uipc_socket2.c revision 1.120 1 /* $NetBSD: uipc_socket2.c,v 1.120 2014/07/31 03:39:35 rtr Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*
30 * Copyright (c) 1982, 1986, 1988, 1990, 1993
31 * The Regents of the University of California. All rights reserved.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 * 3. Neither the name of the University nor the names of its contributors
42 * may be used to endorse or promote products derived from this software
43 * without specific prior written permission.
44 *
45 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 * SUCH DAMAGE.
56 *
57 * @(#)uipc_socket2.c 8.2 (Berkeley) 2/14/95
58 */
59
60 #include <sys/cdefs.h>
61 __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.120 2014/07/31 03:39:35 rtr Exp $");
62
63 #include "opt_mbuftrace.h"
64 #include "opt_sb_max.h"
65
66 #include <sys/param.h>
67 #include <sys/systm.h>
68 #include <sys/proc.h>
69 #include <sys/file.h>
70 #include <sys/buf.h>
71 #include <sys/mbuf.h>
72 #include <sys/protosw.h>
73 #include <sys/domain.h>
74 #include <sys/poll.h>
75 #include <sys/socket.h>
76 #include <sys/socketvar.h>
77 #include <sys/signalvar.h>
78 #include <sys/kauth.h>
79 #include <sys/pool.h>
80 #include <sys/uidinfo.h>
81
82 /*
83 * Primitive routines for operating on sockets and socket buffers.
84 *
85 * Connection life-cycle:
86 *
87 * Normal sequence from the active (originating) side:
88 *
89 * - soisconnecting() is called during processing of connect() call,
90 * - resulting in an eventual call to soisconnected() if/when the
91 * connection is established.
92 *
93 * When the connection is torn down during processing of disconnect():
94 *
95 * - soisdisconnecting() is called and,
96 * - soisdisconnected() is called when the connection to the peer
97 * is totally severed.
98 *
99 * The semantics of these routines are such that connectionless protocols
100 * can call soisconnected() and soisdisconnected() only, bypassing the
101 * in-progress calls when setting up a ``connection'' takes no time.
102 *
103 * From the passive side, a socket is created with two queues of sockets:
104 *
105 * - so_q0 (0) for partial connections (i.e. connections in progress)
106 * - so_q (1) for connections already made and awaiting user acceptance.
107 *
108 * As a protocol is preparing incoming connections, it creates a socket
109 * structure queued on so_q0 by calling sonewconn(). When the connection
110 * is established, soisconnected() is called, and transfers the
111 * socket structure to so_q, making it available to accept().
112 *
113 * If a socket is closed with sockets on either so_q0 or so_q, these
114 * sockets are dropped.
115 *
116 * Locking rules and assumptions:
117 *
118 * o socket::so_lock can change on the fly. The low level routines used
119 * to lock sockets are aware of this. When so_lock is acquired, the
120 * routine locking must check to see if so_lock still points to the
121 * lock that was acquired. If so_lock has changed in the meantime, the
122 * now irrelevant lock that was acquired must be dropped and the lock
123 * operation retried. Although not proven here, this is completely safe
124 * on a multiprocessor system, even with relaxed memory ordering, given
125 * the next two rules:
126 *
127 * o In order to mutate so_lock, the lock pointed to by the current value
128 * of so_lock must be held: i.e., the socket must be held locked by the
129 * changing thread. The thread must issue membar_exit() to prevent
130 * memory accesses being reordered, and can set so_lock to the desired
131 * value. If the lock pointed to by the new value of so_lock is not
132 * held by the changing thread, the socket must then be considered
133 * unlocked.
134 *
135 * o If so_lock is mutated, and the previous lock referred to by so_lock
136 * could still be visible to other threads in the system (e.g. via file
137 * descriptor or protocol-internal reference), then the old lock must
138 * remain valid until the socket and/or protocol control block has been
139 * torn down.
140 *
141 * o If a socket has a non-NULL so_head value (i.e. is in the process of
142 * connecting), then locking the socket must also lock the socket pointed
143 * to by so_head: their lock pointers must match.
144 *
145 * o If a socket has connections in progress (so_q, so_q0 not empty) then
146 * locking the socket must also lock the sockets attached to both queues.
147 * Again, their lock pointers must match.
148 *
149 * o Beyond the initial lock assignment in socreate(), assigning locks to
150 * sockets is the responsibility of the individual protocols / protocol
151 * domains.
152 */
153
154 static pool_cache_t socket_cache;
155 u_long sb_max = SB_MAX;/* maximum socket buffer size */
156 static u_long sb_max_adj; /* adjusted sb_max */
157
158 void
159 soisconnecting(struct socket *so)
160 {
161
162 KASSERT(solocked(so));
163
164 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
165 so->so_state |= SS_ISCONNECTING;
166 }
167
168 void
169 soisconnected(struct socket *so)
170 {
171 struct socket *head;
172
173 head = so->so_head;
174
175 KASSERT(solocked(so));
176 KASSERT(head == NULL || solocked2(so, head));
177
178 so->so_state &= ~(SS_ISCONNECTING | SS_ISDISCONNECTING);
179 so->so_state |= SS_ISCONNECTED;
180 if (head && so->so_onq == &head->so_q0) {
181 if ((so->so_options & SO_ACCEPTFILTER) == 0) {
182 /*
183 * Re-enqueue and wake up any waiters, e.g.
184 * processes blocking on accept().
