uipc_socket2.c revision 1.117 1 /* $NetBSD: uipc_socket2.c,v 1.117 2014/05/17 23:55:24 rmind Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*
30 * Copyright (c) 1982, 1986, 1988, 1990, 1993
31 * The Regents of the University of California. All rights reserved.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 * 3. Neither the name of the University nor the names of its contributors
42 * may be used to endorse or promote products derived from this software
43 * without specific prior written permission.
44 *
45 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 * SUCH DAMAGE.
56 *
57 * @(#)uipc_socket2.c 8.2 (Berkeley) 2/14/95
58 */
59
60 #include <sys/cdefs.h>
61 __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.117 2014/05/17 23:55:24 rmind Exp $");
62
63 #include "opt_mbuftrace.h"
64 #include "opt_sb_max.h"
65
66 #include <sys/param.h>
67 #include <sys/systm.h>
68 #include <sys/proc.h>
69 #include <sys/file.h>
70 #include <sys/buf.h>
71 #include <sys/mbuf.h>
72 #include <sys/protosw.h>
73 #include <sys/domain.h>
74 #include <sys/poll.h>
75 #include <sys/socket.h>
76 #include <sys/socketvar.h>
77 #include <sys/signalvar.h>
78 #include <sys/kauth.h>
79 #include <sys/pool.h>
80 #include <sys/uidinfo.h>
81
82 /*
83 * Primitive routines for operating on sockets and socket buffers.
84 *
85 * Connection life-cycle:
86 *
87 * Normal sequence from the active (originating) side:
88 *
89 * - soisconnecting() is called during processing of connect() call,
90 * - resulting in an eventual call to soisconnected() if/when the
91 * connection is established.
92 *
93 * When the connection is torn down during processing of disconnect():
94 *
95 * - soisdisconnecting() is called and,
96 * - soisdisconnected() is called when the connection to the peer
97 * is totally severed.
98 *
99 * The semantics of these routines are such that connectionless protocols
100 * can call soisconnected() and soisdisconnected() only, bypassing the
101 * in-progress calls when setting up a ``connection'' takes no time.
102 *
103 * From the passive side, a socket is created with two queues of sockets:
104 *
105 * - so_q0 (0) for partial connections (i.e. connections in progress)
106 * - so_q (1) for connections already made and awaiting user acceptance.
107 *
108 * As a protocol is preparing incoming connections, it creates a socket
109 * structure queued on so_q0 by calling sonewconn(). When the connection
110 * is established, soisconnected() is called, and transfers the
111 * socket structure to so_q, making it available to accept().
112 *
113 * If a socket is closed with sockets on either so_q0 or so_q, these
114 * sockets are dropped.
115 *
116 * Locking rules and assumptions:
117 *
118 * o socket::so_lock can change on the fly. The low level routines used
119 * to lock sockets are aware of this. When so_lock is acquired, the
120 * routine locking must check to see if so_lock still points to the
121 * lock that was acquired. If so_lock has changed in the meantime, the
122 * now irrelevant lock that was acquired must be dropped and the lock
123 * operation retried. Although not proven here, this is completely safe
124 * on a multiprocessor system, even with relaxed memory ordering, given
125 * the next two rules:
126 *
127 * o In order to mutate so_lock, the lock pointed to by the current value
128 * of so_lock must be held: i.e., the socket must be held locked by the
129 * changing thread. The thread must issue membar_exit() to prevent
130 * memory accesses being reordered, and can set so_lock to the desired
131 * value. If the lock pointed to by the new value of so_lock is not
132 * held by the changing thread, the socket must then be considered
133 * unlocked.
134 *
135 * o If so_lock is mutated, and the previous lock referred to by so_lock
136 * could still be visible to other threads in the system (e.g. via file
137 * descriptor or protocol-internal reference), then the old lock must
138 * remain valid until the socket and/or protocol control block has been
139 * torn down.
140 *
141 * o If a socket has a non-NULL so_head value (i.e. is in the process of
142 * connecting), then locking the socket must also lock the socket pointed
143 * to by so_head: their lock pointers must match.
144 *
145 * o If a socket has connections in progress (so_q, so_q0 not empty) then
146 * locking the socket must also lock the sockets attached to both queues.
147 * Again, their lock pointers must match.
148 *
149 * o Beyond the initial lock assignment in socreate(), assigning locks to
150 * sockets is the responsibility of the individual protocols / protocol
151 * domains.
152 */
153
154 static pool_cache_t socket_cache;
155 u_long sb_max = SB_MAX;/* maximum socket buffer size */
156 static u_long sb_max_adj; /* adjusted sb_max */
157
158 void
159 soisconnecting(struct socket *so)
160 {
161
162 KASSERT(solocked(so));
163
164 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
165 so->so_state |= SS_ISCONNECTING;
166 }
167
168 void
169 soisconnected(struct socket *so)
170 {
171 struct socket *head;
172
173 head = so->so_head;
174
175 KASSERT(solocked(so));
176 KASSERT(head == NULL || solocked2(so, head));
177
178 so->so_state &= ~(SS_ISCONNECTING | SS_ISDISCONNECTING);
179 so->so_state |= SS_ISCONNECTED;
180 if (head && so->so_onq == &head->so_q0) {
181 if ((so->so_options & SO_ACCEPTFILTER) == 0) {
182 /*
183 * Re-enqueue and wake up any waiters, e.g.
184 * processes blocking on accept().
