uipc_socket2.c revision 1.116 1 /* $NetBSD: uipc_socket2.c,v 1.116 2014/05/17 22:52:36 rmind Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*
30 * Copyright (c) 1982, 1986, 1988, 1990, 1993
31 * The Regents of the University of California. All rights reserved.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 * 3. Neither the name of the University nor the names of its contributors
42 * may be used to endorse or promote products derived from this software
43 * without specific prior written permission.
44 *
45 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 * SUCH DAMAGE.
56 *
57 * @(#)uipc_socket2.c 8.2 (Berkeley) 2/14/95
58 */
59
60 #include <sys/cdefs.h>
61 __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.116 2014/05/17 22:52:36 rmind Exp $");
62
63 #include "opt_mbuftrace.h"
64 #include "opt_sb_max.h"
65
66 #include <sys/param.h>
67 #include <sys/systm.h>
68 #include <sys/proc.h>
69 #include <sys/file.h>
70 #include <sys/buf.h>
71 #include <sys/mbuf.h>
72 #include <sys/protosw.h>
73 #include <sys/domain.h>
74 #include <sys/poll.h>
75 #include <sys/socket.h>
76 #include <sys/socketvar.h>
77 #include <sys/signalvar.h>
78 #include <sys/kauth.h>
79 #include <sys/pool.h>
80 #include <sys/uidinfo.h>
81
82 /*
83 * Primitive routines for operating on sockets and socket buffers.
84 *
85 * Connection life-cycle:
86 *
87 * Normal sequence from the active (originating) side:
88 *
89 * - soisconnecting() is called during processing of connect() call,
90 * - resulting in an eventual call to soisconnected() if/when the
91 * connection is established.
92 *
93 * When the connection is torn down during processing of disconnect():
94 *
95 * - soisdisconnecting() is called and,
96 * - soisdisconnected() is called when the connection to the peer
97 * is totally severed.
98 *
99 * The semantics of these routines are such that connectionless protocols
100 * can call soisconnected() and soisdisconnected() only, bypassing the
101 * in-progress calls when setting up a ``connection'' takes no time.
102 *
103 * From the passive side, a socket is created with two queues of sockets:
104 *
105 * - so_q0 (0) for partial connections (i.e. connections in progress)
106 * - so_q (1) for connections already made and awaiting user acceptance.
107 *
108 * As a protocol is preparing incoming connections, it creates a socket
109 * structure queued on so_q0 by calling sonewconn(). When the connection
110 * is established, soisconnected() is called, and transfers the
111 * socket structure to so_q, making it available to accept().
112 *
113 * If a socket is closed with sockets on either so_q0 or so_q, these
114 * sockets are dropped.
115 *
116 * Locking rules and assumptions:
117 *
118 * o socket::so_lock can change on the fly. The low level routines used
119 * to lock sockets are aware of this. When so_lock is acquired, the
120 * routine locking must check to see if so_lock still points to the
121 * lock that was acquired. If so_lock has changed in the meantime, the
122 * now irrelevant lock that was acquired must be dropped and the lock
123 * operation retried. Although not proven here, this is completely safe
124 * on a multiprocessor system, even with relaxed memory ordering, given
125 * the next two rules:
126 *
127 * o In order to mutate so_lock, the lock pointed to by the current value
128 * of so_lock must be held: i.e., the socket must be held locked by the
129 * changing thread. The thread must issue membar_exit() to prevent
130 * memory accesses being reordered, and can set so_lock to the desired
131 * value. If the lock pointed to by the new value of so_lock is not
132 * held by the changing thread, the socket must then be considered
133 * unlocked.
134 *
135 * o If so_lock is mutated, and the previous lock referred to by so_lock
136 * could still be visible to other threads in the system (e.g. via file
137 * descriptor or protocol-internal reference), then the old lock must
138 * remain valid until the socket and/or protocol control block has been
139 * torn down.
140 *
141 * o If a socket has a non-NULL so_head value (i.e. is in the process of
142 * connecting), then locking the socket must also lock the socket pointed
143 * to by so_head: their lock pointers must match.
144 *
145 * o If a socket has connections in progress (so_q, so_q0 not empty) then
146 * locking the socket must also lock the sockets attached to both queues.
147 * Again, their lock pointers must match.
148 *
149 * o Beyond the initial lock assignment in socreate(), assigning locks to
150 * sockets is the responsibility of the individual protocols / protocol
151 * domains.
152 */
153
154 static pool_cache_t socket_cache;
155 u_long sb_max = SB_MAX;/* maximum socket buffer size */
156 static u_long sb_max_adj; /* adjusted sb_max */
157
158 void
159 soisconnecting(struct socket *so)
160 {
161
162 KASSERT(solocked(so));
163
164 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
165 so->so_state |= SS_ISCONNECTING;
166 }
167
168 void
169 soisconnected(struct socket *so)
170 {
171 struct socket *head;
172
173 head = so->so_head;
174
175 KASSERT(solocked(so));
176 KASSERT(head == NULL || solocked2(so, head));
177
178 so->so_state &= ~(SS_ISCONNECTING | SS_ISDISCONNECTING);
179 so->so_state |= SS_ISCONNECTED;
180 if (head && so->so_onq == &head->so_q0) {
181 if ((so->so_options & SO_ACCEPTFILTER) == 0) {
182 /*
183 * Re-enqueue and wake up any waiters, e.g.
184 * processes blocking on accept().
