (so->so_rcv.sb_lowat == 0)
    600 		so->so_rcv.sb_lowat = 1;
    601 	if (so->so_snd.sb_lowat == 0)
    602 		so->so_snd.sb_lowat = lowat;
    603 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
    604 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
    605 	return (0);
    606  bad2:
    607 	sbrelease(&so->so_snd, so);
    608  bad:
    609 	return (ENOBUFS);
    610 }
    611 
    612 /*
    613  * Allot mbufs to a sockbuf.
    614  * Attempt to scale mbmax so that mbcnt doesn't become limiting
    615  * if buffering efficiency is near the normal case.
    616  */
    617 int
    618 sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
    619 {
    620 	struct lwp *l = curlwp; /* XXX */
    621 	rlim_t maxcc;
    622 	struct uidinfo *uidinfo;
    623 
    624 	KASSERT(so->so_pcb == NULL || solocked(so));
    625 	KASSERT(sb->sb_so == so);
    626 	KASSERT(sb_max_adj != 0);
    627 
    628 	if (cc == 0 || cc > sb_max_adj)
    629 		return (0);
    630 
    631 	maxcc = l->l_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur;
    632 
    633 	uidinfo = so->so_uidinfo;
    634 	if (!chgsbsize(uidinfo, &sb->sb_hiwat, cc, maxcc))
    635 		return 0;
    636 	sb->sb_mbmax = min(cc * 2, sb_max);
    637 	if (sb->sb_lowat > sb->sb_hiwat)
    638 		sb->sb_lowat = sb->sb_hiwat;
    639 	return (1);
    640 }
    641 
    642 /*
    643  * Free mbufs held by a socket, and reserved mbuf space.  We do not assert
    644  * that the socket is held locked here: see sorflush().
    645  */
    646 void
    647 sbrelease(struct sockbuf *sb, struct socket *so)
    648 {
    649 
    650 	KASSERT(sb->sb_so == so);
    651 
    652 	sbflush(sb);
    653 	(void)chgsbsize(so->so_uidinfo, &sb->sb_hiwat, 0, RLIM_INFINITY);
    654 	sb->sb_mbmax = 0;
    655 }
    656 
    657 /*
    658  * Routines to add and remove
    659  * data from an mbuf queue.
    660  *
    661  * The routines sbappend() or sbappendrecord() are normally called to
    662  * append new mbufs to a socket buffer, after checking that adequate
    663  * space is available, comparing the function sbspace() with the amount
    664  * of data to be added.  sbappendrecord() differs from sbappend() in
    665  * that data supplied is treated as the beginning of a new record.
    666  * To place a sender's address, optional access rights, and data in a
    667  * socket receive buffer, sbappendaddr() should be used.  To place
    668  * access rights and data in a socket receive buffer, sbappendrights()
    669  * should be used.  In either case, the new data begins a new record.
    670  * Note that unlike sbappend() and sbappendrecord(), these routines check
    671  * for the caller that there will be enough space to store the data.
    672  * Each fails if there is not enough space, or if it cannot find mbufs
    673  * to store additional information in.
    674  *
    675  * Reliable protocols may use the socket send buffer to hold data
    676  * awaiting acknowledgement.  Data is normally copied from a socket
    677  * send buffer in a protocol with m_copy for output to a peer,
    678  * and then removing the data from the socket buffer with sbdrop()
    679  * or sbdroprecord() when the data is acknowledged by the peer.
