uipc_socket2.c revision 1.122 1 /* $NetBSD: uipc_socket2.c,v 1.122 2015/08/24 22:21:26 pooka Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*
30 * Copyright (c) 1982, 1986, 1988, 1990, 1993
31 * The Regents of the University of California. All rights reserved.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 * 3. Neither the name of the University nor the names of its contributors
42 * may be used to endorse or promote products derived from this software
43 * without specific prior written permission.
44 *
45 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 * SUCH DAMAGE.
56 *
57 * @(#)uipc_socket2.c 8.2 (Berkeley) 2/14/95
58 */
59
60 #include <sys/cdefs.h>
61 __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.122 2015/08/24 22:21:26 pooka Exp $");
62
63 #ifdef _KERNEL_OPT
64 #include "opt_mbuftrace.h"
65 #include "opt_sb_max.h"
66 #endif
67
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/proc.h>
71 #include <sys/file.h>
72 #include <sys/buf.h>
73 #include <sys/mbuf.h>
74 #include <sys/protosw.h>
75 #include <sys/domain.h>
76 #include <sys/poll.h>
77 #include <sys/socket.h>
78 #include <sys/socketvar.h>
79 #include <sys/signalvar.h>
80 #include <sys/kauth.h>
81 #include <sys/pool.h>
82 #include <sys/uidinfo.h>
83
84 /*
85 * Primitive routines for operating on sockets and socket buffers.
86 *
87 * Connection life-cycle:
88 *
89 * Normal sequence from the active (originating) side:
90 *
91 * - soisconnecting() is called during processing of connect() call,
92 * - resulting in an eventual call to soisconnected() if/when the
93 * connection is established.
94 *
95 * When the connection is torn down during processing of disconnect():
96 *
97 * - soisdisconnecting() is called and,
98 * - soisdisconnected() is called when the connection to the peer
99 * is totally severed.
100 *
101 * The semantics of these routines are such that connectionless protocols
102 * can call soisconnected() and soisdisconnected() only, bypassing the
103 * in-progress calls when setting up a ``connection'' takes no time.
104 *
105 * From the passive side, a socket is created with two queues of sockets:
106 *
107 * - so_q0 (0) for partial connections (i.e. connections in progress)
108 * - so_q (1) for connections already made and awaiting user acceptance.
109 *
110 * As a protocol is preparing incoming connections, it creates a socket
111 * structure queued on so_q0 by calling sonewconn(). When the connection
112 * is established, soisconnected() is called, and transfers the
113 * socket structure to so_q, making it available to accept().
114 *
115 * If a socket is closed with sockets on either so_q0 or so_q, these
116 * sockets are dropped.
117 *
118 * Locking rules and assumptions:
119 *
120 * o socket::so_lock can change on the fly. The low level routines used
121 * to lock sockets are aware of this. When so_lock is acquired, the
122 * routine locking must check to see if so_lock still points to the
123 * lock that was acquired. If so_lock has changed in the meantime, the
124 * now irrelevant lock that was acquired must be dropped and the lock
125 * operation retried. Although not proven here, this is completely safe
126 * on a multiprocessor system, even with relaxed memory ordering, given
127 * the next two rules:
128 *
129 * o In order to mutate so_lock, the lock pointed to by the current value
130 * of so_lock must be held: i.e., the socket must be held locked by the
131 * changing thread. The thread must issue membar_exit() to prevent
132 * memory accesses being reordered, and can set so_lock to the desired
133 * value. If the lock pointed to by the new value of so_lock is not
134 * held by the changing thread, the socket must then be considered
135 * unlocked.
136 *
137 * o If so_lock is mutated, and the previous lock referred to by so_lock
138 * could still be visible to other threads in the system (e.g. via file
139 * descriptor or protocol-internal reference), then the old lock must
140 * remain valid until the socket and/or protocol control block has been
141 * torn down.
142 *
143 * o If a socket has a non-NULL so_head value (i.e. is in the process of
144 * connecting), then locking the socket must also lock the socket pointed
145 * to by so_head: their lock pointers must match.
146 *
147 * o If a socket has connections in progress (so_q, so_q0 not empty) then
148 * locking the socket must also lock the sockets attached to both queues.
149 * Again, their lock pointers must match.
150 *
151 * o Beyond the initial lock assignment in socreate(), assigning locks to
152 * sockets is the responsibility of the individual protocols / protocol
153 * domains.