185 */
186 soqremque(so, 0);
187 soqinsque(head, so, 1);
188 sorwakeup(head);
189 cv_broadcast(&head->so_cv);
190 } else {
191 so->so_upcall =
192 head->so_accf->so_accept_filter->accf_callback;
193 so->so_upcallarg = head->so_accf->so_accept_filter_arg;
194 so->so_rcv.sb_flags |= SB_UPCALL;
195 so->so_options &= ~SO_ACCEPTFILTER;
196 (*so->so_upcall)(so, so->so_upcallarg,
197 POLLIN|POLLRDNORM, M_DONTWAIT);
198 }
199 } else {
200 cv_broadcast(&so->so_cv);
201 sorwakeup(so);
202 sowwakeup(so);
203 }
204 }
205
206 void
207 soisdisconnecting(struct socket *so)
208 {
209
210 KASSERT(solocked(so));
211
212 so->so_state &= ~SS_ISCONNECTING;
213 so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
214 cv_broadcast(&so->so_cv);
215 sowwakeup(so);
216 sorwakeup(so);
217 }
218
219 void
220 soisdisconnected(struct socket *so)
221 {
222
223 KASSERT(solocked(so));
224
225 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
226 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
227 cv_broadcast(&so->so_cv);
228 sowwakeup(so);
229 sorwakeup(so);
230 }
231
232 void
233 soinit2(void)
234 {
235
236 socket_cache = pool_cache_init(sizeof(struct socket), 0, 0, 0,
237 "socket", NULL, IPL_SOFTNET, NULL, NULL, NULL);
238 }
239
240 /*
241 * sonewconn: accept a new connection.
242 *
243 * When an attempt at a new connection is noted on a socket which accepts
244 * connections, sonewconn(9) is called. If the connection is possible
245 * (subject to space constraints, etc) then we allocate a new structure,
246 * properly linked into the data structure of the original socket.
247 *
248 * => If 'soready' is true, then socket will become ready for accept() i.e.
249 * inserted into the so_q queue, SS_ISCONNECTED set and waiters awoken.
250 * => May be called from soft-interrupt context.
251 * => Listening socket should be locked.
252 * => Returns the new socket locked.
253 */
254 struct socket *
255 sonewconn(struct socket *head, bool soready)
256 {
257 struct socket *so;
258 int soqueue, error;
259
260 KASSERT(solocked(head));
261
262 if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2) {
263 /* Listen queue overflow. */
264 return NULL;
265 }
266 if ((head->so_options & SO_ACCEPTFILTER) != 0) {
267 soready = false;
268 }
269 soqueue = soready ? 1 : 0;
270
271 if ((so = soget(false)) == NULL) {
272 return NULL;
273 }
274 so->so_type = head->so_type;
275 so->so_options = head->so_options & ~SO_ACCEPTCONN;
276 so->so_linger = head->so_linger;
277 so->so_state = head->so_state | SS_NOFDREF;
278 so->so_proto = head->so_proto;
279 so->so_timeo = head->so_timeo;
280 so->so_pgid = head->so_pgid;
281 so->so_send = head->so_send;
282 so->so_receive = head->so_receive;
283 so->so_uidinfo = head->so_uidinfo;
284 so->so_cpid = head->so_cpid;
285 #ifdef MBUFTRACE
286 so->so_mowner = head->so_mowner;
287 so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
288 so->so_snd.sb_mowner = head->so_snd.sb_mowner;
289 #endif
290 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat) != 0)
291 goto out;
292 so->so_snd.sb_lowat = head->so_snd.sb_lowat;
293 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
294 so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
295 so->so_snd.sb_timeo = head->so_snd.sb_timeo;
296 so->so_rcv.sb_flags |= head->so_rcv.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
297 so->so_snd.sb_flags |= head->so_snd.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
298
299 /*
300 * Share the lock with the listening-socket, it may get unshared
301 * once the connection is complete.
302 */
303 mutex_obj_hold(head->so_lock);
304 so->so_lock = head->so_lock;
305 soqinsque(head, so, soqueue);
306
307 error = (*so->so_proto->pr_usrreq)(so, PRU_ATTACH, NULL, NULL,
308 NULL, NULL);
309 KASSERT(solocked(so));
310 if (error) {
311 (void) soqremque(so, soqueue);
312 out:
313 KASSERT(so->so_accf == NULL);
314 soput(so);
315
316 /* Note: the listening socket shall stay locked. */
317 KASSERT(solocked(head));
318 return NULL;
319 }
320
321 /*
322 * Update the connection status and wake up any waiters,
323 * e.g. processes blocking on accept().
324 */
325 if (soready) {
326 so->so_state |= SS_ISCONNECTED;
327 sorwakeup(head);
328 cv_broadcast(&head->so_cv);
329 }
330 KASSERT(solocked2(head, so));
331 return so;
332 }
333
334 struct socket *
335 soget(bool waitok)
336 {
337 struct socket *so;
338
339 so = pool_cache_get(socket_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
340 if (__predict_false(so == NULL))
341 return (NULL);
342 memset(so, 0, sizeof(*so));
343 TAILQ_INIT(&so->so_q0);
344 TAILQ_INIT(&so->so_q);
345 cv_init(&so->so_cv, "socket");
346 cv_init(&so->so_rcv.sb_cv, "netio");
347 cv_init(&so->so_snd.sb_cv, "netio");
348 selinit(&so->so_rcv.sb_sel);
349 selinit(&so->so_snd.sb_sel);
350 so->so_rcv.sb_so = so;
351 so->so_snd.sb_so = so;
352 return so;
353 }
354
355 void
356 soput(struct socket *so)
357 {
358
359 KASSERT(!cv_has_waiters(&so->so_cv));
360 KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
361 KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
362 seldestroy(&so->so_rcv.sb_sel);
363 seldestroy(&so->so_snd.sb_sel);
364 mutex_obj_free(so->so_lock);
365 cv_destroy(&so->so_cv);
366 cv_destroy(&so->so_rcv.sb_cv);
367 cv_destroy(&so->so_snd.sb_cv);
368 pool_cache_put(socket_cache, so);
369 }
370
371 /*
372 * soqinsque: insert socket of a new connection into the specified
373 * accept queue of the listening socket (head).
374 *
375 * q = 0: queue of partial connections
376 * q = 1: queue of incoming connections
377 */
378 void
379 soqinsque(struct socket *head, struct socket *so, int q)
380 {
381 KASSERT(q == 0 || q == 1);
382 KASSERT(solocked2(head, so));
383 KASSERT(so->so_onq == NULL);
384 KASSERT(so->so_head == NULL);
385
386 so->so_head = head;
387 if (q == 0) {
388 head->so_q0len++;
389 so->so_onq = &head->so_q0;
390 } else {
391 head->so_qlen++;
392 so->so_onq = &head->so_q;
393 }
394 TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
395 }
396
397 /*
398 * soqremque: remove socket from the specified queue.