    680  */
    681 
    682 #ifdef SOCKBUF_DEBUG
    683 void
    684 sblastrecordchk(struct sockbuf *sb, const char *where)
    685 {
    686 	struct mbuf *m = sb->sb_mb;
    687 
    688 	KASSERT(solocked(sb->sb_so));
    689 
    690 	while (m && m->m_nextpkt)
    691 		m = m->m_nextpkt;
    692 
    693 	if (m != sb->sb_lastrecord) {
    694 		printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
    695 		    sb->sb_mb, sb->sb_lastrecord, m);
    696 		printf("packet chain:\n");
    697 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
    698 			printf("\t%p\n", m);
    699 		panic("sblastrecordchk from %s", where);
    700 	}
    701 }
    702 
    703 void
    704 sblastmbufchk(struct sockbuf *sb, const char *where)
    705 {
    706 	struct mbuf *m = sb->sb_mb;
    707 	struct mbuf *n;
    708 
    709 	KASSERT(solocked(sb->sb_so));
    710 
    711 	while (m && m->m_nextpkt)
    712 		m = m->m_nextpkt;
    713 
    714 	while (m && m->m_next)
    715 		m = m->m_next;
    716 
    717 	if (m != sb->sb_mbtail) {
    718 		printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
    719 		    sb->sb_mb, sb->sb_mbtail, m);
    720 		printf("packet tree:\n");
    721 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
    722 			printf("\t");
    723 			for (n = m; n != NULL; n = n->m_next)
    724 				printf("%p ", n);
    725 			printf("\n");
    726 		}
    727 		panic("sblastmbufchk from %s", where);
    728 	}
    729 }
    730 #endif /* SOCKBUF_DEBUG */
    731 
    732 /*
    733  * Link a chain of records onto a socket buffer
    734  */
    735 #define	SBLINKRECORDCHAIN(sb, m0, mlast)				\
    736 do {									\
    737 	if ((sb)->sb_lastrecord != NULL)				\
    738 		(sb)->sb_lastrecord->m_nextpkt = (m0);			\
    739 	else								\
    740 		(sb)->sb_mb = (m0);					\
    741 	(sb)->sb_lastrecord = (mlast);					\
    742 } while (/*CONSTCOND*/0)
    743 
    744 
    745 #define	SBLINKRECORD(sb, m0)						\
    746     SBLINKRECORDCHAIN(sb, m0, m0)
    747 
    748 /*
    749  * Append mbuf chain m to the last record in the
    750  * socket buffer sb.  The additional space associated
    751  * the mbuf chain is recorded in sb.  Empty mbufs are
    752  * discarded and mbufs are compacted where possible.
    753  */
    754 void
    755 sbappend(struct sockbuf *sb, struct mbuf *m)
    756 {
    757 	struct mbuf	*n;
    758 
    759 	KASSERT(solocked(sb->sb_so));
    760 
    761 	if (m == NULL)
    762 		return;
    763 
    764 #ifdef MBUFTRACE
    765 	m_claimm(m, sb->sb_mowner);
    766 #endif
    767 
    768 	SBLASTRECORDCHK(sb, "sbappend 1");
    769 
    770 	if ((n = sb->sb_lastrecord) != NULL) {
    771 		/*
    772 		 * XXX Would like to simply use sb_mbtail here, but
    773 		 * XXX I need to verify that I won't miss an EOR that
    774 		 * XXX way.
    775 		 */
    776 		do {
    777 			if (n->m_flags & M_EOR) {
    778 				sbappendrecord(sb, m); /* XXXXXX!!!! */
    779 				return;
    780 			}
    781 		} while (n->m_next && (n = n->m_next));
    782 	} else {
    783 		/*
    784 		 * If this is the first record in the socket buffer, it's
    785 		 * also the last record.
    786 		 */
    787 		sb->sb_lastrecord = m;
    788 	}
    789 	sbcompress(sb, m, n);
    790 	SBLASTRECORDCHK(sb, "sbappend 2");
    791 }
    792 
    793 /*
    794  * This version of sbappend() should only be used when the caller
    795  * absolutely knows that there will never be more than one record
    796  * in the socket buffer, that is, a stream protocol (such as TCP).