185 */
186 soqremque(so, 0);
187 soqinsque(head, so, 1);
188 sorwakeup(head);
189 cv_broadcast(&head->so_cv);
190 } else {
191 so->so_upcall =
192 head->so_accf->so_accept_filter->accf_callback;
193 so->so_upcallarg = head->so_accf->so_accept_filter_arg;
194 so->so_rcv.sb_flags |= SB_UPCALL;
195 so->so_options &= ~SO_ACCEPTFILTER;
196 (*so->so_upcall)(so, so->so_upcallarg,
197 POLLIN|POLLRDNORM, M_DONTWAIT);
198 }
199 } else {
200 cv_broadcast(&so->so_cv);
201 sorwakeup(so);
202 sowwakeup(so);
203 }
204 }
205
206 void
207 soisdisconnecting(struct socket *so)
208 {
209
210 KASSERT(solocked(so));
211
212 so->so_state &= ~SS_ISCONNECTING;
213 so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
214 cv_broadcast(&so->so_cv);
215 sowwakeup(so);
216 sorwakeup(so);
217 }
218
219 void
220 soisdisconnected(struct socket *so)
221 {
222
223 KASSERT(solocked(so));
224
225 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
226 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
227 cv_broadcast(&so->so_cv);
228 sowwakeup(so);
229 sorwakeup(so);
230 }
231
232 void
233 soinit2(void)
234 {
235
236 socket_cache = pool_cache_init(sizeof(struct socket), 0, 0, 0,
237 "socket", NULL, IPL_SOFTNET, NULL, NULL, NULL);
238 }
239
240 /*
241 * sonewconn: accept a new connection.
242 *
243 * When an attempt at a new connection is noted on a socket which accepts
244 * connections, sonewconn(9) is called. If the connection is possible
245 * (subject to space constraints, etc) then we allocate a new structure,
246 * properly linked into the data structure of the original socket.
247 *
248 * => If 'soready' is true, then socket will become ready for accept() i.e.
249 * inserted into the so_q queue, SS_ISCONNECTED set and waiters awoken.
250 * => May be called from soft-interrupt context.
251 * => Listening socket should be locked.
252 * => Returns the new socket locked.
253 */
254 struct socket *
255 sonewconn(struct socket *head, bool soready)
256 {
257 struct socket *so;
258 int soqueue, error;
259
260 KASSERT(solocked(head));
261
262 if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2) {
263 /* Listen queue overflow. */
264 return NULL;
265 }
266 if ((head->so_options & SO_ACCEPTFILTER) != 0) {
267 soready = false;
268 }
269 soqueue = soready ? 1 : 0;
270
271 if ((so = soget(false)) == NULL) {
272 return NULL;
273 }
274 so->so_type = head->so_type;
275 so->so_options = head->so_options & ~SO_ACCEPTCONN;
276 so->so_linger = head->so_linger;
277 so->so_state = head->so_state | SS_NOFDREF;
278 so->so_proto = head->so_proto;
279 so->so_timeo = head->so_timeo;
280 so->so_pgid = head->so_pgid;
281 so->so_send = head->so_send;
282 so->so_receive = head->so_receive;
283 so->so_uidinfo = head->so_uidinfo;
284 so->so_cpid = head->so_cpid;
285
286 /*
287 * Share the lock with the listening-socket, it may get unshared
288 * once the connection is complete.
289 */
290 mutex_obj_hold(head->so_lock);
291 so->so_lock = head->so_lock;
292
293 /*
294 * Reserve the space for socket buffers.
295 */
296 #ifdef MBUFTRACE
297 so->so_mowner = head->so_mowner;
298 so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
299 so->so_snd.sb_mowner = head->so_snd.sb_mowner;
300 #endif
301 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) {
302 goto out;
303 }
304 so->so_snd.sb_lowat = head->so_snd.sb_lowat;
305 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
306 so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
307 so->so_snd.sb_timeo = head->so_snd.sb_timeo;
308 so->so_rcv.sb_flags |= head->so_rcv.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
309 so->so_snd.sb_flags |= head->so_snd.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
310
311 /*
312 * Finally, perform the protocol attach. Note: a new socket
313 * lock may be assigned at this point (if so, it will be held).
314 */
315 error = (*so->so_proto->pr_usrreqs->pr_attach)(so, 0);
316 if (error) {
317 out:
318 KASSERT(solocked(so));
319 KASSERT(so->so_accf == NULL);
320 soput(so);
321
322 /* Note: the listening socket shall stay locked. */
323 KASSERT(solocked(head));
324 return NULL;
325 }
326 KASSERT(solocked2(head, so));
327
328 /*
329 * Insert into the queue. If ready, update the connection status
330 * and wake up any waiters, e.g. processes blocking on accept().
331 */
332 soqinsque(head, so, soqueue);
333 if (soready) {
334 so->so_state |= SS_ISCONNECTED;
335 sorwakeup(head);
336 cv_broadcast(&head->so_cv);
337 }
338 return so;
339 }
340
341 struct socket *
342 soget(bool waitok)
343 {
344 struct socket *so;
345
346 so = pool_cache_get(socket_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
347 if (__predict_false(so == NULL))
348 return (NULL);
349 memset(so, 0, sizeof(*so));
350 TAILQ_INIT(&so->so_q0);
351 TAILQ_INIT(&so->so_q);
352 cv_init(&so->so_cv, "socket");
353 cv_init(&so->so_rcv.sb_cv, "netio");
354 cv_init(&so->so_snd.sb_cv, "netio");
355 selinit(&so->so_rcv.sb_sel);
356 selinit(&so->so_snd.sb_sel);
357 so->so_rcv.sb_so = so;
358 so->so_snd.sb_so = so;
359 return so;
360 }
361
362 void
363 soput(struct socket *so)
364 {
365
366 KASSERT(!cv_has_waiters(&so->so_cv));
367 KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
368 KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
369 seldestroy(&so->so_rcv.sb_sel);
370 seldestroy(&so->so_snd.sb_sel);
371 mutex_obj_free(so->so_lock);
372 cv_destroy(&so->so_cv);
373 cv_destroy(&so->so_rcv.sb_cv);
374 cv_destroy(&so->so_snd.sb_cv);
375 pool_cache_put(socket_cache, so);
376 }
377
378 /*
379 * soqinsque: insert socket of a new connection into the specified
380 * accept queue of the listening socket (head).