399 *
400 * => Returns true if socket was removed from the specified queue.
401 * => False if socket was not removed (because it was in other queue).
402 */
403 bool
404 soqremque(struct socket *so, int q)
405 {
406 struct socket *head = so->so_head;
407
408 KASSERT(q == 0 || q == 1);
409 KASSERT(solocked(so));
410 KASSERT(so->so_onq != NULL);
411 KASSERT(head != NULL);
412
413 if (q == 0) {
414 if (so->so_onq != &head->so_q0)
415 return false;
416 head->so_q0len--;
417 } else {
418 if (so->so_onq != &head->so_q)
419 return false;
420 head->so_qlen--;
421 }
422 KASSERT(solocked2(so, head));
423 TAILQ_REMOVE(so->so_onq, so, so_qe);
424 so->so_onq = NULL;
425 so->so_head = NULL;
426 return true;
427 }
428
429 /*
430 * socantsendmore: indicates that no more data will be sent on the
431 * socket; it would normally be applied to a socket when the user
432 * informs the system that no more data is to be sent, by the protocol
433 * code (in case PRU_SHUTDOWN).
434 */
435 void
436 socantsendmore(struct socket *so)
437 {
438 KASSERT(solocked(so));
439
440 so->so_state |= SS_CANTSENDMORE;
441 sowwakeup(so);
442 }
443
444 /*
445 * socantrcvmore(): indicates that no more data will be received and
446 * will normally be applied to the socket by a protocol when it detects
447 * that the peer will send no more data. Data queued for reading in
448 * the socket may yet be read.
449 */
450 void
451 socantrcvmore(struct socket *so)
452 {
453 KASSERT(solocked(so));
454
455 so->so_state |= SS_CANTRCVMORE;
456 sorwakeup(so);
457 }
458
459 /*
460 * Wait for data to arrive at/drain from a socket buffer.
461 */
462 int
463 sbwait(struct sockbuf *sb)
464 {
465 struct socket *so;
466 kmutex_t *lock;
467 int error;
468
469 so = sb->sb_so;
470
471 KASSERT(solocked(so));
472
473 sb->sb_flags |= SB_NOTIFY;
474 lock = so->so_lock;
475 if ((sb->sb_flags & SB_NOINTR) != 0)
476 error = cv_timedwait(&sb->sb_cv, lock, sb->sb_timeo);
477 else
478 error = cv_timedwait_sig(&sb->sb_cv, lock, sb->sb_timeo);
479 if (__predict_false(lock != so->so_lock))
480 solockretry(so, lock);
481 return error;
482 }
483
484 /*
485 * Wakeup processes waiting on a socket buffer.
486 * Do asynchronous notification via SIGIO
487 * if the socket buffer has the SB_ASYNC flag set.
488 */
489 void
490 sowakeup(struct socket *so, struct sockbuf *sb, int code)
491 {
492 int band;
493
494 KASSERT(solocked(so));
495 KASSERT(sb->sb_so == so);
496
497 if (code == POLL_IN)
498 band = POLLIN|POLLRDNORM;
499 else
500 band = POLLOUT|POLLWRNORM;
501 sb->sb_flags &= ~SB_NOTIFY;
502 selnotify(&sb->sb_sel, band, NOTE_SUBMIT);
503 cv_broadcast(&sb->sb_cv);
504 if (sb->sb_flags & SB_ASYNC)
505 fownsignal(so->so_pgid, SIGIO, code, band, so);
506 if (sb->sb_flags & SB_UPCALL)
507 (*so->so_upcall)(so, so->so_upcallarg, band, M_DONTWAIT);
508 }
509
510 /*
511 * Reset a socket's lock pointer. Wake all threads waiting on the
512 * socket's condition variables so that they can restart their waits
513 * using the new lock. The existing lock must be held.
514 */
515 void
516 solockreset(struct socket *so, kmutex_t *lock)
517 {
518
519 KASSERT(solocked(so));
520
521 so->so_lock = lock;
522 cv_broadcast(&so->so_snd.sb_cv);
523 cv_broadcast(&so->so_rcv.sb_cv);
524 cv_broadcast(&so->so_cv);
525 }
526
527 /*
528 * Socket buffer (struct sockbuf) utility routines.
529 *
530 * Each socket contains two socket buffers: one for sending data and
531 * one for receiving data. Each buffer contains a queue of mbufs,
532 * information about the number of mbufs and amount of data in the
533 * queue, and other fields allowing poll() statements and notification
534 * on data availability to be implemented.
535 *
536 * Data stored in a socket buffer is maintained as a list of records.
537 * Each record is a list of mbufs chained together with the m_next
538 * field. Records are chained together with the m_nextpkt field. The upper
539 * level routine soreceive() expects the following conventions to be
540 * observed when placing information in the receive buffer:
541 *
542 * 1. If the protocol requires each message be preceded by the sender's
543 * name, then a record containing that name must be present before
544 * any associated data (mbuf's must be of type MT_SONAME).
545 * 2. If the protocol supports the exchange of ``access rights'' (really
546 * just additional data associated with the message), and there are
547 * ``rights'' to be received, then a record containing this data
548 * should be present (mbuf's must be of type MT_CONTROL).
549 * 3. If a name or rights record exists, then it must be followed by
550 * a data record, perhaps of zero length.
551 *
552 * Before using a new socket structure it is first necessary to reserve
553 * buffer space to the socket, by calling sbreserve(). This should commit
554 * some of the available buffer space in the system buffer pool for the
555 * socket (currently, it does nothing but enforce limits). The space
556 * should be released by calling sbrelease() when the socket is destroyed.