    797  */
    798 void
    799 sbappendstream(struct sockbuf *sb, struct mbuf *m)
    800 {
    801 
    802 	KASSERT(solocked(sb->sb_so));
    803 	KDASSERT(m->m_nextpkt == NULL);
    804 	KASSERT(sb->sb_mb == sb->sb_lastrecord);
    805 
    806 	SBLASTMBUFCHK(sb, __func__);
    807 
    808 #ifdef MBUFTRACE
    809 	m_claimm(m, sb->sb_mowner);
    810 #endif
    811 
    812 	sbcompress(sb, m, sb->sb_mbtail);
    813 
    814 	sb->sb_lastrecord = sb->sb_mb;
    815 	SBLASTRECORDCHK(sb, __func__);
    816 }
    817 
    818 #ifdef SOCKBUF_DEBUG
    819 void
    820 sbcheck(struct sockbuf *sb)
    821 {
    822 	struct mbuf	*m, *m2;
    823 	u_long		len, mbcnt;
    824 
    825 	KASSERT(solocked(sb->sb_so));
    826 
    827 	len = 0;
    828 	mbcnt = 0;
    829 	for (m = sb->sb_mb; m; m = m->m_nextpkt) {
    830 		for (m2 = m; m2 != NULL; m2 = m2->m_next) {
    831 			len += m2->m_len;
    832 			mbcnt += MSIZE;
    833 			if (m2->m_flags & M_EXT)
    834 				mbcnt += m2->m_ext.ext_size;
    835 			if (m2->m_nextpkt != NULL)
    836 				panic("sbcheck nextpkt");
    837 		}
    838 	}
    839 	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
    840 		printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
    841 		    mbcnt, sb->sb_mbcnt);
    842 		panic("sbcheck");
    843 	}
    844 }
    845 #endif
    846 
    847 /*
    848  * As above, except the mbuf chain
    849  * begins a new record.
    850  */
    851 void
    852 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
    853 {
    854 	struct mbuf	*m;
    855 
    856 	KASSERT(solocked(sb->sb_so));
    857 
    858 	if (m0 == NULL)
    859 		return;
    860 
    861 #ifdef MBUFTRACE
    862 	m_claimm(m0, sb->sb_mowner);
    863 #endif
    864 	/*
    865 	 * Put the first mbuf on the queue.
    866 	 * Note this permits zero length records.
    867 	 */
    868 	sballoc(sb, m0);
    869 	SBLASTRECORDCHK(sb, "sbappendrecord 1");
    870 	SBLINKRECORD(sb, m0);
    871 	m = m0->m_next;
    872 	m0->m_next = 0;
    873 	if (m && (m0->m_flags & M_EOR)) {
    874 		m0->m_flags &= ~M_EOR;
    875 		m->m_flags |= M_EOR;
    876 	}
    877 	sbcompress(sb, m, m0);
    878 	SBLASTRECORDCHK(sb, "sbappendrecord 2");
    879 }
    880 
    881 /*
    882  * As above except that OOB data
    883  * is inserted at the beginning of the sockbuf,
    884  * but after any other OOB data.
    885  */
    886 void
    887 sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
    888 {
    889 	struct mbuf	*m, **mp;
    890 
    891 	KASSERT(solocked(sb->sb_so));
    892 
    893 	if (m0 == NULL)
    894 		return;
    895 
    896 	SBLASTRECORDCHK(sb, "sbinsertoob 1");
    897 
    898 	for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
    899 	    again:
    900 		switch (m->m_type) {
    901 
    902 		case MT_OOBDATA:
    903 			continue;		/* WANT next train */
    904 
    905 		case MT_CONTROL:
    906 			if ((m = m->m_next) != NULL)
    907 				goto again;	/* inspect THIS train further */
    908 		}
    909 		break;
    910 	}
    911 	/*
    912 	 * Put the first mbuf on the queue.
    913 	 * Note this permits zero length records.
    914 	 */
    915 	sballoc(sb, m0);
    916 	m0->m_nextpkt = *mp;
    917 	if (*mp == NULL) {
    918 		/* m0 is actually the new tail */
    919 		sb->sb_lastrecord = m0;
    920 	}
    921 	*mp = m0;
    922 	m = m0->m_next;
    923 	m0->m_next = 0;
    924 	if (m && (m0->m_flags & M_EOR)) {
    925 		m0->m_flags &= ~M_EOR;
    926 		m->m_flags |= M_EOR;
    927 	}
    928 	sbcompress(sb, m, m0);
    929 	SBLASTRECORDCHK(sb, "sbinsertoob 2");
    930 }
    931 
    932 /*
    933  * Append address and data, and optionally, control (ancillary) data
    934  * to the receive queue of a socket.  If present,
    935  * m0 must include a packet header with total length.
    936  * Returns 0 if no space in sockbuf or insufficient mbufs.