381 *
382 * q = 0: queue of partial connections
383 * q = 1: queue of incoming connections
384 */
385 void
386 soqinsque(struct socket *head, struct socket *so, int q)
387 {
388 KASSERT(q == 0 || q == 1);
389 KASSERT(solocked2(head, so));
390 KASSERT(so->so_onq == NULL);
391 KASSERT(so->so_head == NULL);
392
393 so->so_head = head;
394 if (q == 0) {
395 head->so_q0len++;
396 so->so_onq = &head->so_q0;
397 } else {
398 head->so_qlen++;
399 so->so_onq = &head->so_q;
400 }
401 TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
402 }
403
404 /*
405 * soqremque: remove socket from the specified queue.
406 *
407 * => Returns true if socket was removed from the specified queue.
408 * => False if socket was not removed (because it was in other queue).
409 */
410 bool
411 soqremque(struct socket *so, int q)
412 {
413 struct socket *head = so->so_head;
414
415 KASSERT(q == 0 || q == 1);
416 KASSERT(solocked(so));
417 KASSERT(so->so_onq != NULL);
418 KASSERT(head != NULL);
419
420 if (q == 0) {
421 if (so->so_onq != &head->so_q0)
422 return false;
423 head->so_q0len--;
424 } else {
425 if (so->so_onq != &head->so_q)
426 return false;
427 head->so_qlen--;
428 }
429 KASSERT(solocked2(so, head));
430 TAILQ_REMOVE(so->so_onq, so, so_qe);
431 so->so_onq = NULL;
432 so->so_head = NULL;
433 return true;
434 }
435
436 /*
437 * socantsendmore: indicates that no more data will be sent on the
438 * socket; it would normally be applied to a socket when the user
439 * informs the system that no more data is to be sent, by the protocol
440 * code (in case pr_shutdown()).
441 */
442 void
443 socantsendmore(struct socket *so)
444 {
445 KASSERT(solocked(so));
446
447 so->so_state |= SS_CANTSENDMORE;
448 sowwakeup(so);
449 }
450
451 /*
452 * socantrcvmore(): indicates that no more data will be received and
453 * will normally be applied to the socket by a protocol when it detects
454 * that the peer will send no more data. Data queued for reading in
455 * the socket may yet be read.
456 */
457 void
458 socantrcvmore(struct socket *so)
459 {
460 KASSERT(solocked(so));
461
462 so->so_state |= SS_CANTRCVMORE;
463 sorwakeup(so);
464 }
465
466 /*
467 * Wait for data to arrive at/drain from a socket buffer.
468 */
469 int
470 sbwait(struct sockbuf *sb)
471 {
472 struct socket *so;
473 kmutex_t *lock;
474 int error;
475
476 so = sb->sb_so;
477
478 KASSERT(solocked(so));
479
480 sb->sb_flags |= SB_NOTIFY;
481 lock = so->so_lock;
482 if ((sb->sb_flags & SB_NOINTR) != 0)
483 error = cv_timedwait(&sb->sb_cv, lock, sb->sb_timeo);
484 else
485 error = cv_timedwait_sig(&sb->sb_cv, lock, sb->sb_timeo);
486 if (__predict_false(lock != so->so_lock))
487 solockretry(so, lock);
488 return error;
489 }
490
491 /*
492 * Wakeup processes waiting on a socket buffer.
493 * Do asynchronous notification via SIGIO
494 * if the socket buffer has the SB_ASYNC flag set.
495 */
496 void
497 sowakeup(struct socket *so, struct sockbuf *sb, int code)
498 {
499 int band;
500
501 KASSERT(solocked(so));
502 KASSERT(sb->sb_so == so);
503
504 if (code == POLL_IN)
505 band = POLLIN|POLLRDNORM;
506 else
507 band = POLLOUT|POLLWRNORM;
508 sb->sb_flags &= ~SB_NOTIFY;
509 selnotify(&sb->sb_sel, band, NOTE_SUBMIT);
510 cv_broadcast(&sb->sb_cv);
511 if (sb->sb_flags & SB_ASYNC)
512 fownsignal(so->so_pgid, SIGIO, code, band, so);
513 if (sb->sb_flags & SB_UPCALL)
514 (*so->so_upcall)(so, so->so_upcallarg, band, M_DONTWAIT);
515 }
516
517 /*
518 * Reset a socket's lock pointer. Wake all threads waiting on the
519 * socket's condition variables so that they can restart their waits
520 * using the new lock. The existing lock must be held.
521 */
522 void
523 solockreset(struct socket *so, kmutex_t *lock)
524 {
525
526 KASSERT(solocked(so));
527
528 so->so_lock = lock;
529 cv_broadcast(&so->so_snd.sb_cv);
530 cv_broadcast(&so->so_rcv.sb_cv);
531 cv_broadcast(&so->so_cv);
532 }
533
534 /*
535 * Socket buffer (struct sockbuf) utility routines.
536 *
537 * Each socket contains two socket buffers: one for sending data and
538 * one for receiving data. Each buffer contains a queue of mbufs,
539 * information about the number of mbufs and amount of data in the
540 * queue, and other fields allowing poll() statements and notification
541 * on data availability to be implemented.
542 *
543 * Data stored in a socket buffer is maintained as a list of records.
544 * Each record is a list of mbufs chained together with the m_next
545 * field. Records are chained together with the m_nextpkt field. The upper
546 * level routine soreceive() expects the following conventions to be
547 * observed when placing information in the receive buffer:
548 *
549 * 1. If the protocol requires each message be preceded by the sender's
550 * name, then a record containing that name must be present before
551 * any associated data (mbuf's must be of type MT_SONAME).
552 * 2. If the protocol supports the exchange of ``access rights'' (really
553 * just additional data associated with the message), and there are
554 * ``rights'' to be received, then a record containing this data
555 * should be present (mbuf's must be of type MT_CONTROL).
556 * 3. If a name or rights record exists, then it must be followed by
557 * a data record, perhaps of zero length.
558 *
559 * Before using a new socket structure it is first necessary to reserve
560 * buffer space to the socket, by calling sbreserve(). This should commit
561 * some of the available buffer space in the system buffer pool for the
562 * socket (currently, it does nothing but enforce limits). The space
563 * should be released by calling sbrelease() when the socket is destroyed.