557 */
558
559 int
560 sb_max_set(u_long new_sbmax)
561 {
562 int s;
563
564 if (new_sbmax < (16 * 1024))
565 return (EINVAL);
566
567 s = splsoftnet();
568 sb_max = new_sbmax;
569 sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
570 splx(s);
571
572 return (0);
573 }
574
575 int
576 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
577 {
578 KASSERT(so->so_pcb == NULL || solocked(so));
579
580 /*
581 * there's at least one application (a configure script of screen)
582 * which expects a fifo is writable even if it has "some" bytes
583 * in its buffer.
584 * so we want to make sure (hiwat - lowat) >= (some bytes).
585 *
586 * PIPE_BUF here is an arbitrary value chosen as (some bytes) above.
587 * we expect it's large enough for such applications.
588 */
589 u_long lowat = MAX(sock_loan_thresh, MCLBYTES);
590 u_long hiwat = lowat + PIPE_BUF;
591
592 if (sndcc < hiwat)
593 sndcc = hiwat;
594 if (sbreserve(&so->so_snd, sndcc, so) == 0)
595 goto bad;
596 if (sbreserve(&so->so_rcv, rcvcc, so) == 0)
597 goto bad2;
598 if (so->so_rcv.sb_lowat == 0)
599 so->so_rcv.sb_lowat = 1;
600 if (so->so_snd.sb_lowat == 0)
601 so->so_snd.sb_lowat = lowat;
602 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
603 so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
604 return (0);
605 bad2:
606 sbrelease(&so->so_snd, so);
607 bad:
608 return (ENOBUFS);
609 }
610
611 /*
612 * Allot mbufs to a sockbuf.
613 * Attempt to scale mbmax so that mbcnt doesn't become limiting
614 * if buffering efficiency is near the normal case.
615 */
616 int
617 sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
618 {
619 struct lwp *l = curlwp; /* XXX */
620 rlim_t maxcc;
621 struct uidinfo *uidinfo;
622
623 KASSERT(so->so_pcb == NULL || solocked(so));
624 KASSERT(sb->sb_so == so);
625 KASSERT(sb_max_adj != 0);
626
627 if (cc == 0 || cc > sb_max_adj)
628 return (0);
629
630 maxcc = l->l_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur;
631
632 uidinfo = so->so_uidinfo;
633 if (!chgsbsize(uidinfo, &sb->sb_hiwat, cc, maxcc))
634 return 0;
635 sb->sb_mbmax = min(cc * 2, sb_max);
636 if (sb->sb_lowat > sb->sb_hiwat)
637 sb->sb_lowat = sb->sb_hiwat;
638 return (1);
639 }
640
641 /*
642 * Free mbufs held by a socket, and reserved mbuf space. We do not assert
643 * that the socket is held locked here: see sorflush().
644 */
645 void
646 sbrelease(struct sockbuf *sb, struct socket *so)
647 {
648
649 KASSERT(sb->sb_so == so);
650
651 sbflush(sb);
652 (void)chgsbsize(so->so_uidinfo, &sb->sb_hiwat, 0, RLIM_INFINITY);
653 sb->sb_mbmax = 0;
654 }
655
656 /*
657 * Routines to add and remove
658 * data from an mbuf queue.
659 *
660 * The routines sbappend() or sbappendrecord() are normally called to
661 * append new mbufs to a socket buffer, after checking that adequate
662 * space is available, comparing the function sbspace() with the amount
663 * of data to be added. sbappendrecord() differs from sbappend() in
664 * that data supplied is treated as the beginning of a new record.
665 * To place a sender's address, optional access rights, and data in a
666 * socket receive buffer, sbappendaddr() should be used. To place
667 * access rights and data in a socket receive buffer, sbappendrights()
668 * should be used. In either case, the new data begins a new record.
669 * Note that unlike sbappend() and sbappendrecord(), these routines check
670 * for the caller that there will be enough space to store the data.
671 * Each fails if there is not enough space, or if it cannot find mbufs
672 * to store additional information in.
673 *
674 * Reliable protocols may use the socket send buffer to hold data
675 * awaiting acknowledgement. Data is normally copied from a socket
676 * send buffer in a protocol with m_copy for output to a peer,
677 * and then removing the data from the socket buffer with sbdrop()
678 * or sbdroprecord() when the data is acknowledged by the peer.
679 */
680
681 #ifdef SOCKBUF_DEBUG
682 void
683 sblastrecordchk(struct sockbuf *sb, const char *where)
684 {
685 struct mbuf *m = sb->sb_mb;
686
687 KASSERT(solocked(sb->sb_so));
688
689 while (m && m->m_nextpkt)
690 m = m->m_nextpkt;
691
692 if (m != sb->sb_lastrecord) {
693 printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
694 sb->sb_mb, sb->sb_lastrecord, m);
695 printf("packet chain:\n");
696 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
697 printf("\t%p\n", m);
698 panic("sblastrecordchk from %s", where);
699 }
700 }
701
702 void
703 sblastmbufchk(struct sockbuf *sb, const char *where)
704 {
705 struct mbuf *m = sb->sb_mb;
706 struct mbuf *n;
707
708 KASSERT(solocked(sb->sb_so));
709
710 while (m && m->m_nextpkt)
711 m = m->m_nextpkt;
712
713 while (m && m->m_next)
714 m = m->m_next;
715
716 if (m != sb->sb_mbtail) {
717 printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
718 sb->sb_mb, sb->sb_mbtail, m);
719 printf("packet tree:\n");
720 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
721 printf("\t");
722 for (n = m; n != NULL; n = n->m_next)
723 printf("%p ", n);
724 printf("\n");
725 }
726 panic("sblastmbufchk from %s", where);
727 }
728 }
729 #endif /* SOCKBUF_DEBUG */
730
731 /*
732 * Link a chain of records onto a socket buffer
733 */
734 #define SBLINKRECORDCHAIN(sb, m0, mlast) \
735 do { \
736 if ((sb)->sb_lastrecord != NULL) \
737 (sb)->sb_lastrecord->m_nextpkt = (m0); \
738 else \
739 (sb)->sb_mb = (m0); \
740 (sb)->sb_lastrecord = (mlast); \
741 } while (/*CONSTCOND*/0)
742
743
744 #define SBLINKRECORD(sb, m0) \
745 SBLINKRECORDCHAIN(sb, m0, m0)
746
747 /*
748 * Append mbuf chain m to the last record in the
749 * socket buffer sb. The additional space associated
750 * the mbuf chain is recorded in sb. Empty mbufs are
751 * discarded and mbufs are compacted where possible.