    937  */
    938 int
    939 sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0,
    940 	struct mbuf *control)
    941 {
    942 	struct mbuf	*m, *n, *nlast;
    943 	int		space, len;
    944 
    945 	KASSERT(solocked(sb->sb_so));
    946 
    947 	space = asa->sa_len;
    948 
    949 	if (m0 != NULL) {
    950 		if ((m0->m_flags & M_PKTHDR) == 0)
    951 			panic("sbappendaddr");
    952 		space += m0->m_pkthdr.len;
    953 #ifdef MBUFTRACE
    954 		m_claimm(m0, sb->sb_mowner);
    955 #endif
    956 	}
    957 	for (n = control; n; n = n->m_next) {
    958 		space += n->m_len;
    959 		MCLAIM(n, sb->sb_mowner);
    960 		if (n->m_next == NULL)	/* keep pointer to last control buf */
    961 			break;
    962 	}
    963 	if (space > sbspace(sb))
    964 		return (0);
    965 	m = m_get(M_DONTWAIT, MT_SONAME);
    966 	if (m == NULL)
    967 		return (0);
    968 	MCLAIM(m, sb->sb_mowner);
    969 	/*
    970 	 * XXX avoid 'comparison always true' warning which isn't easily
    971 	 * avoided.
    972 	 */
    973 	len = asa->sa_len;
    974 	if (len > MLEN) {
    975 		MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
    976 		if ((m->m_flags & M_EXT) == 0) {
    977 			m_free(m);
    978 			return (0);
    979 		}
    980 	}
    981 	m->m_len = asa->sa_len;
    982 	memcpy(mtod(m, void *), asa, asa->sa_len);
    983 	if (n)
    984 		n->m_next = m0;		/* concatenate data to control */
    985 	else
    986 		control = m0;
    987 	m->m_next = control;
    988 
    989 	SBLASTRECORDCHK(sb, "sbappendaddr 1");
    990 
    991 	for (n = m; n->m_next != NULL; n = n->m_next)
    992 		sballoc(sb, n);
    993 	sballoc(sb, n);
    994 	nlast = n;
    995 	SBLINKRECORD(sb, m);
    996 
    997 	sb->sb_mbtail = nlast;
    998 	SBLASTMBUFCHK(sb, "sbappendaddr");
    999 	SBLASTRECORDCHK(sb, "sbappendaddr 2");
   1000 
   1001 	return (1);
   1002 }
   1003 
   1004 /*
   1005  * Helper for sbappendchainaddr: prepend a struct sockaddr* to
   1006  * an mbuf chain.
   1007  */
   1008 static inline struct mbuf *
   1009 m_prepend_sockaddr(struct sockbuf *sb, struct mbuf *m0,
   1010 		   const struct sockaddr *asa)
   1011 {
   1012 	struct mbuf *m;
   1013 	const int salen = asa->sa_len;
   1014 
   1015 	KASSERT(solocked(sb->sb_so));
   1016 
   1017 	/* only the first in each chain need be a pkthdr */
   1018 	m = m_gethdr(M_DONTWAIT, MT_SONAME);
   1019 	if (m == NULL)
   1020 		return NULL;
   1021 	MCLAIM(m, sb->sb_mowner);
   1022 #ifdef notyet
   1023 	if (salen > MHLEN) {
   1024 		MEXTMALLOC(m, salen, M_NOWAIT);
   1025 		if ((m->m_flags & M_EXT) == 0) {
   1026 			m_free(m);
   1027 			return NULL;
   1028 		}
   1029 	}
   1030 #else
   1031 	KASSERT(salen <= MHLEN);
   1032 #endif
   1033 	m->m_len = salen;
   1034 	memcpy(mtod(m, void *), asa, salen);
   1035 	m->m_next = m0;
   1036 	m->m_pkthdr.len = salen + m0->m_pkthdr.len;
   1037 
   1038 	return m;
   1039 }
   1040 
   1041 int
   1042 sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa,
   1043 		  struct mbuf *m0, int sbprio)
   1044 {
   1045 	struct mbuf *m, *n, *n0, *nlast;
   1046 	int error;
   1047 
   1048 	KASSERT(solocked(sb->sb_so));
   1049 
   1050 	/*
   1051 	 * XXX sbprio reserved for encoding priority of this* request:
   1052 	 *  SB_PRIO_NONE --> honour normal sb limits
   1053 	 *  SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space,
   1054 	 *	take whole chain. Intended for large requests
   1055 	 *      that should be delivered atomically (all, or none).