564 */
565
566 int
567 sb_max_set(u_long new_sbmax)
568 {
569 int s;
570
571 if (new_sbmax < (16 * 1024))
572 return (EINVAL);
573
574 s = splsoftnet();
575 sb_max = new_sbmax;
576 sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
577 splx(s);
578
579 return (0);
580 }
581
582 int
583 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
584 {
585 KASSERT(so->so_pcb == NULL || solocked(so));
586
587 /*
588 * there's at least one application (a configure script of screen)
589 * which expects a fifo is writable even if it has "some" bytes
590 * in its buffer.
591 * so we want to make sure (hiwat - lowat) >= (some bytes).
592 *
593 * PIPE_BUF here is an arbitrary value chosen as (some bytes) above.
594 * we expect it's large enough for such applications.
595 */
596 u_long lowat = MAX(sock_loan_thresh, MCLBYTES);
597 u_long hiwat = lowat + PIPE_BUF;
598
599 if (sndcc < hiwat)
600 sndcc = hiwat;
601 if (sbreserve(&so->so_snd, sndcc, so) == 0)
602 goto bad;
603 if (sbreserve(&so->so_rcv, rcvcc, so) == 0)
604 goto bad2;
605 if (so->so_rcv.sb_lowat == 0)
606 so->so_rcv.sb_lowat = 1;
607 if (so->so_snd.sb_lowat == 0)
608 so->so_snd.sb_lowat = lowat;
609 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
610 so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
611 return (0);
612 bad2:
613 sbrelease(&so->so_snd, so);
614 bad:
615 return (ENOBUFS);
616 }
617
618 /*
619 * Allot mbufs to a sockbuf.
620 * Attempt to scale mbmax so that mbcnt doesn't become limiting
621 * if buffering efficiency is near the normal case.
622 */
623 int
624 sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
625 {
626 struct lwp *l = curlwp; /* XXX */
627 rlim_t maxcc;
628 struct uidinfo *uidinfo;
629
630 KASSERT(so->so_pcb == NULL || solocked(so));
631 KASSERT(sb->sb_so == so);
632 KASSERT(sb_max_adj != 0);
633
634 if (cc == 0 || cc > sb_max_adj)
635 return (0);
636
637 maxcc = l->l_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur;
638
639 uidinfo = so->so_uidinfo;
640 if (!chgsbsize(uidinfo, &sb->sb_hiwat, cc, maxcc))
641 return 0;
642 sb->sb_mbmax = min(cc * 2, sb_max);
643 if (sb->sb_lowat > sb->sb_hiwat)
644 sb->sb_lowat = sb->sb_hiwat;
645 return (1);
646 }
647
648 /*
649 * Free mbufs held by a socket, and reserved mbuf space. We do not assert
650 * that the socket is held locked here: see sorflush().
651 */
652 void
653 sbrelease(struct sockbuf *sb, struct socket *so)
654 {
655
656 KASSERT(sb->sb_so == so);
657
658 sbflush(sb);
659 (void)chgsbsize(so->so_uidinfo, &sb->sb_hiwat, 0, RLIM_INFINITY);
660 sb->sb_mbmax = 0;
661 }
662
663 /*
664 * Routines to add and remove
665 * data from an mbuf queue.
666 *
667 * The routines sbappend() or sbappendrecord() are normally called to
668 * append new mbufs to a socket buffer, after checking that adequate
669 * space is available, comparing the function sbspace() with the amount
670 * of data to be added. sbappendrecord() differs from sbappend() in
671 * that data supplied is treated as the beginning of a new record.
672 * To place a sender's address, optional access rights, and data in a
673 * socket receive buffer, sbappendaddr() should be used. To place
674 * access rights and data in a socket receive buffer, sbappendrights()
675 * should be used. In either case, the new data begins a new record.
676 * Note that unlike sbappend() and sbappendrecord(), these routines check
677 * for the caller that there will be enough space to store the data.
678 * Each fails if there is not enough space, or if it cannot find mbufs
679 * to store additional information in.
680 *
681 * Reliable protocols may use the socket send buffer to hold data
682 * awaiting acknowledgement. Data is normally copied from a socket
683 * send buffer in a protocol with m_copy for output to a peer,
684 * and then removing the data from the socket buffer with sbdrop()
685 * or sbdroprecord() when the data is acknowledged by the peer.
686 */
687
688 #ifdef SOCKBUF_DEBUG
689 void
690 sblastrecordchk(struct sockbuf *sb, const char *where)
691 {
692 struct mbuf *m = sb->sb_mb;
693
694 KASSERT(solocked(sb->sb_so));
695
696 while (m && m->m_nextpkt)
697 m = m->m_nextpkt;
698
699 if (m != sb->sb_lastrecord) {
700 printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
701 sb->sb_mb, sb->sb_lastrecord, m);
702 printf("packet chain:\n");
703 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
704 printf("\t%p\n", m);
705 panic("sblastrecordchk from %s", where);
706 }
707 }
708
709 void
710 sblastmbufchk(struct sockbuf *sb, const char *where)
711 {
712 struct mbuf *m = sb->sb_mb;
713 struct mbuf *n;
714
715 KASSERT(solocked(sb->sb_so));
716
717 while (m && m->m_nextpkt)
718 m = m->m_nextpkt;
719
720 while (m && m->m_next)
721 m = m->m_next;
722
723 if (m != sb->sb_mbtail) {
724 printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
725 sb->sb_mb, sb->sb_mbtail, m);
726 printf("packet tree:\n");
727 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
728 printf("\t");
729 for (n = m; n != NULL; n = n->m_next)
730 printf("%p ", n);
731 printf("\n");
732 }
733 panic("sblastmbufchk from %s", where);
734 }
735 }
736 #endif /* SOCKBUF_DEBUG */
737
738 /*
739 * Link a chain of records onto a socket buffer
740 */
741 #define SBLINKRECORDCHAIN(sb, m0, mlast) \
742 do { \
743 if ((sb)->sb_lastrecord != NULL) \
744 (sb)->sb_lastrecord->m_nextpkt = (m0); \
745 else \
746 (sb)->sb_mb = (m0); \
747 (sb)->sb_lastrecord = (mlast); \
748 } while (/*CONSTCOND*/0)
749
750
751 #define SBLINKRECORD(sb, m0) \
752 SBLINKRECORDCHAIN(sb, m0, m0)
753
754 /*
755 * Append mbuf chain m to the last record in the
756 * socket buffer sb. The additional space associated
757 * the mbuf chain is recorded in sb. Empty mbufs are
758 * discarded and mbufs are compacted where possible.