752 */
753 void
754 sbappend(struct sockbuf *sb, struct mbuf *m)
755 {
756 struct mbuf *n;
757
758 KASSERT(solocked(sb->sb_so));
759
760 if (m == NULL)
761 return;
762
763 #ifdef MBUFTRACE
764 m_claimm(m, sb->sb_mowner);
765 #endif
766
767 SBLASTRECORDCHK(sb, "sbappend 1");
768
769 if ((n = sb->sb_lastrecord) != NULL) {
770 /*
771 * XXX Would like to simply use sb_mbtail here, but
772 * XXX I need to verify that I won't miss an EOR that
773 * XXX way.
774 */
775 do {
776 if (n->m_flags & M_EOR) {
777 sbappendrecord(sb, m); /* XXXXXX!!!! */
778 return;
779 }
780 } while (n->m_next && (n = n->m_next));
781 } else {
782 /*
783 * If this is the first record in the socket buffer, it's
784 * also the last record.
785 */
786 sb->sb_lastrecord = m;
787 }
788 sbcompress(sb, m, n);
789 SBLASTRECORDCHK(sb, "sbappend 2");
790 }
791
792 /*
793 * This version of sbappend() should only be used when the caller
794 * absolutely knows that there will never be more than one record
795 * in the socket buffer, that is, a stream protocol (such as TCP).
796 */
797 void
798 sbappendstream(struct sockbuf *sb, struct mbuf *m)
799 {
800
801 KASSERT(solocked(sb->sb_so));
802 KDASSERT(m->m_nextpkt == NULL);
803 KASSERT(sb->sb_mb == sb->sb_lastrecord);
804
805 SBLASTMBUFCHK(sb, __func__);
806
807 #ifdef MBUFTRACE
808 m_claimm(m, sb->sb_mowner);
809 #endif
810
811 sbcompress(sb, m, sb->sb_mbtail);
812
813 sb->sb_lastrecord = sb->sb_mb;
814 SBLASTRECORDCHK(sb, __func__);
815 }
816
817 #ifdef SOCKBUF_DEBUG
818 void
819 sbcheck(struct sockbuf *sb)
820 {
821 struct mbuf *m, *m2;
822 u_long len, mbcnt;
823
824 KASSERT(solocked(sb->sb_so));
825
826 len = 0;
827 mbcnt = 0;
828 for (m = sb->sb_mb; m; m = m->m_nextpkt) {
829 for (m2 = m; m2 != NULL; m2 = m2->m_next) {
830 len += m2->m_len;
831 mbcnt += MSIZE;
832 if (m2->m_flags & M_EXT)
833 mbcnt += m2->m_ext.ext_size;
834 if (m2->m_nextpkt != NULL)
835 panic("sbcheck nextpkt");
836 }
837 }
838 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
839 printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
840 mbcnt, sb->sb_mbcnt);
841 panic("sbcheck");
842 }
843 }
844 #endif
845
846 /*
847 * As above, except the mbuf chain
848 * begins a new record.
849 */
850 void
851 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
852 {
853 struct mbuf *m;
854
855 KASSERT(solocked(sb->sb_so));
856
857 if (m0 == NULL)
858 return;
859
860 #ifdef MBUFTRACE
861 m_claimm(m0, sb->sb_mowner);
862 #endif
863 /*
864 * Put the first mbuf on the queue.
865 * Note this permits zero length records.
866 */
867 sballoc(sb, m0);
868 SBLASTRECORDCHK(sb, "sbappendrecord 1");
869 SBLINKRECORD(sb, m0);
870 m = m0->m_next;
871 m0->m_next = 0;
872 if (m && (m0->m_flags & M_EOR)) {
873 m0->m_flags &= ~M_EOR;
874 m->m_flags |= M_EOR;
875 }
876 sbcompress(sb, m, m0);
877 SBLASTRECORDCHK(sb, "sbappendrecord 2");
878 }
879
880 /*
881 * As above except that OOB data
882 * is inserted at the beginning of the sockbuf,
883 * but after any other OOB data.
884 */
885 void
886 sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
887 {
888 struct mbuf *m, **mp;
889
890 KASSERT(solocked(sb->sb_so));
891
892 if (m0 == NULL)
893 return;
894
895 SBLASTRECORDCHK(sb, "sbinsertoob 1");
896
897 for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
898 again:
899 switch (m->m_type) {
900
901 case MT_OOBDATA:
902 continue; /* WANT next train */
903
904 case MT_CONTROL:
905 if ((m = m->m_next) != NULL)
906 goto again; /* inspect THIS train further */
907 }
908 break;
909 }
910 /*
911 * Put the first mbuf on the queue.
912 * Note this permits zero length records.
913 */
914 sballoc(sb, m0);
915 m0->m_nextpkt = *mp;
916 if (*mp == NULL) {
917 /* m0 is actually the new tail */
918 sb->sb_lastrecord = m0;
919 }
920 *mp = m0;
921 m = m0->m_next;
922 m0->m_next = 0;
923 if (m && (m0->m_flags & M_EOR)) {
924 m0->m_flags &= ~M_EOR;
925 m->m_flags |= M_EOR;
926 }
927 sbcompress(sb, m, m0);
928 SBLASTRECORDCHK(sb, "sbinsertoob 2");
929 }
930
931 /*
932 * Append address and data, and optionally, control (ancillary) data
933 * to the receive queue of a socket. If present,
934 * m0 must include a packet header with total length.
935 * Returns 0 if no space in sockbuf or insufficient mbufs.