   1056 	 * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow
   1057 	 *       over normal socket limits, for messages indicating
   1058 	 *       buffer overflow in earlier normal/lower-priority messages
   1059 	 * SB_PRIO_BESTEFFORT -->  ignore limits entirely.
   1060 	 *       Intended for  kernel-generated messages only.
   1061 	 *        Up to generator to avoid total mbuf resource exhaustion.
   1062 	 */
   1063 	(void)sbprio;
   1064 
   1065 	if (m0 && (m0->m_flags & M_PKTHDR) == 0)
   1066 		panic("sbappendaddrchain");
   1067 
   1068 #ifdef notyet
   1069 	space = sbspace(sb);
   1070 
   1071 	/*
   1072 	 * Enforce SB_PRIO_* limits as described above.
   1073 	 */
   1074 #endif
   1075 
   1076 	n0 = NULL;
   1077 	nlast = NULL;
   1078 	for (m = m0; m; m = m->m_nextpkt) {
   1079 		struct mbuf *np;
   1080 
   1081 #ifdef MBUFTRACE
   1082 		m_claimm(m, sb->sb_mowner);
   1083 #endif
   1084 
   1085 		/* Prepend sockaddr to this record (m) of input chain m0 */
   1086 	  	n = m_prepend_sockaddr(sb, m, asa);
   1087 		if (n == NULL) {
   1088 			error = ENOBUFS;
   1089 			goto bad;
   1090 		}
   1091 
   1092 		/* Append record (asa+m) to end of new chain n0 */
   1093 		if (n0 == NULL) {
   1094 			n0 = n;
   1095 		} else {
   1096 			nlast->m_nextpkt = n;
   1097 		}
   1098 		/* Keep track of last record on new chain */
   1099 		nlast = n;
   1100 
   1101 		for (np = n; np; np = np->m_next)
   1102 			sballoc(sb, np);
   1103 	}
   1104 
   1105 	SBLASTRECORDCHK(sb, "sbappendaddrchain 1");
   1106 
   1107 	/* Drop the entire chain of (asa+m) records onto the socket */
   1108 	SBLINKRECORDCHAIN(sb, n0, nlast);
   1109 
   1110 	SBLASTRECORDCHK(sb, "sbappendaddrchain 2");
   1111 
   1112 	for (m = nlast; m->m_next; m = m->m_next)
   1113 		;
   1114 	sb->sb_mbtail = m;
   1115 	SBLASTMBUFCHK(sb, "sbappendaddrchain");
   1116 
   1117 	return (1);
   1118 
   1119 bad:
   1120 	/*
   1121 	 * On error, free the prepended addreseses. For consistency
   1122 	 * with sbappendaddr(), leave it to our caller to free
   1123 	 * the input record chain passed to us as m0.