154 */
155
156 static pool_cache_t socket_cache;
157 u_long sb_max = SB_MAX;/* maximum socket buffer size */
158 static u_long sb_max_adj; /* adjusted sb_max */
159
160 void
161 soisconnecting(struct socket *so)
162 {
163
164 KASSERT(solocked(so));
165
166 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
167 so->so_state |= SS_ISCONNECTING;
168 }
169
170 void
171 soisconnected(struct socket *so)
172 {
173 struct socket *head;
174
175 head = so->so_head;
176
177 KASSERT(solocked(so));
178 KASSERT(head == NULL || solocked2(so, head));
179
180 so->so_state &= ~(SS_ISCONNECTING | SS_ISDISCONNECTING);
181 so->so_state |= SS_ISCONNECTED;
182 if (head && so->so_onq == &head->so_q0) {
183 if ((so->so_options & SO_ACCEPTFILTER) == 0) {
184 /*
185 * Re-enqueue and wake up any waiters, e.g.
186 * processes blocking on accept().
187 */
188 soqremque(so, 0);
189 soqinsque(head, so, 1);
190 sorwakeup(head);
191 cv_broadcast(&head->so_cv);
192 } else {
193 so->so_upcall =
194 head->so_accf->so_accept_filter->accf_callback;
195 so->so_upcallarg = head->so_accf->so_accept_filter_arg;
196 so->so_rcv.sb_flags |= SB_UPCALL;
197 so->so_options &= ~SO_ACCEPTFILTER;
198 (*so->so_upcall)(so, so->so_upcallarg,
199 POLLIN|POLLRDNORM, M_DONTWAIT);
200 }
201 } else {
202 cv_broadcast(&so->so_cv);
203 sorwakeup(so);
204 sowwakeup(so);
205 }
206 }
207
208 void
209 soisdisconnecting(struct socket *so)
210 {
211
212 KASSERT(solocked(so));
213
214 so->so_state &= ~SS_ISCONNECTING;
215 so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
216 cv_broadcast(&so->so_cv);
217 sowwakeup(so);
218 sorwakeup(so);
219 }
220
221 void
222 soisdisconnected(struct socket *so)
223 {
224
225 KASSERT(solocked(so));
226
227 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
228 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
229 cv_broadcast(&so->so_cv);
230 sowwakeup(so);
231 sorwakeup(so);
232 }
233
234 void
235 soinit2(void)
236 {
237
238 socket_cache = pool_cache_init(sizeof(struct socket), 0, 0, 0,
239 "socket", NULL, IPL_SOFTNET, NULL, NULL, NULL);
240 }
241
242 /*
243 * sonewconn: accept a new connection.
244 *
245 * When an attempt at a new connection is noted on a socket which accepts
246 * connections, sonewconn(9) is called. If the connection is possible
247 * (subject to space constraints, etc) then we allocate a new structure,
248 * properly linked into the data structure of the original socket.
249 *
250 * => If 'soready' is true, then socket will become ready for accept() i.e.
251 * inserted into the so_q queue, SS_ISCONNECTED set and waiters awoken.
252 * => May be called from soft-interrupt context.
253 * => Listening socket should be locked.
254 * => Returns the new socket locked.
255 */
256 struct socket *
257 sonewconn(struct socket *head, bool soready)
258 {
259 struct socket *so;
260 int soqueue, error;
261
262 KASSERT(solocked(head));
263
264 if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2) {
265 /* Listen queue overflow. */
266 return NULL;
267 }
268 if ((head->so_options & SO_ACCEPTFILTER) != 0) {
269 soready = false;
270 }
271 soqueue = soready ? 1 : 0;
272
273 if ((so = soget(false)) == NULL) {
274 return NULL;
275 }
276 so->so_type = head->so_type;
277 so->so_options = head->so_options & ~SO_ACCEPTCONN;
278 so->so_linger = head->so_linger;
279 so->so_state = head->so_state | SS_NOFDREF;
280 so->so_proto = head->so_proto;
281 so->so_timeo = head->so_timeo;
282 so->so_pgid = head->so_pgid;
283 so->so_send = head->so_send;
284 so->so_receive = head->so_receive;
285 so->so_uidinfo = head->so_uidinfo;
286 so->so_cpid = head->so_cpid;
287
288 /*
289 * Share the lock with the listening-socket, it may get unshared
290 * once the connection is complete.
291 */
292 mutex_obj_hold(head->so_lock);
293 so->so_lock = head->so_lock;
294
295 /*
296 * Reserve the space for socket buffers.
297 */
298 #ifdef MBUFTRACE
299 so->so_mowner = head->so_mowner;
300 so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
301 so->so_snd.sb_mowner = head->so_snd.sb_mowner;
302 #endif
303 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) {
304 goto out;
305 }
306 so->so_snd.sb_lowat = head->so_snd.sb_lowat;
307 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
308 so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
309 so->so_snd.sb_timeo = head->so_snd.sb_timeo;
310 so->so_rcv.sb_flags |= head->so_rcv.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
311 so->so_snd.sb_flags |= head->so_snd.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
312
313 /*
314 * Finally, perform the protocol attach. Note: a new socket
315 * lock may be assigned at this point (if so, it will be held).