759 */
760 void
761 sbappend(struct sockbuf *sb, struct mbuf *m)
762 {
763 struct mbuf *n;
764
765 KASSERT(solocked(sb->sb_so));
766
767 if (m == NULL)
768 return;
769
770 #ifdef MBUFTRACE
771 m_claimm(m, sb->sb_mowner);
772 #endif
773
774 SBLASTRECORDCHK(sb, "sbappend 1");
775
776 if ((n = sb->sb_lastrecord) != NULL) {
777 /*
778 * XXX Would like to simply use sb_mbtail here, but
779 * XXX I need to verify that I won't miss an EOR that
780 * XXX way.
781 */
782 do {
783 if (n->m_flags & M_EOR) {
784 sbappendrecord(sb, m); /* XXXXXX!!!! */
785 return;
786 }
787 } while (n->m_next && (n = n->m_next));
788 } else {
789 /*
790 * If this is the first record in the socket buffer, it's
791 * also the last record.
792 */
793 sb->sb_lastrecord = m;
794 }
795 sbcompress(sb, m, n);
796 SBLASTRECORDCHK(sb, "sbappend 2");
797 }
798
799 /*
800 * This version of sbappend() should only be used when the caller
801 * absolutely knows that there will never be more than one record
802 * in the socket buffer, that is, a stream protocol (such as TCP).
803 */
804 void
805 sbappendstream(struct sockbuf *sb, struct mbuf *m)
806 {
807
808 KASSERT(solocked(sb->sb_so));
809 KDASSERT(m->m_nextpkt == NULL);
810 KASSERT(sb->sb_mb == sb->sb_lastrecord);
811
812 SBLASTMBUFCHK(sb, __func__);
813
814 #ifdef MBUFTRACE
815 m_claimm(m, sb->sb_mowner);
816 #endif
817
818 sbcompress(sb, m, sb->sb_mbtail);
819
820 sb->sb_lastrecord = sb->sb_mb;
821 SBLASTRECORDCHK(sb, __func__);
822 }
823
824 #ifdef SOCKBUF_DEBUG
825 void
826 sbcheck(struct sockbuf *sb)
827 {
828 struct mbuf *m, *m2;
829 u_long len, mbcnt;
830
831 KASSERT(solocked(sb->sb_so));
832
833 len = 0;
834 mbcnt = 0;
835 for (m = sb->sb_mb; m; m = m->m_nextpkt) {
836 for (m2 = m; m2 != NULL; m2 = m2->m_next) {
837 len += m2->m_len;
838 mbcnt += MSIZE;
839 if (m2->m_flags & M_EXT)
840 mbcnt += m2->m_ext.ext_size;
841 if (m2->m_nextpkt != NULL)
842 panic("sbcheck nextpkt");
843 }
844 }
845 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
846 printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
847 mbcnt, sb->sb_mbcnt);
848 panic("sbcheck");
849 }
850 }
851 #endif
852
853 /*
854 * As above, except the mbuf chain
855 * begins a new record.
856 */
857 void
858 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
859 {
860 struct mbuf *m;
861
862 KASSERT(solocked(sb->sb_so));
863
864 if (m0 == NULL)
865 return;
866
867 #ifdef MBUFTRACE
868 m_claimm(m0, sb->sb_mowner);
869 #endif
870 /*
871 * Put the first mbuf on the queue.
872 * Note this permits zero length records.
873 */
874 sballoc(sb, m0);
875 SBLASTRECORDCHK(sb, "sbappendrecord 1");
876 SBLINKRECORD(sb, m0);
877 m = m0->m_next;
878 m0->m_next = 0;
879 if (m && (m0->m_flags & M_EOR)) {
880 m0->m_flags &= ~M_EOR;
881 m->m_flags |= M_EOR;
882 }
883 sbcompress(sb, m, m0);
884 SBLASTRECORDCHK(sb, "sbappendrecord 2");
885 }
886
887 /*
888 * As above except that OOB data
889 * is inserted at the beginning of the sockbuf,
890 * but after any other OOB data.
891 */
892 void
893 sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
894 {
895 struct mbuf *m, **mp;
896
897 KASSERT(solocked(sb->sb_so));
898
899 if (m0 == NULL)
900 return;
901
902 SBLASTRECORDCHK(sb, "sbinsertoob 1");
903
904 for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
905 again:
906 switch (m->m_type) {
907
908 case MT_OOBDATA:
909 continue; /* WANT next train */
910
911 case MT_CONTROL:
912 if ((m = m->m_next) != NULL)
913 goto again; /* inspect THIS train further */
914 }
915 break;
916 }
917 /*
918 * Put the first mbuf on the queue.
919 * Note this permits zero length records.
920 */
921 sballoc(sb, m0);
922 m0->m_nextpkt = *mp;
923 if (*mp == NULL) {
924 /* m0 is actually the new tail */
925 sb->sb_lastrecord = m0;
926 }
927 *mp = m0;
928 m = m0->m_next;
929 m0->m_next = 0;
930 if (m && (m0->m_flags & M_EOR)) {
931 m0->m_flags &= ~M_EOR;
932 m->m_flags |= M_EOR;
933 }
934 sbcompress(sb, m, m0);
935 SBLASTRECORDCHK(sb, "sbinsertoob 2");
936 }
937
938 /*
939 * Append address and data, and optionally, control (ancillary) data
940 * to the receive queue of a socket. If present,
941 * m0 must include a packet header with total length.
942 * Returns 0 if no space in sockbuf or insufficient mbufs.