185 */
186 soqremque(so, 0);
187 soqinsque(head, so, 1);
188 sorwakeup(head);
189 cv_broadcast(&head->so_cv);
190 } else {
191 so->so_upcall =
192 head->so_accf->so_accept_filter->accf_callback;
193 so->so_upcallarg = head->so_accf->so_accept_filter_arg;
194 so->so_rcv.sb_flags |= SB_UPCALL;
195 so->so_options &= ~SO_ACCEPTFILTER;
196 (*so->so_upcall)(so, so->so_upcallarg,
197 POLLIN|POLLRDNORM, M_DONTWAIT);
198 }
199 } else {
200 cv_broadcast(&so->so_cv);
201 sorwakeup(so);
202 sowwakeup(so);
203 }
204 }
205
206 void
207 soisdisconnecting(struct socket *so)
208 {
209
210 KASSERT(solocked(so));
211
212 so->so_state &= ~SS_ISCONNECTING;
213 so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
214 cv_broadcast(&so->so_cv);
215 sowwakeup(so);
216 sorwakeup(so);
217 }
218
219 void
220 soisdisconnected(struct socket *so)
221 {
222
223 KASSERT(solocked(so));
224
225 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
226 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
227 cv_broadcast(&so->so_cv);
228 sowwakeup(so);
229 sorwakeup(so);
230 }
231
232 void
233 soinit2(void)
234 {
235
236 socket_cache = pool_cache_init(sizeof(struct socket), 0, 0, 0,
237 "socket", NULL, IPL_SOFTNET, NULL, NULL, NULL);
238 }
239
240 /*
241 * sonewconn: accept a new connection.
242 *
243 * When an attempt at a new connection is noted on a socket which accepts
244 * connections, sonewconn(9) is called. If the connection is possible
245 * (subject to space constraints, etc) then we allocate a new structure,
246 * properly linked into the data structure of the original socket.
247 *
248 * => If 'soready' is true, then socket will become ready for accept() i.e.
249 * inserted into the so_q queue, SS_ISCONNECTED set and waiters awoken.
250 * => May be called from soft-interrupt context.
251 * => Listening socket should be locked.
252 * => Returns the new socket locked.
253 */
254 struct socket *
255 sonewconn(struct socket *head, bool soready)
256 {
257 struct socket *so;
258 int soqueue, error;
259
260 KASSERT(solocked(head));
261
262 if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2) {
263 /* Listen queue overflow. */
264 return NULL;
265 }
266 if ((head->so_options & SO_ACCEPTFILTER) != 0) {
267 soready = false;
268 }
269 soqueue = soready ? 1 : 0;
270
271 if ((so = soget(false)) == NULL) {
272 return NULL;
273 }
274 so->so_type = head->so_type;
275 so->so_options = head->so_options & ~SO_ACCEPTCONN;
276 so->so_linger = head->so_linger;
277 so->so_state = head->so_state | SS_NOFDREF;
278 so->so_proto = head->so_proto;
279 so->so_timeo = head->so_timeo;
280 so->so_pgid = head->so_pgid;
281 so->so_send = head->so_send;
282 so->so_receive = head->so_receive;
283 so->so_uidinfo = head->so_uidinfo;
284 so->so_cpid = head->so_cpid;
285 #ifdef MBUFTRACE
286 so->so_mowner = head->so_mowner;
287 so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
288 so->so_snd.sb_mowner = head->so_snd.sb_mowner;
289 #endif
290 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat) != 0)
291 goto out;
292 so->so_snd.sb_lowat = head->so_snd.sb_lowat;
293 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
294 so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
295 so->so_snd.sb_timeo = head->so_snd.sb_timeo;
296 so->so_rcv.sb_flags |= head->so_rcv.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
297 so->so_snd.sb_flags |= head->so_snd.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
298
299 /*
300 * Share the lock with the listening-socket, it may get unshared
301 * once the connection is complete.
302 */
303 mutex_obj_hold(head->so_lock);
304 so->so_lock = head->so_lock;
305
306 error = (*so->so_proto->pr_usrreq)(so, PRU_ATTACH, NULL, NULL,
307 NULL, NULL);
308 KASSERT(solocked(so));
309 if (error) {
310 out:
311 KASSERT(so->so_accf == NULL);
312 soput(so);
313
314 /* Note: the listening socket shall stay locked. */
315 KASSERT(solocked(head));
316 return NULL;
317 }
318
319 /*
320 * Insert into the queue. If ready, update the connection status
321 * and wake up any waiters, e.g. processes blocking on accept().
322 */
323 soqinsque(head, so, soqueue);
324 if (soready) {
325 so->so_state |= SS_ISCONNECTED;
326 sorwakeup(head);
327 cv_broadcast(&head->so_cv);
328 }
329 KASSERT(solocked2(head, so));
330 return so;
331 }
332
333 struct socket *
334 soget(bool waitok)
335 {
336 struct socket *so;
337
338 so = pool_cache_get(socket_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
339 if (__predict_false(so == NULL))
340 return (NULL);
341 memset(so, 0, sizeof(*so));
342 TAILQ_INIT(&so->so_q0);
343 TAILQ_INIT(&so->so_q);
344 cv_init(&so->so_cv, "socket");
345 cv_init(&so->so_rcv.sb_cv, "netio");
346 cv_init(&so->so_snd.sb_cv, "netio");
347 selinit(&so->so_rcv.sb_sel);
348 selinit(&so->so_snd.sb_sel);
349 so->so_rcv.sb_so = so;
350 so->so_snd.sb_so = so;
351 return so;
352 }
353
354 void
355 soput(struct socket *so)
356 {
357
358 KASSERT(!cv_has_waiters(&so->so_cv));
359 KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
360 KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
361 seldestroy(&so->so_rcv.sb_sel);
362 seldestroy(&so->so_snd.sb_sel);
363 mutex_obj_free(so->so_lock);
364 cv_destroy(&so->so_cv);
365 cv_destroy(&so->so_rcv.sb_cv);
366 cv_destroy(&so->so_snd.sb_cv);
367 pool_cache_put(socket_cache, so);
368 }
369
370 /*
371 * soqinsque: insert socket of a new connection into the specified
372 * accept queue of the listening socket (head).
373 *
374 * q = 0: queue of partial connections
375 * q = 1: queue of incoming connections
376 */
377 void
378 soqinsque(struct socket *head, struct socket *so, int q)
379 {
380 KASSERT(q == 0 || q == 1);
381 KASSERT(solocked2(head, so));
382 KASSERT(so->so_onq == NULL);
383 KASSERT(so->so_head == NULL);
384
385 so->so_head = head;
386 if (q == 0) {
387 head->so_q0len++;
388 so->so_onq = &head->so_q0;
389 } else {
390 head->so_qlen++;
391 so->so_onq = &head->so_q;
392 }
393 TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
394 }
395
396 /*
397 * soqremque: remove socket from the specified queue.