316 */
317 error = (*so->so_proto->pr_usrreqs->pr_attach)(so, 0);
318 if (error) {
319 out:
320 KASSERT(solocked(so));
321 KASSERT(so->so_accf == NULL);
322 soput(so);
323
324 /* Note: the listening socket shall stay locked. */
325 KASSERT(solocked(head));
326 return NULL;
327 }
328 KASSERT(solocked2(head, so));
329
330 /*
331 * Insert into the queue. If ready, update the connection status
332 * and wake up any waiters, e.g. processes blocking on accept().
333 */
334 soqinsque(head, so, soqueue);
335 if (soready) {
336 so->so_state |= SS_ISCONNECTED;
337 sorwakeup(head);
338 cv_broadcast(&head->so_cv);
339 }
340 return so;
341 }
342
343 struct socket *
344 soget(bool waitok)
345 {
346 struct socket *so;
347
348 so = pool_cache_get(socket_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
349 if (__predict_false(so == NULL))
350 return (NULL);
351 memset(so, 0, sizeof(*so));
352 TAILQ_INIT(&so->so_q0);
353 TAILQ_INIT(&so->so_q);
354 cv_init(&so->so_cv, "socket");
355 cv_init(&so->so_rcv.sb_cv, "netio");
356 cv_init(&so->so_snd.sb_cv, "netio");
357 selinit(&so->so_rcv.sb_sel);
358 selinit(&so->so_snd.sb_sel);
359 so->so_rcv.sb_so = so;
360 so->so_snd.sb_so = so;
361 return so;
362 }
363
364 void
365 soput(struct socket *so)
366 {
367
368 KASSERT(!cv_has_waiters(&so->so_cv));
369 KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
370 KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
371 seldestroy(&so->so_rcv.sb_sel);
372 seldestroy(&so->so_snd.sb_sel);
373 mutex_obj_free(so->so_lock);
374 cv_destroy(&so->so_cv);
375 cv_destroy(&so->so_rcv.sb_cv);
376 cv_destroy(&so->so_snd.sb_cv);
377 pool_cache_put(socket_cache, so);
378 }
379
380 /*
381 * soqinsque: insert socket of a new connection into the specified
382 * accept queue of the listening socket (head).
383 *
384 * q = 0: queue of partial connections
385 * q = 1: queue of incoming connections
386 */
387 void
388 soqinsque(struct socket *head, struct socket *so, int q)
389 {
390 KASSERT(q == 0 || q == 1);
391 KASSERT(solocked2(head, so));
392 KASSERT(so->so_onq == NULL);
393 KASSERT(so->so_head == NULL);
394
395 so->so_head = head;
396 if (q == 0) {
397 head->so_q0len++;
398 so->so_onq = &head->so_q0;
399 } else {
400 head->so_qlen++;
401 so->so_onq = &head->so_q;
402 }
403 TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
404 }
405
406 /*
407 * soqremque: remove socket from the specified queue.
408 *
409 * => Returns true if socket was removed from the specified queue.
410 * => False if socket was not removed (because it was in other queue).
411 */
412 bool
413 soqremque(struct socket *so, int q)
414 {
415 struct socket *head = so->so_head;
416
417 KASSERT(q == 0 || q == 1);
418 KASSERT(solocked(so));
419 KASSERT(so->so_onq != NULL);
420 KASSERT(head != NULL);
421
422 if (q == 0) {
423 if (so->so_onq != &head->so_q0)
424 return false;
425 head->so_q0len--;
426 } else {
427 if (so->so_onq != &head->so_q)
428 return false;
429 head->so_qlen--;
430 }
431 KASSERT(solocked2(so, head));
432 TAILQ_REMOVE(so->so_onq, so, so_qe);
433 so->so_onq = NULL;
434 so->so_head = NULL;
435 return true;
436 }
437
438 /*
439 * socantsendmore: indicates that no more data will be sent on the
440 * socket; it would normally be applied to a socket when the user
441 * informs the system that no more data is to be sent, by the protocol
442 * code (in case pr_shutdown()).
443 */
444 void
445 socantsendmore(struct socket *so)
446 {
447 KASSERT(solocked(so));
448
449 so->so_state |= SS_CANTSENDMORE;
450 sowwakeup(so);
451 }
452
453 /*
454 * socantrcvmore(): indicates that no more data will be received and
455 * will normally be applied to the socket by a protocol when it detects
456 * that the peer will send no more data. Data queued for reading in
457 * the socket may yet be read.
458 */
459 void
460 socantrcvmore(struct socket *so)
461 {
462 KASSERT(solocked(so));
463
464 so->so_state |= SS_CANTRCVMORE;
465 sorwakeup(so);
466 }
467
468 /*
469 * Wait for data to arrive at/drain from a socket buffer.