943 */
944 int
945 sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0,
946 struct mbuf *control)
947 {
948 struct mbuf *m, *n, *nlast;
949 int space, len;
950
951 KASSERT(solocked(sb->sb_so));
952
953 space = asa->sa_len;
954
955 if (m0 != NULL) {
956 if ((m0->m_flags & M_PKTHDR) == 0)
957 panic("sbappendaddr");
958 space += m0->m_pkthdr.len;
959 #ifdef MBUFTRACE
960 m_claimm(m0, sb->sb_mowner);
961 #endif
962 }
963 for (n = control; n; n = n->m_next) {
964 space += n->m_len;
965 MCLAIM(n, sb->sb_mowner);
966 if (n->m_next == NULL) /* keep pointer to last control buf */
967 break;
968 }
969 if (space > sbspace(sb))
970 return (0);
971 m = m_get(M_DONTWAIT, MT_SONAME);
972 if (m == NULL)
973 return (0);
974 MCLAIM(m, sb->sb_mowner);
975 /*
976 * XXX avoid 'comparison always true' warning which isn't easily
977 * avoided.
978 */
979 len = asa->sa_len;
980 if (len > MLEN) {
981 MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
982 if ((m->m_flags & M_EXT) == 0) {
983 m_free(m);
984 return (0);
985 }
986 }
987 m->m_len = asa->sa_len;
988 memcpy(mtod(m, void *), asa, asa->sa_len);
989 if (n)
990 n->m_next = m0; /* concatenate data to control */
991 else
992 control = m0;
993 m->m_next = control;
994
995 SBLASTRECORDCHK(sb, "sbappendaddr 1");
996
997 for (n = m; n->m_next != NULL; n = n->m_next)
998 sballoc(sb, n);
999 sballoc(sb, n);
1000 nlast = n;
1001 SBLINKRECORD(sb, m);
1002
1003 sb->sb_mbtail = nlast;
1004 SBLASTMBUFCHK(sb, "sbappendaddr");
1005 SBLASTRECORDCHK(sb, "sbappendaddr 2");
1006
1007 return (1);
1008 }
1009
1010 /*
1011 * Helper for sbappendchainaddr: prepend a struct sockaddr* to
1012 * an mbuf chain.
1013 */
1014 static inline struct mbuf *
1015 m_prepend_sockaddr(struct sockbuf *sb, struct mbuf *m0,
1016 const struct sockaddr *asa)
1017 {
1018 struct mbuf *m;
1019 const int salen = asa->sa_len;
1020
1021 KASSERT(solocked(sb->sb_so));
1022
1023 /* only the first in each chain need be a pkthdr */
1024 m = m_gethdr(M_DONTWAIT, MT_SONAME);
1025 if (m == NULL)
1026 return NULL;
1027 MCLAIM(m, sb->sb_mowner);
1028 #ifdef notyet
1029 if (salen > MHLEN) {
1030 MEXTMALLOC(m, salen, M_NOWAIT);
1031 if ((m->m_flags & M_EXT) == 0) {
1032 m_free(m);
1033 return NULL;
1034 }
1035 }
1036 #else
1037 KASSERT(salen <= MHLEN);
1038 #endif
1039 m->m_len = salen;
1040 memcpy(mtod(m, void *), asa, salen);
1041 m->m_next = m0;
1042 m->m_pkthdr.len = salen + m0->m_pkthdr.len;
1043
1044 return m;
1045 }
1046
1047 int
1048 sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa,
1049 struct mbuf *m0, int sbprio)
1050 {
1051 struct mbuf *m, *n, *n0, *nlast;
1052 int error;
1053
1054 KASSERT(solocked(sb->sb_so));
1055
1056 /*
1057 * XXX sbprio reserved for encoding priority of this* request:
1058 * SB_PRIO_NONE --> honour normal sb limits
1059 * SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space,
1060 * take whole chain. Intended for large requests
1061 * that should be delivered atomically (all, or none).
1062 * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow
1063 * over normal socket limits, for messages indicating
1064 * buffer overflow in earlier normal/lower-priority messages
1065 * SB_PRIO_BESTEFFORT --> ignore limits entirely.
1066 * Intended for kernel-generated messages only.
1067 * Up to generator to avoid total mbuf resource exhaustion.
1068 */
1069 (void)sbprio;
1070
1071 if (m0 && (m0->m_flags & M_PKTHDR) == 0)
1072 panic("sbappendaddrchain");
1073
1074 #ifdef notyet
1075 space = sbspace(sb);
1076
1077 /*
1078 * Enforce SB_PRIO_* limits as described above.
1079 */
1080 #endif
1081
1082 n0 = NULL;
1083 nlast = NULL;
1084 for (m = m0; m; m = m->m_nextpkt) {
1085 struct mbuf *np;
1086
1087 #ifdef MBUFTRACE
1088 m_claimm(m, sb->sb_mowner);
1089 #endif
1090
1091 /* Prepend sockaddr to this record (m) of input chain m0 */
1092 n = m_prepend_sockaddr(sb, m, asa);
1093 if (n == NULL) {
1094 error = ENOBUFS;
1095 goto bad;
1096 }
1097
1098 /* Append record (asa+m) to end of new chain n0 */
1099 if (n0 == NULL) {
1100 n0 = n;
1101 } else {
1102 nlast->m_nextpkt = n;
1103 }
1104 /* Keep track of last record on new chain */
1105 nlast = n;
1106
1107 for (np = n; np; np = np->m_next)
1108 sballoc(sb, np);
1109 }
1110
1111 SBLASTRECORDCHK(sb, "sbappendaddrchain 1");
1112
1113 /* Drop the entire chain of (asa+m) records onto the socket */
1114 SBLINKRECORDCHAIN(sb, n0, nlast);
1115
1116 SBLASTRECORDCHK(sb, "sbappendaddrchain 2");
1117
1118 for (m = nlast; m->m_next; m = m->m_next)
1119 ;
1120 sb->sb_mbtail = m;
1121 SBLASTMBUFCHK(sb, "sbappendaddrchain");
1122
1123 return (1);
1124
1125 bad:
1126 /*
1127 * On error, free the prepended addreseses. For consistency
1128 * with sbappendaddr(), leave it to our caller to free
1129 * the input record chain passed to us as m0.