936 */
937 int
938 sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0,
939 struct mbuf *control)
940 {
941 struct mbuf *m, *n, *nlast;
942 int space, len;
943
944 KASSERT(solocked(sb->sb_so));
945
946 space = asa->sa_len;
947
948 if (m0 != NULL) {
949 if ((m0->m_flags & M_PKTHDR) == 0)
950 panic("sbappendaddr");
951 space += m0->m_pkthdr.len;
952 #ifdef MBUFTRACE
953 m_claimm(m0, sb->sb_mowner);
954 #endif
955 }
956 for (n = control; n; n = n->m_next) {
957 space += n->m_len;
958 MCLAIM(n, sb->sb_mowner);
959 if (n->m_next == NULL) /* keep pointer to last control buf */
960 break;
961 }
962 if (space > sbspace(sb))
963 return (0);
964 m = m_get(M_DONTWAIT, MT_SONAME);
965 if (m == NULL)
966 return (0);
967 MCLAIM(m, sb->sb_mowner);
968 /*
969 * XXX avoid 'comparison always true' warning which isn't easily
970 * avoided.
971 */
972 len = asa->sa_len;
973 if (len > MLEN) {
974 MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
975 if ((m->m_flags & M_EXT) == 0) {
976 m_free(m);
977 return (0);
978 }
979 }
980 m->m_len = asa->sa_len;
981 memcpy(mtod(m, void *), asa, asa->sa_len);
982 if (n)
983 n->m_next = m0; /* concatenate data to control */
984 else
985 control = m0;
986 m->m_next = control;
987
988 SBLASTRECORDCHK(sb, "sbappendaddr 1");
989
990 for (n = m; n->m_next != NULL; n = n->m_next)
991 sballoc(sb, n);
992 sballoc(sb, n);
993 nlast = n;
994 SBLINKRECORD(sb, m);
995
996 sb->sb_mbtail = nlast;
997 SBLASTMBUFCHK(sb, "sbappendaddr");
998 SBLASTRECORDCHK(sb, "sbappendaddr 2");
999
1000 return (1);
1001 }
1002
1003 /*
1004 * Helper for sbappendchainaddr: prepend a struct sockaddr* to
1005 * an mbuf chain.
1006 */
1007 static inline struct mbuf *
1008 m_prepend_sockaddr(struct sockbuf *sb, struct mbuf *m0,
1009 const struct sockaddr *asa)
1010 {
1011 struct mbuf *m;
1012 const int salen = asa->sa_len;
1013
1014 KASSERT(solocked(sb->sb_so));
1015
1016 /* only the first in each chain need be a pkthdr */
1017 m = m_gethdr(M_DONTWAIT, MT_SONAME);
1018 if (m == NULL)
1019 return NULL;
1020 MCLAIM(m, sb->sb_mowner);
1021 #ifdef notyet
1022 if (salen > MHLEN) {
1023 MEXTMALLOC(m, salen, M_NOWAIT);
1024 if ((m->m_flags & M_EXT) == 0) {
1025 m_free(m);
1026 return NULL;
1027 }
1028 }
1029 #else
1030 KASSERT(salen <= MHLEN);
1031 #endif
1032 m->m_len = salen;
1033 memcpy(mtod(m, void *), asa, salen);
1034 m->m_next = m0;
1035 m->m_pkthdr.len = salen + m0->m_pkthdr.len;
1036
1037 return m;
1038 }
1039
1040 int
1041 sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa,
1042 struct mbuf *m0, int sbprio)
1043 {
1044 struct mbuf *m, *n, *n0, *nlast;
1045 int error;
1046
1047 KASSERT(solocked(sb->sb_so));
1048
1049 /*
1050 * XXX sbprio reserved for encoding priority of this* request:
1051 * SB_PRIO_NONE --> honour normal sb limits
1052 * SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space,
1053 * take whole chain. Intended for large requests
1054 * that should be delivered atomically (all, or none).
1055 * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow
1056 * over normal socket limits, for messages indicating
1057 * buffer overflow in earlier normal/lower-priority messages
1058 * SB_PRIO_BESTEFFORT --> ignore limits entirely.
1059 * Intended for kernel-generated messages only.
1060 * Up to generator to avoid total mbuf resource exhaustion.
1061 */
1062 (void)sbprio;
1063
1064 if (m0 && (m0->m_flags & M_PKTHDR) == 0)
1065 panic("sbappendaddrchain");
1066
1067 #ifdef notyet
1068 space = sbspace(sb);
1069
1070 /*
1071 * Enforce SB_PRIO_* limits as described above.
1072 */
1073 #endif
1074
1075 n0 = NULL;
1076 nlast = NULL;
1077 for (m = m0; m; m = m->m_nextpkt) {
1078 struct mbuf *np;
1079
1080 #ifdef MBUFTRACE
1081 m_claimm(m, sb->sb_mowner);
1082 #endif
1083
1084 /* Prepend sockaddr to this record (m) of input chain m0 */
1085 n = m_prepend_sockaddr(sb, m, asa);
1086 if (n == NULL) {
1087 error = ENOBUFS;
1088 goto bad;
1089 }
1090
1091 /* Append record (asa+m) to end of new chain n0 */
1092 if (n0 == NULL) {
1093 n0 = n;
1094 } else {
1095 nlast->m_nextpkt = n;
1096 }
1097 /* Keep track of last record on new chain */
1098 nlast = n;
1099
1100 for (np = n; np; np = np->m_next)
1101 sballoc(sb, np);
1102 }
1103
1104 SBLASTRECORDCHK(sb, "sbappendaddrchain 1");
1105
1106 /* Drop the entire chain of (asa+m) records onto the socket */
1107 SBLINKRECORDCHAIN(sb, n0, nlast);
1108
1109 SBLASTRECORDCHK(sb, "sbappendaddrchain 2");
1110
1111 for (m = nlast; m->m_next; m = m->m_next)
1112 ;
1113 sb->sb_mbtail = m;
1114 SBLASTMBUFCHK(sb, "sbappendaddrchain");
1115
1116 return (1);
1117
1118 bad:
1119 /*
1120 * On error, free the prepended addreseses. For consistency
1121 * with sbappendaddr(), leave it to our caller to free
1122 * the input record chain passed to us as m0.