   1124 	 */
   1125 	while ((n = n0) != NULL) {
   1126 	  	struct mbuf *np;
   1127 
   1128 		/* Undo the sballoc() of this record */
   1129 		for (np = n; np; np = np->m_next)
   1130 			sbfree(sb, np);
   1131 
   1132 		n0 = n->m_nextpkt;	/* iterate at next prepended address */
   1133 		MFREE(n, np);		/* free prepended address (not data) */
   1134 	}
   1135 	return error;
   1136 }
   1137 
   1138 
   1139 int
   1140 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
   1141 {
   1142 	struct mbuf	*m, *mlast, *n;
   1143 	int		space;
   1144 
   1145 	KASSERT(solocked(sb->sb_so));
   1146 
   1147 	space = 0;
   1148 	if (control == NULL)
   1149 		panic("sbappendcontrol");
   1150 	for (m = control; ; m = m->m_next) {
   1151 		space += m->m_len;
   1152 		MCLAIM(m, sb->sb_mowner);
   1153 		if (m->m_next == NULL)
   1154 			break;
   1155 	}
   1156 	n = m;			/* save pointer to last control buffer */
   1157 	for (m = m0; m; m = m->m_next) {
   1158 		MCLAIM(m, sb->sb_mowner);
   1159 		space += m->m_len;
   1160 	}
   1161 	if (space > sbspace(sb))
   1162 		return (0);
   1163 	n->m_next = m0;			/* concatenate data to control */
   1164 
   1165 	SBLASTRECORDCHK(sb, "sbappendcontrol 1");
   1166 
   1167 	for (m = control; m->m_next != NULL; m = m->m_next)
   1168 		sballoc(sb, m);
   1169 	sballoc(sb, m);
   1170 	mlast = m;
   1171 	SBLINKRECORD(sb, control);
   1172 
   1173 	sb->sb_mbtail = mlast;
   1174 	SBLASTMBUFCHK(sb, "sbappendcontrol");
   1175 	SBLASTRECORDCHK(sb, "sbappendcontrol 2");
   1176 
   1177 	return (1);
   1178 }
   1179 
   1180 /*
   1181  * Compress mbuf chain m into the socket
   1182  * buffer sb following mbuf n.  If n
   1183  * is null, the buffer is presumed empty.
   1184  */
   1185 void
   1186 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
   1187 {
   1188 	int		eor;
   1189 	struct mbuf	*o;
   1190 
   1191 	KASSERT(solocked(sb->sb_so));
   1192 
   1193 	eor = 0;
   1194 	while (m) {
   1195 		eor |= m->m_flags & M_EOR;
   1196 		if (m->m_len == 0 &&
   1197 		    (eor == 0 ||
   1198 		     (((o = m->m_next) || (o = n)) &&
   1199 		      o->m_type == m->m_type))) {
   1200 			if (sb->sb_lastrecord == m)
   1201 				sb->sb_lastrecord = m->m_next;
   1202 			m = m_free(m);
   1203 			continue;
   1204 		}
   1205 		if (n && (n->m_flags & M_EOR) == 0 &&
   1206 		    /* M_TRAILINGSPACE() checks buffer writeability */
   1207 		    m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
   1208 		    m->m_len <= M_TRAILINGSPACE(n) &&
   1209 		    n->m_type == m->m_type) {
   1210 			memcpy(mtod(n, char *) + n->m_len, mtod(m, void *),
   1211 			    (unsigned)m->m_len);
   1212 			n->m_len += m->m_len;
   1213 			sb->sb_cc += m->m_len;
   1214 			m = m_free(m);
   1215 			continue;
   1216 		}
   1217 		if (n)
   1218 			n->m_next = m;
   1219 		else
   1220 			sb->sb_mb = m;
   1221 		sb->sb_mbtail = m;
   1222 		sballoc(sb, m);
   1223 		n = m;
   1224 		m->m_flags &= ~M_EOR;
   1225 		m = m->m_next;
   1226 		n->m_next = 0;
   1227 	}
   1228 	if (eor) {
   1229 		if (n)
   1230 			n->m_flags |= eor;
   1231 		else
   1232 			printf("semi-panic: sbcompress\n");
   1233 	}
   1234 	SBLASTMBUFCHK(sb, __func__);
   1235 }
   1236 
   1237 /*
   1238  * Free all mbufs in a sockbuf.
   1239  * Check that all resources are reclaimed.
   1240  */
   1241 void
   1242 sbflush(struct sockbuf *sb)
   1243 {
   1244 
   1245 	KASSERT(solocked(sb->sb_so));
   1246 	KASSERT((sb->sb_flags & SB_LOCK) == 0);
   1247 
   1248 	while (sb->sb_mbcnt)
   1249 		sbdrop(sb, (int)sb->sb_cc);
   1250 
   1251 	KASSERT(sb->sb_cc == 0);
   1252 	KASSERT(sb->sb_mb == NULL);
   1253 	KASSERT(sb->sb_mbtail == NULL);
   1254 	KASSERT(sb->sb_lastrecord == NULL);
   1255 }
   1256 
   1257 /*
   1258  * Drop data from (the front of) a sockbuf.