1130 */
1131 while ((n = n0) != NULL) {
1132 struct mbuf *np;
1133
1134 /* Undo the sballoc() of this record */
1135 for (np = n; np; np = np->m_next)
1136 sbfree(sb, np);
1137
1138 n0 = n->m_nextpkt; /* iterate at next prepended address */
1139 MFREE(n, np); /* free prepended address (not data) */
1140 }
1141 return error;
1142 }
1143
1144
1145 int
1146 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
1147 {
1148 struct mbuf *m, *mlast, *n;
1149 int space;
1150
1151 KASSERT(solocked(sb->sb_so));
1152
1153 space = 0;
1154 if (control == NULL)
1155 panic("sbappendcontrol");
1156 for (m = control; ; m = m->m_next) {
1157 space += m->m_len;
1158 MCLAIM(m, sb->sb_mowner);
1159 if (m->m_next == NULL)
1160 break;
1161 }
1162 n = m; /* save pointer to last control buffer */
1163 for (m = m0; m; m = m->m_next) {
1164 MCLAIM(m, sb->sb_mowner);
1165 space += m->m_len;
1166 }
1167 if (space > sbspace(sb))
1168 return (0);
1169 n->m_next = m0; /* concatenate data to control */
1170
1171 SBLASTRECORDCHK(sb, "sbappendcontrol 1");
1172
1173 for (m = control; m->m_next != NULL; m = m->m_next)
1174 sballoc(sb, m);
1175 sballoc(sb, m);
1176 mlast = m;
1177 SBLINKRECORD(sb, control);
1178
1179 sb->sb_mbtail = mlast;
1180 SBLASTMBUFCHK(sb, "sbappendcontrol");
1181 SBLASTRECORDCHK(sb, "sbappendcontrol 2");
1182
1183 return (1);
1184 }
1185
1186 /*
1187 * Compress mbuf chain m into the socket
1188 * buffer sb following mbuf n. If n
1189 * is null, the buffer is presumed empty.
1190 */
1191 void
1192 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
1193 {
1194 int eor;
1195 struct mbuf *o;
1196
1197 KASSERT(solocked(sb->sb_so));
1198
1199 eor = 0;
1200 while (m) {
1201 eor |= m->m_flags & M_EOR;
1202 if (m->m_len == 0 &&
1203 (eor == 0 ||
1204 (((o = m->m_next) || (o = n)) &&
1205 o->m_type == m->m_type))) {
1206 if (sb->sb_lastrecord == m)
1207 sb->sb_lastrecord = m->m_next;
1208 m = m_free(m);
1209 continue;
1210 }
1211 if (n && (n->m_flags & M_EOR) == 0 &&
1212 /* M_TRAILINGSPACE() checks buffer writeability */
1213 m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
1214 m->m_len <= M_TRAILINGSPACE(n) &&
1215 n->m_type == m->m_type) {
1216 memcpy(mtod(n, char *) + n->m_len, mtod(m, void *),
1217 (unsigned)m->m_len);
1218 n->m_len += m->m_len;
1219 sb->sb_cc += m->m_len;
1220 m = m_free(m);
1221 continue;
1222 }
1223 if (n)
1224 n->m_next = m;
1225 else
1226 sb->sb_mb = m;
1227 sb->sb_mbtail = m;
1228 sballoc(sb, m);
1229 n = m;
1230 m->m_flags &= ~M_EOR;
1231 m = m->m_next;
1232 n->m_next = 0;
1233 }
1234 if (eor) {
1235 if (n)
1236 n->m_flags |= eor;
1237 else
1238 printf("semi-panic: sbcompress\n");
1239 }
1240 SBLASTMBUFCHK(sb, __func__);
1241 }
1242
1243 /*
1244 * Free all mbufs in a sockbuf.
1245 * Check that all resources are reclaimed.
1246 */
1247 void
1248 sbflush(struct sockbuf *sb)
1249 {
1250
1251 KASSERT(solocked(sb->sb_so));
1252 KASSERT((sb->sb_flags & SB_LOCK) == 0);
1253
1254 while (sb->sb_mbcnt)
1255 sbdrop(sb, (int)sb->sb_cc);
1256
1257 KASSERT(sb->sb_cc == 0);
1258 KASSERT(sb->sb_mb == NULL);
1259 KASSERT(sb->sb_mbtail == NULL);
1260 KASSERT(sb->sb_lastrecord == NULL);
1261 }
1262
1263 /*
1264 * Drop data from (the front of) a sockbuf.
1265 */
1266 void
1267 sbdrop(struct sockbuf *sb, int len)
1268 {
1269 struct mbuf *m, *mn, *next;
1270
1271 KASSERT(solocked(sb->sb_so));
1272
1273 next = (m = sb->sb_mb) ? m->m_nextpkt : NULL;
1274 while (len > 0) {
1275 if (m == NULL) {
1276 if (next == NULL)
1277 panic("sbdrop(%p,%d): cc=%lu",
1278 sb, len, sb->sb_cc);
1279 m = next;
1280 next = m->m_nextpkt;
1281 continue;
1282 }
1283 if (m->m_len > len) {
1284 m->m_len -= len;
1285 m->m_data += len;
1286 sb->sb_cc -= len;
1287 break;
1288 }
1289 len -= m->m_len;
1290 sbfree(sb, m);
1291 MFREE(m, mn);
1292 m = mn;
1293 }
1294 while (m && m->m_len == 0) {
1295 sbfree(sb, m);
1296 MFREE(m, mn);
1297 m = mn;
1298 }
1299 if (m) {
1300 sb->sb_mb = m;
1301 m->m_nextpkt = next;
1302 } else
1303 sb->sb_mb = next;
1304 /*
1305 * First part is an inline SB_EMPTY_FIXUP(). Second part
1306 * makes sure sb_lastrecord is up-to-date if we dropped
1307 * part of the last record.