1123 */
1124 while ((n = n0) != NULL) {
1125 struct mbuf *np;
1126
1127 /* Undo the sballoc() of this record */
1128 for (np = n; np; np = np->m_next)
1129 sbfree(sb, np);
1130
1131 n0 = n->m_nextpkt; /* iterate at next prepended address */
1132 MFREE(n, np); /* free prepended address (not data) */
1133 }
1134 return error;
1135 }
1136
1137
1138 int
1139 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
1140 {
1141 struct mbuf *m, *mlast, *n;
1142 int space;
1143
1144 KASSERT(solocked(sb->sb_so));
1145
1146 space = 0;
1147 if (control == NULL)
1148 panic("sbappendcontrol");
1149 for (m = control; ; m = m->m_next) {
1150 space += m->m_len;
1151 MCLAIM(m, sb->sb_mowner);
1152 if (m->m_next == NULL)
1153 break;
1154 }
1155 n = m; /* save pointer to last control buffer */
1156 for (m = m0; m; m = m->m_next) {
1157 MCLAIM(m, sb->sb_mowner);
1158 space += m->m_len;
1159 }
1160 if (space > sbspace(sb))
1161 return (0);
1162 n->m_next = m0; /* concatenate data to control */
1163
1164 SBLASTRECORDCHK(sb, "sbappendcontrol 1");
1165
1166 for (m = control; m->m_next != NULL; m = m->m_next)
1167 sballoc(sb, m);
1168 sballoc(sb, m);
1169 mlast = m;
1170 SBLINKRECORD(sb, control);
1171
1172 sb->sb_mbtail = mlast;
1173 SBLASTMBUFCHK(sb, "sbappendcontrol");
1174 SBLASTRECORDCHK(sb, "sbappendcontrol 2");
1175
1176 return (1);
1177 }
1178
1179 /*
1180 * Compress mbuf chain m into the socket
1181 * buffer sb following mbuf n. If n
1182 * is null, the buffer is presumed empty.
1183 */
1184 void
1185 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
1186 {
1187 int eor;
1188 struct mbuf *o;
1189
1190 KASSERT(solocked(sb->sb_so));
1191
1192 eor = 0;
1193 while (m) {
1194 eor |= m->m_flags & M_EOR;
1195 if (m->m_len == 0 &&
1196 (eor == 0 ||
1197 (((o = m->m_next) || (o = n)) &&
1198 o->m_type == m->m_type))) {
1199 if (sb->sb_lastrecord == m)
1200 sb->sb_lastrecord = m->m_next;
1201 m = m_free(m);
1202 continue;
1203 }
1204 if (n && (n->m_flags & M_EOR) == 0 &&
1205 /* M_TRAILINGSPACE() checks buffer writeability */
1206 m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
1207 m->m_len <= M_TRAILINGSPACE(n) &&
1208 n->m_type == m->m_type) {
1209 memcpy(mtod(n, char *) + n->m_len, mtod(m, void *),
1210 (unsigned)m->m_len);
1211 n->m_len += m->m_len;
1212 sb->sb_cc += m->m_len;
1213 m = m_free(m);
1214 continue;
1215 }
1216 if (n)
1217 n->m_next = m;
1218 else
1219 sb->sb_mb = m;
1220 sb->sb_mbtail = m;
1221 sballoc(sb, m);
1222 n = m;
1223 m->m_flags &= ~M_EOR;
1224 m = m->m_next;
1225 n->m_next = 0;
1226 }
1227 if (eor) {
1228 if (n)
1229 n->m_flags |= eor;
1230 else
1231 printf("semi-panic: sbcompress\n");
1232 }
1233 SBLASTMBUFCHK(sb, __func__);
1234 }
1235
1236 /*
1237 * Free all mbufs in a sockbuf.
1238 * Check that all resources are reclaimed.
1239 */
1240 void
1241 sbflush(struct sockbuf *sb)
1242 {
1243
1244 KASSERT(solocked(sb->sb_so));
1245 KASSERT((sb->sb_flags & SB_LOCK) == 0);
1246
1247 while (sb->sb_mbcnt)
1248 sbdrop(sb, (int)sb->sb_cc);
1249
1250 KASSERT(sb->sb_cc == 0);
1251 KASSERT(sb->sb_mb == NULL);
1252 KASSERT(sb->sb_mbtail == NULL);
1253 KASSERT(sb->sb_lastrecord == NULL);
1254 }
1255
1256 /*
1257 * Drop data from (the front of) a sockbuf.
1258 */
1259 void
1260 sbdrop(struct sockbuf *sb, int len)
1261 {
1262 struct mbuf *m, *mn, *next;
1263
1264 KASSERT(solocked(sb->sb_so));
1265
1266 next = (m = sb->sb_mb) ? m->m_nextpkt : NULL;
1267 while (len > 0) {
1268 if (m == NULL) {
1269 if (next == NULL)
1270 panic("sbdrop(%p,%d): cc=%lu",
1271 sb, len, sb->sb_cc);
1272 m = next;
1273 next = m->m_nextpkt;
1274 continue;
1275 }
1276 if (m->m_len > len) {
1277 m->m_len -= len;
1278 m->m_data += len;
1279 sb->sb_cc -= len;
1280 break;
1281 }
1282 len -= m->m_len;
1283 sbfree(sb, m);
1284 MFREE(m, mn);
1285 m = mn;
1286 }
1287 while (m && m->m_len == 0) {
1288 sbfree(sb, m);
1289 MFREE(m, mn);
1290 m = mn;
1291 }
1292 if (m) {
1293 sb->sb_mb = m;
1294 m->m_nextpkt = next;
1295 } else
1296 sb->sb_mb = next;
1297 /*
1298 * First part is an inline SB_EMPTY_FIXUP(). Second part
1299 * makes sure sb_lastrecord is up-to-date if we dropped
1300 * part of the last record.