398 *
399 * => Returns true if socket was removed from the specified queue.
400 * => False if socket was not removed (because it was in other queue).
401 */
402 bool
403 soqremque(struct socket *so, int q)
404 {
405 struct socket *head = so->so_head;
406
407 KASSERT(q == 0 || q == 1);
408 KASSERT(solocked(so));
409 KASSERT(so->so_onq != NULL);
410 KASSERT(head != NULL);
411
412 if (q == 0) {
413 if (so->so_onq != &head->so_q0)
414 return false;
415 head->so_q0len--;
416 } else {
417 if (so->so_onq != &head->so_q)
418 return false;
419 head->so_qlen--;
420 }
421 KASSERT(solocked2(so, head));
422 TAILQ_REMOVE(so->so_onq, so, so_qe);
423 so->so_onq = NULL;
424 so->so_head = NULL;
425 return true;
426 }
427
428 /*
429 * socantsendmore: indicates that no more data will be sent on the
430 * socket; it would normally be applied to a socket when the user
431 * informs the system that no more data is to be sent, by the protocol
432 * code (in case PRU_SHUTDOWN).
433 */
434 void
435 socantsendmore(struct socket *so)
436 {
437 KASSERT(solocked(so));
438
439 so->so_state |= SS_CANTSENDMORE;
440 sowwakeup(so);
441 }
442
443 /*
444 * socantrcvmore(): indicates that no more data will be received and
445 * will normally be applied to the socket by a protocol when it detects
446 * that the peer will send no more data. Data queued for reading in
447 * the socket may yet be read.
448 */
449 void
450 socantrcvmore(struct socket *so)
451 {
452 KASSERT(solocked(so));
453
454 so->so_state |= SS_CANTRCVMORE;
455 sorwakeup(so);
456 }
457
458 /*
459 * Wait for data to arrive at/drain from a socket buffer.
460 */
461 int
462 sbwait(struct sockbuf *sb)
463 {
464 struct socket *so;
465 kmutex_t *lock;
466 int error;
467
468 so = sb->sb_so;
469
470 KASSERT(solocked(so));
471
472 sb->sb_flags |= SB_NOTIFY;
473 lock = so->so_lock;
474 if ((sb->sb_flags & SB_NOINTR) != 0)
475 error = cv_timedwait(&sb->sb_cv, lock, sb->sb_timeo);
476 else
477 error = cv_timedwait_sig(&sb->sb_cv, lock, sb->sb_timeo);
478 if (__predict_false(lock != so->so_lock))
479 solockretry(so, lock);
480 return error;
481 }
482
483 /*
484 * Wakeup processes waiting on a socket buffer.
485 * Do asynchronous notification via SIGIO
486 * if the socket buffer has the SB_ASYNC flag set.
487 */
488 void
489 sowakeup(struct socket *so, struct sockbuf *sb, int code)
490 {
491 int band;
492
493 KASSERT(solocked(so));
494 KASSERT(sb->sb_so == so);
495
496 if (code == POLL_IN)
497 band = POLLIN|POLLRDNORM;
498 else
499 band = POLLOUT|POLLWRNORM;
500 sb->sb_flags &= ~SB_NOTIFY;
501 selnotify(&sb->sb_sel, band, NOTE_SUBMIT);
502 cv_broadcast(&sb->sb_cv);
503 if (sb->sb_flags & SB_ASYNC)
504 fownsignal(so->so_pgid, SIGIO, code, band, so);
505 if (sb->sb_flags & SB_UPCALL)
506 (*so->so_upcall)(so, so->so_upcallarg, band, M_DONTWAIT);
507 }
508
509 /*
510 * Reset a socket's lock pointer. Wake all threads waiting on the
511 * socket's condition variables so that they can restart their waits
512 * using the new lock. The existing lock must be held.
513 */
514 void
515 solockreset(struct socket *so, kmutex_t *lock)
516 {
517
518 KASSERT(solocked(so));
519
520 so->so_lock = lock;
521 cv_broadcast(&so->so_snd.sb_cv);
522 cv_broadcast(&so->so_rcv.sb_cv);
523 cv_broadcast(&so->so_cv);
524 }
525
526 /*
527 * Socket buffer (struct sockbuf) utility routines.
528 *
529 * Each socket contains two socket buffers: one for sending data and
530 * one for receiving data. Each buffer contains a queue of mbufs,
531 * information about the number of mbufs and amount of data in the
532 * queue, and other fields allowing poll() statements and notification
533 * on data availability to be implemented.
534 *
535 * Data stored in a socket buffer is maintained as a list of records.
536 * Each record is a list of mbufs chained together with the m_next
537 * field. Records are chained together with the m_nextpkt field. The upper
538 * level routine soreceive() expects the following conventions to be
539 * observed when placing information in the receive buffer:
540 *
541 * 1. If the protocol requires each message be preceded by the sender's
542 * name, then a record containing that name must be present before
543 * any associated data (mbuf's must be of type MT_SONAME).
544 * 2. If the protocol supports the exchange of ``access rights'' (really
545 * just additional data associated with the message), and there are
546 * ``rights'' to be received, then a record containing this data
547 * should be present (mbuf's must be of type MT_CONTROL).
548 * 3. If a name or rights record exists, then it must be followed by
549 * a data record, perhaps of zero length.
550 *
551 * Before using a new socket structure it is first necessary to reserve
552 * buffer space to the socket, by calling sbreserve(). This should commit
553 * some of the available buffer space in the system buffer pool for the
554 * socket (currently, it does nothing but enforce limits). The space
555 * should be released by calling sbrelease() when the socket is destroyed.