1308 */
1309 m = sb->sb_mb;
1310 if (m == NULL) {
1311 sb->sb_mbtail = NULL;
1312 sb->sb_lastrecord = NULL;
1313 } else if (m->m_nextpkt == NULL)
1314 sb->sb_lastrecord = m;
1315 }
1316
1317 /*
1318 * Drop a record off the front of a sockbuf
1319 * and move the next record to the front.
1320 */
1321 void
1322 sbdroprecord(struct sockbuf *sb)
1323 {
1324 struct mbuf *m, *mn;
1325
1326 KASSERT(solocked(sb->sb_so));
1327
1328 m = sb->sb_mb;
1329 if (m) {
1330 sb->sb_mb = m->m_nextpkt;
1331 do {
1332 sbfree(sb, m);
1333 MFREE(m, mn);
1334 } while ((m = mn) != NULL);
1335 }
1336 SB_EMPTY_FIXUP(sb);
1337 }
1338
1339 /*
1340 * Create a "control" mbuf containing the specified data
1341 * with the specified type for presentation on a socket buffer.
1342 */
1343 struct mbuf *
1344 sbcreatecontrol1(void **p, int size, int type, int level, int flags)
1345 {
1346 struct cmsghdr *cp;
1347 struct mbuf *m;
1348 int space = CMSG_SPACE(size);
1349
1350 if ((flags & M_DONTWAIT) && space > MCLBYTES) {
1351 printf("%s: message too large %d\n", __func__, space);
1352 return NULL;
1353 }
1354
1355 if ((m = m_get(flags, MT_CONTROL)) == NULL)
1356 return NULL;
1357 if (space > MLEN) {
1358 if (space > MCLBYTES)
1359 MEXTMALLOC(m, space, M_WAITOK);
1360 else
1361 MCLGET(m, flags);
1362 if ((m->m_flags & M_EXT) == 0) {
1363 m_free(m);
1364 return NULL;
1365 }
1366 }
1367 cp = mtod(m, struct cmsghdr *);
1368 *p = CMSG_DATA(cp);
1369 m->m_len = space;
1370 cp->cmsg_len = CMSG_LEN(size);
1371 cp->cmsg_level = level;
1372 cp->cmsg_type = type;
1373 return m;
1374 }
1375
1376 struct mbuf *
1377 sbcreatecontrol(void *p, int size, int type, int level)
1378 {
1379 struct mbuf *m;
1380 void *v;
1381
1382 m = sbcreatecontrol1(&v, size, type, level, M_DONTWAIT);
1383 if (m == NULL)
1384 return NULL;
1385 memcpy(v, p, size);
1386 return m;
1387 }
1388
1389 void
1390 solockretry(struct socket *so, kmutex_t *lock)
1391 {
1392
1393 while (lock != so->so_lock) {
1394 mutex_exit(lock);
1395 lock = so->so_lock;
1396 mutex_enter(lock);
1397 }
1398 }
1399
1400 bool
1401 solocked(struct socket *so)
1402 {
1403
1404 return mutex_owned(so->so_lock);
1405 }
1406
1407 bool
1408 solocked2(struct socket *so1, struct socket *so2)
1409 {
1410 kmutex_t *lock;
1411
1412 lock = so1->so_lock;
1413 if (lock != so2->so_lock)
1414 return false;
1415 return mutex_owned(lock);
1416 }
1417
1418 /*
1419 * sosetlock: assign a default lock to a new socket.
1420 */
1421 void
1422 sosetlock(struct socket *so)
1423 {
1424 if (so->so_lock == NULL) {
1425 kmutex_t *lock = softnet_lock;
1426
1427 so->so_lock = lock;
1428 mutex_obj_hold(lock);
1429 mutex_enter(lock);
1430 }
1431 KASSERT(solocked(so));
1432 }
1433
1434 /*
1435 * Set lock on sockbuf sb; sleep if lock is already held.
1436 * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
1437 * Returns error without lock if sleep is interrupted.
1438 */
1439 int
1440 sblock(struct sockbuf *sb, int wf)
1441 {
1442 struct socket *so;
1443 kmutex_t *lock;
1444 int error;
1445
1446 KASSERT(solocked(sb->sb_so));
1447
1448 for (;;) {
1449 if (__predict_true((sb->sb_flags & SB_LOCK) == 0)) {
1450 sb->sb_flags |= SB_LOCK;
1451 return 0;
1452 }
1453 if (wf != M_WAITOK)
1454 return EWOULDBLOCK;
1455 so = sb->sb_so;
1456 lock = so->so_lock;
1457 if ((sb->sb_flags & SB_NOINTR) != 0) {
1458 cv_wait(&so->so_cv, lock);
1459 error = 0;
1460 } else
1461 error = cv_wait_sig(&so->so_cv, lock);
1462 if (__predict_false(lock != so->so_lock))
1463 solockretry(so, lock);
1464 if (error != 0)
1465 return error;
1466 }
1467 }
1468
1469 void
1470 sbunlock(struct sockbuf *sb)
1471 {
1472 struct socket *so;
1473
1474 so = sb->sb_so;
1475
1476 KASSERT(solocked(so));
1477 KASSERT((sb->sb_flags & SB_LOCK) != 0);
1478
1479 sb->sb_flags &= ~SB_LOCK;
1480 cv_broadcast(&so->so_cv);
1481 }
1482
1483 int
1484 sowait(struct socket *so, bool catch, int timo)
1485 {
1486 kmutex_t *lock;
1487 int error;
1488
1489 KASSERT(solocked(so));
1490 KASSERT(catch || timo != 0);
1491
1492 lock = so->so_lock;
1493 if (catch)
1494 error = cv_timedwait_sig(&so->so_cv, lock, timo);
1495 else
1496 error = cv_timedwait(&so->so_cv, lock, timo);
1497 if (__predict_false(lock != so->so_lock))
1498 solockretry(so, lock);
1499 return error;
1500 }
1501