   1259  */
   1260 void
   1261 sbdrop(struct sockbuf *sb, int len)
   1262 {
   1263 	struct mbuf	*m, *mn, *next;
   1264 
   1265 	KASSERT(solocked(sb->sb_so));
   1266 
   1267 	next = (m = sb->sb_mb) ? m->m_nextpkt : NULL;
   1268 	while (len > 0) {
   1269 		if (m == NULL) {
   1270 			if (next == NULL)
   1271 				panic("sbdrop(%p,%d): cc=%lu",
   1272 				    sb, len, sb->sb_cc);
   1273 			m = next;
   1274 			next = m->m_nextpkt;
   1275 			continue;
   1276 		}
   1277 		if (m->m_len > len) {
   1278 			m->m_len -= len;
   1279 			m->m_data += len;
   1280 			sb->sb_cc -= len;
   1281 			break;
   1282 		}
   1283 		len -= m->m_len;
   1284 		sbfree(sb, m);
   1285 		MFREE(m, mn);
   1286 		m = mn;
   1287 	}
   1288 	while (m && m->m_len == 0) {
   1289 		sbfree(sb, m);
   1290 		MFREE(m, mn);
   1291 		m = mn;
   1292 	}
   1293 	if (m) {
   1294 		sb->sb_mb = m;
   1295 		m->m_nextpkt = next;
   1296 	} else
   1297 		sb->sb_mb = next;
   1298 	/*
   1299 	 * First part is an inline SB_EMPTY_FIXUP().  Second part
   1300 	 * makes sure sb_lastrecord is up-to-date if we dropped
   1301 	 * part of the last record.
   1302 	 */
   1303 	m = sb->sb_mb;
   1304 	if (m == NULL) {
   1305 		sb->sb_mbtail = NULL;
   1306 		sb->sb_lastrecord = NULL;
   1307 	} else if (m->m_nextpkt == NULL)
   1308 		sb->sb_lastrecord = m;
   1309 }
   1310 
   1311 /*
   1312  * Drop a record off the front of a sockbuf
   1313  * and move the next record to the front.
   1314  */
   1315 void
   1316 sbdroprecord(struct sockbuf *sb)
   1317 {
   1318 	struct mbuf	*m, *mn;
   1319 
   1320 	KASSERT(solocked(sb->sb_so));
   1321 
   1322 	m = sb->sb_mb;
   1323 	if (m) {
   1324 		sb->sb_mb = m->m_nextpkt;
   1325 		do {
   1326 			sbfree(sb, m);
   1327 			MFREE(m, mn);
   1328 		} while ((m = mn) != NULL);
   1329 	}
   1330 	SB_EMPTY_FIXUP(sb);
   1331 }
   1332 
   1333 /*
   1334  * Create a "control" mbuf containing the specified data
   1335  * with the specified type for presentation on a socket buffer.
   1336  */
   1337 struct mbuf *
   1338 sbcreatecontrol1(void **p, int size, int type, int level, int flags)
   1339 {
   1340 	struct cmsghdr	*cp;
   1341 	struct mbuf	*m;
   1342 	int space = CMSG_SPACE(size);
   1343 
   1344 	if ((flags & M_DONTWAIT) && space > MCLBYTES) {
   1345 		printf("%s: message too large %d\n", __func__, space);
   1346 		return NULL;
   1347 	}
   1348 
   1349 	if ((m = m_get(flags, MT_CONTROL)) == NULL)
   1350 		return NULL;
   1351 	if (space > MLEN) {
   1352 		if (space > MCLBYTES)
   1353 			MEXTMALLOC(m, space, M_WAITOK);
   1354 		else
   1355 			MCLGET(m, flags);
   1356 		if ((m->m_flags & M_EXT) == 0) {
   1357 			m_free(m);
   1358 			return NULL;
   1359 		}
   1360 	}
   1361 	cp = mtod(m, struct cmsghdr *);
   1362 	*p = CMSG_DATA(cp);
   1363 	m->m_len = space;
   1364 	cp->cmsg_len = CMSG_LEN(size);
   1365 	cp->cmsg_level = level;
   1366 	cp->cmsg_type = type;
   1367 	return m;
   1368 }
   1369 
   1370 struct mbuf *
   1371 sbcreatecontrol(void *p, int size, int type, int level)