556 */
557
558 int
559 sb_max_set(u_long new_sbmax)
560 {
561 int s;
562
563 if (new_sbmax < (16 * 1024))
564 return (EINVAL);
565
566 s = splsoftnet();
567 sb_max = new_sbmax;
568 sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
569 splx(s);
570
571 return (0);
572 }
573
574 int
575 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
576 {
577 KASSERT(so->so_pcb == NULL || solocked(so));
578
579 /*
580 * there's at least one application (a configure script of screen)
581 * which expects a fifo is writable even if it has "some" bytes
582 * in its buffer.
583 * so we want to make sure (hiwat - lowat) >= (some bytes).
584 *
585 * PIPE_BUF here is an arbitrary value chosen as (some bytes) above.
586 * we expect it's large enough for such applications.
587 */
588 u_long lowat = MAX(sock_loan_thresh, MCLBYTES);
589 u_long hiwat = lowat + PIPE_BUF;
590
591 if (sndcc < hiwat)
592 sndcc = hiwat;
593 if (sbreserve(&so->so_snd, sndcc, so) == 0)
594 goto bad;
595 if (sbreserve(&so->so_rcv, rcvcc, so) == 0)
596 goto bad2;
597 if (so->so_rcv.sb_lowat == 0)
598 so->so_rcv.sb_lowat = 1;
599 if (so->so_snd.sb_lowat == 0)
600 so->so_snd.sb_lowat = lowat;
601 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
602 so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
603 return (0);
604 bad2:
605 sbrelease(&so->so_snd, so);
606 bad:
607 return (ENOBUFS);
608 }
609
610 /*
611 * Allot mbufs to a sockbuf.
612 * Attempt to scale mbmax so that mbcnt doesn't become limiting
613 * if buffering efficiency is near the normal case.
614 */
615 int
616 sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
617 {
618 struct lwp *l = curlwp; /* XXX */
619 rlim_t maxcc;
620 struct uidinfo *uidinfo;
621
622 KASSERT(so->so_pcb == NULL || solocked(so));
623 KASSERT(sb->sb_so == so);
624 KASSERT(sb_max_adj != 0);
625
626 if (cc == 0 || cc > sb_max_adj)
627 return (0);
628
629 maxcc = l->l_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur;
630
631 uidinfo = so->so_uidinfo;
632 if (!chgsbsize(uidinfo, &sb->sb_hiwat, cc, maxcc))
633 return 0;
634 sb->sb_mbmax = min(cc * 2, sb_max);
635 if (sb->sb_lowat > sb->sb_hiwat)
636 sb->sb_lowat = sb->sb_hiwat;
637 return (1);
638 }
639
640 /*
641 * Free mbufs held by a socket, and reserved mbuf space. We do not assert
642 * that the socket is held locked here: see sorflush().
643 */
644 void
645 sbrelease(struct sockbuf *sb, struct socket *so)
646 {
647
648 KASSERT(sb->sb_so == so);
649
650 sbflush(sb);
651 (void)chgsbsize(so->so_uidinfo, &sb->sb_hiwat, 0, RLIM_INFINITY);
652 sb->sb_mbmax = 0;
653 }
654
655 /*
656 * Routines to add and remove
657 * data from an mbuf queue.
658 *
659 * The routines sbappend() or sbappendrecord() are normally called to
660 * append new mbufs to a socket buffer, after checking that adequate
661 * space is available, comparing the function sbspace() with the amount
662 * of data to be added. sbappendrecord() differs from sbappend() in
663 * that data supplied is treated as the beginning of a new record.
664 * To place a sender's address, optional access rights, and data in a
665 * socket receive buffer, sbappendaddr() should be used. To place
666 * access rights and data in a socket receive buffer, sbappendrights()
667 * should be used. In either case, the new data begins a new record.
668 * Note that unlike sbappend() and sbappendrecord(), these routines check
669 * for the caller that there will be enough space to store the data.
670 * Each fails if there is not enough space, or if it cannot find mbufs
671 * to store additional information in.
672 *
673 * Reliable protocols may use the socket send buffer to hold data
674 * awaiting acknowledgement. Data is normally copied from a socket
675 * send buffer in a protocol with m_copy for output to a peer,
676 * and then removing the data from the socket buffer with sbdrop()
677 * or sbdroprecord() when the data is acknowledged by the peer.
678 */
679
680 #ifdef SOCKBUF_DEBUG
681 void
682 sblastrecordchk(struct sockbuf *sb, const char *where)
683 {
684 struct mbuf *m = sb->sb_mb;
685
686 KASSERT(solocked(sb->sb_so));
687
688 while (m && m->m_nextpkt)
689 m = m->m_nextpkt;
690
691 if (m != sb->sb_lastrecord) {
692 printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
693 sb->sb_mb, sb->sb_lastrecord, m);
694 printf("packet chain:\n");
695 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
696 printf("\t%p\n", m);
697 panic("sblastrecordchk from %s", where);
698 }
699 }
700
701 void
702 sblastmbufchk(struct sockbuf *sb, const char *where)
703 {
704 struct mbuf *m = sb->sb_mb;
705 struct mbuf *n;
706
707 KASSERT(solocked(sb->sb_so));
708
709 while (m && m->m_nextpkt)
710 m = m->m_nextpkt;
711
712 while (m && m->m_next)
713 m = m->m_next;
714
715 if (m != sb->sb_mbtail) {
716 printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
717 sb->sb_mb, sb->sb_mbtail, m);
718 printf("packet tree:\n");
719 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
720 printf("\t");
721 for (n = m; n != NULL; n = n->m_next)
722 printf("%p ", n);
723 printf("\n");
724 }
725 panic("sblastmbufchk from %s", where);
726 }
727 }
728 #endif /* SOCKBUF_DEBUG */
729
730 /*
731 * Link a chain of records onto a socket buffer
732 */
733 #define SBLINKRECORDCHAIN(sb, m0, mlast) \
734 do { \
735 if ((sb)->sb_lastrecord != NULL) \
736 (sb)->sb_lastrecord->m_nextpkt = (m0); \
737 else \
738 (sb)->sb_mb = (m0); \
739 (sb)->sb_lastrecord = (mlast); \
740 } while (/*CONSTCOND*/0)
741
742
743 #define SBLINKRECORD(sb, m0) \
744 SBLINKRECORDCHAIN(sb, m0, m0)
745
746 /*
747 * Append mbuf chain m to the last record in the
748 * socket buffer sb. The additional space associated
749 * the mbuf chain is recorded in sb. Empty mbufs are
750 * discarded and mbufs are compacted where possible.