1301 */
1302 m = sb->sb_mb;
1303 if (m == NULL) {
1304 sb->sb_mbtail = NULL;
1305 sb->sb_lastrecord = NULL;
1306 } else if (m->m_nextpkt == NULL)
1307 sb->sb_lastrecord = m;
1308 }
1309
1310 /*
1311 * Drop a record off the front of a sockbuf
1312 * and move the next record to the front.
1313 */
1314 void
1315 sbdroprecord(struct sockbuf *sb)
1316 {
1317 struct mbuf *m, *mn;
1318
1319 KASSERT(solocked(sb->sb_so));
1320
1321 m = sb->sb_mb;
1322 if (m) {
1323 sb->sb_mb = m->m_nextpkt;
1324 do {
1325 sbfree(sb, m);
1326 MFREE(m, mn);
1327 } while ((m = mn) != NULL);
1328 }
1329 SB_EMPTY_FIXUP(sb);
1330 }
1331
1332 /*
1333 * Create a "control" mbuf containing the specified data
1334 * with the specified type for presentation on a socket buffer.
1335 */
1336 struct mbuf *
1337 sbcreatecontrol1(void **p, int size, int type, int level, int flags)
1338 {
1339 struct cmsghdr *cp;
1340 struct mbuf *m;
1341 int space = CMSG_SPACE(size);
1342
1343 if ((flags & M_DONTWAIT) && space > MCLBYTES) {
1344 printf("%s: message too large %d\n", __func__, space);
1345 return NULL;
1346 }
1347
1348 if ((m = m_get(flags, MT_CONTROL)) == NULL)
1349 return NULL;
1350 if (space > MLEN) {
1351 if (space > MCLBYTES)
1352 MEXTMALLOC(m, space, M_WAITOK);
1353 else
1354 MCLGET(m, flags);
1355 if ((m->m_flags & M_EXT) == 0) {
1356 m_free(m);
1357 return NULL;
1358 }
1359 }
1360 cp = mtod(m, struct cmsghdr *);
1361 *p = CMSG_DATA(cp);
1362 m->m_len = space;
1363 cp->cmsg_len = CMSG_LEN(size);
1364 cp->cmsg_level = level;
1365 cp->cmsg_type = type;
1366 return m;
1367 }
1368
1369 struct mbuf *
1370 sbcreatecontrol(void *p, int size, int type, int level)
1371 {
1372 struct mbuf *m;
1373 void *v;
1374
1375 m = sbcreatecontrol1(&v, size, type, level, M_DONTWAIT);
1376 if (m == NULL)
1377 return NULL;
1378 memcpy(v, p, size);
1379 return m;
1380 }
1381
1382 void
1383 solockretry(struct socket *so, kmutex_t *lock)
1384 {
1385
1386 while (lock != so->so_lock) {
1387 mutex_exit(lock);
1388 lock = so->so_lock;
1389 mutex_enter(lock);
1390 }
1391 }
1392
1393 bool
1394 solocked(struct socket *so)
1395 {
1396
1397 return mutex_owned(so->so_lock);
1398 }
1399
1400 bool
1401 solocked2(struct socket *so1, struct socket *so2)
1402 {
1403 kmutex_t *lock;
1404
1405 lock = so1->so_lock;
1406 if (lock != so2->so_lock)
1407 return false;
1408 return mutex_owned(lock);
1409 }
1410
1411 /*
1412 * sosetlock: assign a default lock to a new socket.
1413 */
1414 void
1415 sosetlock(struct socket *so)
1416 {
1417 if (so->so_lock == NULL) {
1418 kmutex_t *lock = softnet_lock;
1419
1420 so->so_lock = lock;
1421 mutex_obj_hold(lock);
1422 mutex_enter(lock);
1423 }
1424
1425 /* In all cases, lock must be held on return from PRU_ATTACH. */
1426 KASSERT(solocked(so));
1427 }
1428
1429 /*
1430 * Set lock on sockbuf sb; sleep if lock is already held.
1431 * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
1432 * Returns error without lock if sleep is interrupted.
1433 */
1434 int
1435 sblock(struct sockbuf *sb, int wf)
1436 {
1437 struct socket *so;
1438 kmutex_t *lock;
1439 int error;
1440
1441 KASSERT(solocked(sb->sb_so));
1442
1443 for (;;) {
1444 if (__predict_true((sb->sb_flags & SB_LOCK) == 0)) {
1445 sb->sb_flags |= SB_LOCK;
1446 return 0;
1447 }
1448 if (wf != M_WAITOK)
1449 return EWOULDBLOCK;
1450 so = sb->sb_so;
1451 lock = so->so_lock;
1452 if ((sb->sb_flags & SB_NOINTR) != 0) {
1453 cv_wait(&so->so_cv, lock);
1454 error = 0;
1455 } else
1456 error = cv_wait_sig(&so->so_cv, lock);
1457 if (__predict_false(lock != so->so_lock))
1458 solockretry(so, lock);
1459 if (error != 0)
1460 return error;
1461 }
1462 }
1463
1464 void
1465 sbunlock(struct sockbuf *sb)
1466 {
1467 struct socket *so;
1468
1469 so = sb->sb_so;
1470
1471 KASSERT(solocked(so));
1472 KASSERT((sb->sb_flags & SB_LOCK) != 0);
1473
1474 sb->sb_flags &= ~SB_LOCK;
1475 cv_broadcast(&so->so_cv);
1476 }
1477
1478 int
1479 sowait(struct socket *so, bool catch, int timo)
1480 {
1481 kmutex_t *lock;
1482 int error;
1483
1484 KASSERT(solocked(so));
1485 KASSERT(catch || timo != 0);
1486
1487 lock = so->so_lock;
1488 if (catch)
1489 error = cv_timedwait_sig(&so->so_cv, lock, timo);
1490 else
1491 error = cv_timedwait(&so->so_cv, lock, timo);
1492 if (__predict_false(lock != so->so_lock))
1493 solockretry(so, lock);
1494 return error;
1495 }
1496