   1372 {
   1373 	struct mbuf *m;
   1374 	void *v;
   1375 
   1376 	m = sbcreatecontrol1(&v, size, type, level, M_DONTWAIT);
   1377 	if (m == NULL)
   1378 		return NULL;
   1379 	memcpy(v, p, size);
   1380 	return m;
   1381 }
   1382 
   1383 void
   1384 solockretry(struct socket *so, kmutex_t *lock)
   1385 {
   1386 
   1387 	while (lock != so->so_lock) {
   1388 		mutex_exit(lock);
   1389 		lock = so->so_lock;
   1390 		mutex_enter(lock);
   1391 	}
   1392 }
   1393 
   1394 bool
   1395 solocked(struct socket *so)
   1396 {
   1397 
   1398 	return mutex_owned(so->so_lock);
   1399 }
   1400 
   1401 bool
   1402 solocked2(struct socket *so1, struct socket *so2)
   1403 {
   1404 	kmutex_t *lock;
   1405 
   1406 	lock = so1->so_lock;
   1407 	if (lock != so2->so_lock)
   1408 		return false;
   1409 	return mutex_owned(lock);
   1410 }
   1411 
   1412 /*
   1413  * sosetlock: assign a default lock to a new socket.
   1414  */
   1415 void
   1416 sosetlock(struct socket *so)
   1417 {
   1418 	if (so->so_lock == NULL) {
   1419 		kmutex_t *lock = softnet_lock;
   1420 
   1421 		so->so_lock = lock;
   1422 		mutex_obj_hold(lock);
   1423 	}
   1424 }
   1425 
   1426 /*
   1427  * Set lock on sockbuf sb; sleep if lock is already held.
   1428  * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
   1429  * Returns error without lock if sleep is interrupted.
   1430  */
   1431 int
   1432 sblock(struct sockbuf *sb, int wf)
   1433 {
   1434 	struct socket *so;
   1435 	kmutex_t *lock;
   1436 	int error;
   1437 
   1438 	KASSERT(solocked(sb->sb_so));
   1439 
   1440 	for (;;) {
   1441 		if (__predict_true((sb->sb_flags & SB_LOCK) == 0)) {
   1442 			sb->sb_flags |= SB_LOCK;
   1443 			return 0;
   1444 		}
   1445 		if (wf != M_WAITOK)
   1446 			return EWOULDBLOCK;
   1447 		so = sb->sb_so;
   1448 		lock = so->so_lock;
   1449 		if ((sb->sb_flags & SB_NOINTR) != 0) {
   1450 			cv_wait(&so->so_cv, lock);
   1451 			error = 0;
   1452 		} else
   1453 			error = cv_wait_sig(&so->so_cv, lock);
   1454 		if (__predict_false(lock != so->so_lock))
   1455 			solockretry(so, lock);
   1456 		if (error != 0)
   1457 			return error;
   1458 	}
   1459 }
   1460 
   1461 void
   1462 sbunlock(struct sockbuf *sb)
   1463 {
   1464 	struct socket *so;
   1465 
   1466 	so = sb->sb_so;
   1467 
   1468 	KASSERT(solocked(so));
   1469 	KASSERT((sb->sb_flags & SB_LOCK) != 0);
   1470 
   1471 	sb->sb_flags &= ~SB_LOCK;
   1472 	cv_broadcast(&so->so_cv);
   1473 }
   1474 
   1475 int
   1476 sowait(struct socket *so, bool catch, int timo)
   1477 {
   1478 	kmutex_t *lock;
   1479 	int error;
   1480 
   1481 	KASSERT(solocked(so));
   1482 	KASSERT(catch || timo != 0);
   1483 
   1484 	lock = so->so_lock;
   1485 	if (catch)
   1486 		error = cv_timedwait_sig(&so->so_cv, lock, timo);
   1487 	else
   1488 		error = cv_timedwait(&so->so_cv, lock, timo);
   1489 	if (__predict_false(lock != so->so_lock))
   1490 		solockretry(so, lock);
   1491 	return error;
   1492 }
   1493