751 */
752 void
753 sbappend(struct sockbuf *sb, struct mbuf *m)
754 {
755 struct mbuf *n;
756
757 KASSERT(solocked(sb->sb_so));
758
759 if (m == NULL)
760 return;
761
762 #ifdef MBUFTRACE
763 m_claimm(m, sb->sb_mowner);
764 #endif
765
766 SBLASTRECORDCHK(sb, "sbappend 1");
767
768 if ((n = sb->sb_lastrecord) != NULL) {
769 /*
770 * XXX Would like to simply use sb_mbtail here, but
771 * XXX I need to verify that I won't miss an EOR that
772 * XXX way.
773 */
774 do {
775 if (n->m_flags & M_EOR) {
776 sbappendrecord(sb, m); /* XXXXXX!!!! */
777 return;
778 }
779 } while (n->m_next && (n = n->m_next));
780 } else {
781 /*
782 * If this is the first record in the socket buffer, it's
783 * also the last record.
784 */
785 sb->sb_lastrecord = m;
786 }
787 sbcompress(sb, m, n);
788 SBLASTRECORDCHK(sb, "sbappend 2");
789 }
790
791 /*
792 * This version of sbappend() should only be used when the caller
793 * absolutely knows that there will never be more than one record
794 * in the socket buffer, that is, a stream protocol (such as TCP).
795 */
796 void
797 sbappendstream(struct sockbuf *sb, struct mbuf *m)
798 {
799
800 KASSERT(solocked(sb->sb_so));
801 KDASSERT(m->m_nextpkt == NULL);
802 KASSERT(sb->sb_mb == sb->sb_lastrecord);
803
804 SBLASTMBUFCHK(sb, __func__);
805
806 #ifdef MBUFTRACE
807 m_claimm(m, sb->sb_mowner);
808 #endif
809
810 sbcompress(sb, m, sb->sb_mbtail);
811
812 sb->sb_lastrecord = sb->sb_mb;
813 SBLASTRECORDCHK(sb, __func__);
814 }
815
816 #ifdef SOCKBUF_DEBUG
817 void
818 sbcheck(struct sockbuf *sb)
819 {
820 struct mbuf *m, *m2;
821 u_long len, mbcnt;
822
823 KASSERT(solocked(sb->sb_so));
824
825 len = 0;
826 mbcnt = 0;
827 for (m = sb->sb_mb; m; m = m->m_nextpkt) {
828 for (m2 = m; m2 != NULL; m2 = m2->m_next) {
829 len += m2->m_len;
830 mbcnt += MSIZE;
831 if (m2->m_flags & M_EXT)
832 mbcnt += m2->m_ext.ext_size;
833 if (m2->m_nextpkt != NULL)
834 panic("sbcheck nextpkt");
835 }
836 }
837 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
838 printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
839 mbcnt, sb->sb_mbcnt);
840 panic("sbcheck");
841 }
842 }
843 #endif
844
845 /*
846 * As above, except the mbuf chain
847 * begins a new record.
848 */
849 void
850 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
851 {
852 struct mbuf *m;
853
854 KASSERT(solocked(sb->sb_so));
855
856 if (m0 == NULL)
857 return;
858
859 #ifdef MBUFTRACE
860 m_claimm(m0, sb->sb_mowner);
861 #endif
862 /*
863 * Put the first mbuf on the queue.
864 * Note this permits zero length records.
865 */
866 sballoc(sb, m0);
867 SBLASTRECORDCHK(sb, "sbappendrecord 1");
868 SBLINKRECORD(sb, m0);
869 m = m0->m_next;
870 m0->m_next = 0;
871 if (m && (m0->m_flags & M_EOR)) {
872 m0->m_flags &= ~M_EOR;
873 m->m_flags |= M_EOR;
874 }
875 sbcompress(sb, m, m0);
876 SBLASTRECORDCHK(sb, "sbappendrecord 2");
877 }
878
879 /*
880 * As above except that OOB data
881 * is inserted at the beginning of the sockbuf,
882 * but after any other OOB data.
883 */
884 void
885 sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
886 {
887 struct mbuf *m, **mp;
888
889 KASSERT(solocked(sb->sb_so));
890
891 if (m0 == NULL)
892 return;
893
894 SBLASTRECORDCHK(sb, "sbinsertoob 1");
895
896 for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
897 again:
898 switch (m->m_type) {
899
900 case MT_OOBDATA:
901 continue; /* WANT next train */
902
903 case MT_CONTROL:
904 if ((m = m->m_next) != NULL)
905 goto again; /* inspect THIS train further */
906 }
907 break;
908 }
909 /*
910 * Put the first mbuf on the queue.
911 * Note this permits zero length records.
912 */
913 sballoc(sb, m0);
914 m0->m_nextpkt = *mp;
915 if (*mp == NULL) {
916 /* m0 is actually the new tail */
917 sb->sb_lastrecord = m0;
918 }
919 *mp = m0;
920 m = m0->m_next;
921 m0->m_next = 0;
922 if (m && (m0->m_flags & M_EOR)) {
923 m0->m_flags &= ~M_EOR;
924 m->m_flags |= M_EOR;
925 }
926 sbcompress(sb, m, m0);
927 SBLASTRECORDCHK(sb, "sbinsertoob 2");
928 }
929
930 /*
931 * Append address and data, and optionally, control (ancillary) data
932 * to the receive queue of a socket. If present,
933 * m0 must include a packet header with total length.
934 * Returns 0 if no space in sockbuf or insufficient mbufs.
935 */
936 int
937 sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0,
938 struct mbuf *control)
939 {
940 struct mbuf *m, *n, *nlast;
941 int space, len;
942
943 KASSERT(solocked(sb->sb_so));
944
945 space = asa->sa_len;
946
947 if (m0 != NULL) {
948 if ((m0->m_flags & M_PKTHDR) == 0)
949 panic("sbappendaddr");
950 space += m0->m_pkthdr.len;
951 #ifdef MBUFTRACE
952 m_claimm(m0, sb->sb_mowner);
953 #endif
954 }
955 for (n = control; n; n = n->m_next) {
956 space += n->m_len;
957 MCLAIM(n, sb->sb_mowner);
958 if (n->m_next == NULL) /* keep pointer to last control buf */
959 break;
960 }
961 if (space > sbspace(sb))
962 return (0);
963 m = m_get(M_DONTWAIT, MT_SONAME);
964 if (m == NULL)
965 return (0);
966 MCLAIM(m, sb->sb_mowner);
967 /*
968 * XXX avoid 'comparison always true' warning which isn't easily
969 * avoided.
970 */
971 len = asa->sa_len;
972 if (len > MLEN) {
973 MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
974 if ((m->m_flags & M_EXT) == 0) {
975 m_free(m);
976 return (0);
977 }
978 }
979 m->m_len = asa->sa_len;
980 memcpy(mtod(m, void *), asa, asa->sa_len);
981 if (n)
982 n->m_next = m0; /* concatenate data to control */
983 else
984 control = m0;
985 m->m_next = control;
986
987 SBLASTRECORDCHK(sb, "sbappendaddr 1");
988
989 for (n = m; n->m_next != NULL; n = n->m_next)
990 sballoc(sb, n);
991 sballoc(sb, n);
992 nlast = n;
993 SBLINKRECORD(sb, m);
994
995 sb->sb_mbtail = nlast;
996 SBLASTMBUFCHK(sb, "sbappendaddr");
997 SBLASTRECORDCHK(sb, "sbappendaddr 2");
998
999 return (1);
1000 }
1001
1002 /*
1003 * Helper for sbappendchainaddr: prepend a struct sockaddr* to
1004 * an mbuf chain.
1005 */
1006 static inline struct mbuf *
1007 m_prepend_sockaddr(struct sockbuf *sb, struct mbuf *m0,
1008 const struct sockaddr *asa)
1009 {
1010 struct mbuf *m;
1011 const int salen = asa->sa_len;
1012
1013 KASSERT(solocked(sb->sb_so));
1014
1015 /* only the first in each chain need be a pkthdr */
1016 m = m_gethdr(M_DONTWAIT, MT_SONAME);
1017 if (m == NULL)
1018 return NULL;
1019 MCLAIM(m, sb->sb_mowner);
1020 #ifdef notyet
1021 if (salen > MHLEN) {
1022 MEXTMALLOC(m, salen, M_NOWAIT);
1023 if ((m->m_flags & M_EXT) == 0) {
1024 m_free(m);
1025 return NULL;
1026 }
1027 }
1028 #else
1029 KASSERT(salen <= MHLEN);
1030 #endif
1031 m->m_len = salen;
1032 memcpy(mtod(m, void *), asa, salen);
1033 m->m_next = m0;
1034 m->m_pkthdr.len = salen + m0->m_pkthdr.len;
1035
1036 return m;
1037 }
1038
1039 int
1040 sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa,
1041 struct mbuf *m0, int sbprio)
1042 {
1043 struct mbuf *m, *n, *n0, *nlast;
1044 int error;
1045
1046 KASSERT(solocked(sb->sb_so));
1047
1048 /*
1049 * XXX sbprio reserved for encoding priority of this* request:
1050 * SB_PRIO_NONE --> honour normal sb limits
1051 * SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space,
1052 * take whole chain. Intended for large requests
1053 * that should be delivered atomically (all, or none).
1054 * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow
1055 * over normal socket limits, for messages indicating
1056 * buffer overflow in earlier normal/lower-priority messages
1057 * SB_PRIO_BESTEFFORT --> ignore limits entirely.
1058 * Intended for kernel-generated messages only.
1059 * Up to generator to avoid total mbuf resource exhaustion.
1060 */
1061 (void)sbprio;
1062
1063 if (m0 && (m0->m_flags & M_PKTHDR) == 0)
1064 panic("sbappendaddrchain");
1065
1066 #ifdef notyet
1067 space = sbspace(sb);
1068
1069 /*
1070 * Enforce SB_PRIO_* limits as described above.
1071 */
1072 #endif
1073
1074 n0 = NULL;
1075 nlast = NULL;
1076 for (m = m0; m; m = m->m_nextpkt) {
1077 struct mbuf *np;
1078
1079 #ifdef MBUFTRACE
1080 m_claimm(m, sb->sb_mowner);
1081 #endif
1082
1083 /* Prepend sockaddr to this record (m) of input chain m0 */
1084 n = m_prepend_sockaddr(sb, m, asa);
1085 if (n == NULL) {
1086 error = ENOBUFS;
1087 goto bad;
1088 }
1089
1090 /* Append record (asa+m) to end of new chain n0 */
1091 if (n0 == NULL) {
1092 n0 = n;
1093 } else {
1094 nlast->m_nextpkt = n;
1095 }
1096 /* Keep track of last record on new chain */
1097 nlast = n;
1098
1099 for (np = n; np; np = np->m_next)
1100 sballoc(sb, np);
1101 }
1102
1103 SBLASTRECORDCHK(sb, "sbappendaddrchain 1");
1104
1105 /* Drop the entire chain of (asa+m) records onto the socket */
1106 SBLINKRECORDCHAIN(sb, n0, nlast);
1107
1108 SBLASTRECORDCHK(sb, "sbappendaddrchain 2");
1109
1110 for (m = nlast; m->m_next; m = m->m_next)
1111 ;
1112 sb->sb_mbtail = m;
1113 SBLASTMBUFCHK(sb, "sbappendaddrchain");
1114
1115 return (1);
1116
1117 bad:
1118 /*
1119 * On error, free the prepended addreseses. For consistency
1120 * with sbappendaddr(), leave it to our caller to free
1121 * the input record chain passed to us as m0.
1122 */
1123 while ((n = n0) != NULL) {
1124 struct mbuf *np;
1125
1126 /* Undo the sballoc() of this record */
1127 for (np = n; np; np = np->m_next)
1128 sbfree(sb, np);
1129
1130 n0 = n->m_nextpkt; /* iterate at next prepended address */
1131 MFREE(n, np); /* free prepended address (not data) */
1132 }
1133 return error;
1134 }
1135
1136
1137 int
1138 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
1139 {
1140 struct mbuf *m, *mlast, *n;
1141 int space;
1142
1143 KASSERT(solocked(sb->sb_so));
1144
1145 space = 0;
1146 if (control == NULL)
1147 panic("sbappendcontrol");
1148 for (m = control; ; m = m->m_next) {
1149 space += m->m_len;
1150 MCLAIM(m, sb->sb_mowner);
1151 if (m->m_next == NULL)
1152 break;
1153 }
1154 n = m; /* save pointer to last control buffer */
1155 for (m = m0; m; m = m->m_next) {
1156 MCLAIM(m, sb->sb_mowner);
1157 space += m->m_len;
1158 }
1159 if (space > sbspace(sb))
1160 return (0);
1161 n->m_next = m0; /* concatenate data to control */
1162
1163 SBLASTRECORDCHK(sb, "sbappendcontrol 1");
1164
1165 for (m = control; m->m_next != NULL; m = m->m_next)
1166 sballoc(sb, m);
1167 sballoc(sb, m);
1168 mlast = m;
1169 SBLINKRECORD(sb, control);
1170
1171 sb->sb_mbtail = mlast;
1172 SBLASTMBUFCHK(sb, "sbappendcontrol");
1173 SBLASTRECORDCHK(sb, "sbappendcontrol 2");
1174
1175 return (1);
1176 }
1177
1178 /*
1179 * Compress mbuf chain m into the socket
1180 * buffer sb following mbuf n. If n
1181 * is null, the buffer is presumed empty.
1182 */
1183 void
1184 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
1185 {
1186 int eor;
1187 struct mbuf *o;
1188
1189 KASSERT(solocked(sb->sb_so));
1190
1191 eor = 0;
1192 while (m) {
1193 eor |= m->m_flags & M_EOR;
1194 if (m->m_len == 0 &&
1195 (eor == 0 ||
1196 (((o = m->m_next) || (o = n)) &&
1197 o->m_type == m->m_type))) {
1198 if (sb->sb_lastrecord == m)
1199 sb->sb_lastrecord = m->m_next;
1200 m = m_free(m);
1201 continue;
1202 }
1203 if (n && (n->m_flags & M_EOR) == 0 &&
1204 /* M_TRAILINGSPACE() checks buffer writeability */
1205 m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
1206 m->m_len <= M_TRAILINGSPACE(n) &&
1207 n->m_type == m->m_type) {
1208 memcpy(mtod(n, char *) + n->m_len, mtod(m, void *),
1209 (unsigned)m->m_len);
1210 n->m_len += m->m_len;
1211 sb->sb_cc += m->m_len;
1212 m = m_free(m);
1213 continue;
1214 }
1215 if (n)
1216 n->m_next = m;
1217 else
1218 sb->sb_mb = m;
1219 sb->sb_mbtail = m;
1220 sballoc(sb, m);
1221 n = m;
1222 m->m_flags &= ~M_EOR;
1223 m = m->m_next;
1224 n->m_next = 0;
1225 }
1226 if (eor) {
1227 if (n)
1228 n->m_flags |= eor;
1229 else
1230 printf("semi-panic: sbcompress\n");
1231 }
1232 SBLASTMBUFCHK(sb, __func__);
1233 }
1234
1235 /*
1236 * Free all mbufs in a sockbuf.
1237 * Check that all resources are reclaimed.
1238 */
1239 void
1240 sbflush(struct sockbuf *sb)
1241 {
1242
1243 KASSERT(solocked(sb->sb_so));
1244 KASSERT((sb->sb_flags & SB_LOCK) == 0);
1245
1246 while (sb->sb_mbcnt)
1247 sbdrop(sb, (int)sb->sb_cc);
1248
1249 KASSERT(sb->sb_cc == 0);
1250 KASSERT(sb->sb_mb == NULL);
1251 KASSERT(sb->sb_mbtail == NULL);
1252 KASSERT(sb->sb_lastrecord == NULL);
1253 }
1254
1255 /*
1256 * Drop data from (the front of) a sockbuf.
1257 */
1258 void
1259 sbdrop(struct sockbuf *sb, int len)
1260 {
1261 struct mbuf *m, *mn, *next;
1262
1263 KASSERT(solocked(sb->sb_so));
1264
1265 next = (m = sb->sb_mb) ? m->m_nextpkt : NULL;
1266 while (len > 0) {
1267 if (m == NULL) {
1268 if (next == NULL)
1269 panic("sbdrop(%p,%d): cc=%lu",
1270 sb, len, sb->sb_cc);
1271 m = next;
1272 next = m->m_nextpkt;
1273 continue;
1274 }
1275 if (m->m_len > len) {
1276 m->m_len -= len;
1277 m->m_data += len;
1278 sb->sb_cc -= len;
1279 break;
1280 }
1281 len -= m->m_len;
1282 sbfree(sb, m);
1283 MFREE(m, mn);
1284 m = mn;
1285 }
1286 while (m && m->m_len == 0) {
1287 sbfree(sb, m);
1288 MFREE(m, mn);
1289 m = mn;
1290 }
1291 if (m) {
1292 sb->sb_mb = m;
1293 m->m_nextpkt = next;
1294 } else
1295 sb->sb_mb = next;
1296 /*
1297 * First part is an inline SB_EMPTY_FIXUP(). Second part
1298 * makes sure sb_lastrecord is up-to-date if we dropped
1299 * part of the last record.
1300 */
1301 m = sb->sb_mb;
1302 if (m == NULL) {
1303 sb->sb_mbtail = NULL;
1304 sb->sb_lastrecord = NULL;
1305 } else if (m->m_nextpkt == NULL)
1306 sb->sb_lastrecord = m;
1307 }
1308
1309 /*
1310 * Drop a record off the front of a sockbuf
1311 * and move the next record to the front.
1312 */
1313 void
1314 sbdroprecord(struct sockbuf *sb)
1315 {
1316 struct mbuf *m, *mn;
1317
1318 KASSERT(solocked(sb->sb_so));
1319
1320 m = sb->sb_mb;
1321 if (m) {
1322 sb->sb_mb = m->m_nextpkt;
1323 do {
1324 sbfree(sb, m);
1325 MFREE(m, mn);
1326 } while ((m = mn) != NULL);
1327 }
1328 SB_EMPTY_FIXUP(sb);
1329 }
1330
1331 /*
1332 * Create a "control" mbuf containing the specified data
1333 * with the specified type for presentation on a socket buffer.
1334 */
1335 struct mbuf *
1336 sbcreatecontrol1(void **p, int size, int type, int level, int flags)
1337 {
1338 struct cmsghdr *cp;
1339 struct mbuf *m;
1340 int space = CMSG_SPACE(size);
1341
1342 if ((flags & M_DONTWAIT) && space > MCLBYTES) {
1343 printf("%s: message too large %d\n", __func__, space);
1344 return NULL;
1345 }
1346
1347 if ((m = m_get(flags, MT_CONTROL)) == NULL)
1348 return NULL;
1349 if (space > MLEN) {
1350 if (space > MCLBYTES)
1351 MEXTMALLOC(m, space, M_WAITOK);
1352 else
1353 MCLGET(m, flags);
1354 if ((m->m_flags & M_EXT) == 0) {
1355 m_free(m);
1356 return NULL;
1357 }
1358 }
1359 cp = mtod(m, struct cmsghdr *);
1360 *p = CMSG_DATA(cp);
1361 m->m_len = space;
1362 cp->cmsg_len = CMSG_LEN(size);
1363 cp->cmsg_level = level;
1364 cp->cmsg_type = type;
1365 return m;
1366 }
1367
1368 struct mbuf *
1369 sbcreatecontrol(void *p, int size, int type, int level)
1370 {
1371 struct mbuf *m;
1372 void *v;
1373
1374 m = sbcreatecontrol1(&v, size, type, level, M_DONTWAIT);
1375 if (m == NULL)
1376 return NULL;
1377 memcpy(v, p, size);
1378 return m;
1379 }
1380
1381 void
1382 solockretry(struct socket *so, kmutex_t *lock)
1383 {
1384
1385 while (lock != so->so_lock) {
1386 mutex_exit(lock);
1387 lock = so->so_lock;
1388 mutex_enter(lock);
1389 }
1390 }
1391
1392 bool
1393 solocked(struct socket *so)
1394 {
1395
1396 return mutex_owned(so->so_lock);
1397 }
1398
1399 bool
1400 solocked2(struct socket *so1, struct socket *so2)
1401 {
1402 kmutex_t *lock;
1403
1404 lock = so1->so_lock;
1405 if (lock != so2->so_lock)
1406 return false;
1407 return mutex_owned(lock);
1408 }
1409
1410 /*
1411 * sosetlock: assign a default lock to a new socket.
1412 */
1413 void
1414 sosetlock(struct socket *so)
1415 {
1416 if (so->so_lock == NULL) {
1417 kmutex_t *lock = softnet_lock;
1418
1419 so->so_lock = lock;
1420 mutex_obj_hold(lock);
1421 mutex_enter(lock);
1422 }
1423
1424 /* In all cases, lock must be held on return from PRU_ATTACH. */
1425 KASSERT(solocked(so));
1426 }
1427
1428 /*
1429 * Set lock on sockbuf sb; sleep if lock is already held.
1430 * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
1431 * Returns error without lock if sleep is interrupted.
1432 */
1433 int
1434 sblock(struct sockbuf *sb, int wf)
1435 {
1436 struct socket *so;
1437 kmutex_t *lock;
1438 int error;
1439
1440 KASSERT(solocked(sb->sb_so));
1441
1442 for (;;) {
1443 if (__predict_true((sb->sb_flags & SB_LOCK) == 0)) {
1444 sb->sb_flags |= SB_LOCK;
1445 return 0;
1446 }
1447 if (wf != M_WAITOK)
1448 return EWOULDBLOCK;
1449 so = sb->sb_so;
1450 lock = so->so_lock;
1451 if ((sb->sb_flags & SB_NOINTR) != 0) {
1452 cv_wait(&so->so_cv, lock);
1453 error = 0;
1454 } else
1455 error = cv_wait_sig(&so->so_cv, lock);
1456 if (__predict_false(lock != so->so_lock))
1457 solockretry(so, lock);
1458 if (error != 0)
1459 return error;
1460 }
1461 }
1462
1463 void
1464 sbunlock(struct sockbuf *sb)
1465 {
1466 struct socket *so;
1467
1468 so = sb->sb_so;
1469
1470 KASSERT(solocked(so));
1471 KASSERT((sb->sb_flags & SB_LOCK) != 0);
1472
1473 sb->sb_flags &= ~SB_LOCK;
1474 cv_broadcast(&so->so_cv);
1475 }
1476
1477 int
1478 sowait(struct socket *so, bool catch, int timo)
1479 {
1480 kmutex_t *lock;
1481 int error;
1482
1483 KASSERT(solocked(so));
1484 KASSERT(catch || timo != 0);
1485
1486 lock = so->so_lock;
1487 if (catch)
1488 error = cv_timedwait_sig(&so->so_cv, lock, timo);
1489 else
1490 error = cv_timedwait(&so->so_cv, lock, timo);
1491 if (__predict_false(lock != so->so_lock))
1492 solockretry(so, lock);
1493 return error;
1494 }
1495