470 */
471 int
472 sbwait(struct sockbuf *sb)
473 {
474 struct socket *so;
475 kmutex_t *lock;
476 int error;
477
478 so = sb->sb_so;
479
480 KASSERT(solocked(so));
481
482 sb->sb_flags |= SB_NOTIFY;
483 lock = so->so_lock;
484 if ((sb->sb_flags & SB_NOINTR) != 0)
485 error = cv_timedwait(&sb->sb_cv, lock, sb->sb_timeo);
486 else
487 error = cv_timedwait_sig(&sb->sb_cv, lock, sb->sb_timeo);
488 if (__predict_false(lock != so->so_lock))
489 solockretry(so, lock);
490 return error;
491 }
492
493 /*
494 * Wakeup processes waiting on a socket buffer.
495 * Do asynchronous notification via SIGIO
496 * if the socket buffer has the SB_ASYNC flag set.
497 */
498 void
499 sowakeup(struct socket *so, struct sockbuf *sb, int code)
500 {
501 int band;
502
503 KASSERT(solocked(so));
504 KASSERT(sb->sb_so == so);
505
506 if (code == POLL_IN)
507 band = POLLIN|POLLRDNORM;
508 else
509 band = POLLOUT|POLLWRNORM;
510 sb->sb_flags &= ~SB_NOTIFY;
511 selnotify(&sb->sb_sel, band, NOTE_SUBMIT);
512 cv_broadcast(&sb->sb_cv);
513 if (sb->sb_flags & SB_ASYNC)
514 fownsignal(so->so_pgid, SIGIO, code, band, so);
515 if (sb->sb_flags & SB_UPCALL)
516 (*so->so_upcall)(so, so->so_upcallarg, band, M_DONTWAIT);
517 }
518
519 /*
520 * Reset a socket's lock pointer. Wake all threads waiting on the
521 * socket's condition variables so that they can restart their waits
522 * using the new lock. The existing lock must be held.
523 */
524 void
525 solockreset(struct socket *so, kmutex_t *lock)
526 {
527
528 KASSERT(solocked(so));
529
530 so->so_lock = lock;
531 cv_broadcast(&so->so_snd.sb_cv);
532 cv_broadcast(&so->so_rcv.sb_cv);
533 cv_broadcast(&so->so_cv);
534 }
535
536 /*
537 * Socket buffer (struct sockbuf) utility routines.
538 *
539 * Each socket contains two socket buffers: one for sending data and
540 * one for receiving data. Each buffer contains a queue of mbufs,
541 * information about the number of mbufs and amount of data in the
542 * queue, and other fields allowing poll() statements and notification
543 * on data availability to be implemented.
544 *
545 * Data stored in a socket buffer is maintained as a list of records.
546 * Each record is a list of mbufs chained together with the m_next
547 * field. Records are chained together with the m_nextpkt field. The upper
548 * level routine soreceive() expects the following conventions to be
549 * observed when placing information in the receive buffer:
550 *
551 * 1. If the protocol requires each message be preceded by the sender's
552 * name, then a record containing that name must be present before
553 * any associated data (mbuf's must be of type MT_SONAME).
554 * 2. If the protocol supports the exchange of ``access rights'' (really
555 * just additional data associated with the message), and there are
556 * ``rights'' to be received, then a record containing this data
557 * should be present (mbuf's must be of type MT_CONTROL).
558 * 3. If a name or rights record exists, then it must be followed by
559 * a data record, perhaps of zero length.
560 *
561 * Before using a new socket structure it is first necessary to reserve
562 * buffer space to the socket, by calling sbreserve(). This should commit
563 * some of the available buffer space in the system buffer pool for the
564 * socket (currently, it does nothing but enforce limits). The space
565 * should be released by calling sbrelease() when the socket is destroyed.
566 */
567
568 int
569 sb_max_set(u_long new_sbmax)
570 {
571 int s;
572
573 if (new_sbmax < (16 * 1024))
574 return (EINVAL);
575
576 s = splsoftnet();
577 sb_max = new_sbmax;
578 sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
579 splx(s);
580
581 return (0);
582 }
583
584 int
585 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
586 {
587 KASSERT(so->so_pcb == NULL || solocked(so));
588
589 /*
590 * there's at least one application (a configure script of screen)
591 * which expects a fifo is writable even if it has "some" bytes
592 * in its buffer.
593 * so we want to make sure (hiwat - lowat) >= (some bytes).
594 *
595 * PIPE_BUF here is an arbitrary value chosen as (some bytes) above.
596 * we expect it's large enough for such applications.
597 */
598 u_long lowat = MAX(sock_loan_thresh, MCLBYTES);
599 u_long hiwat = lowat + PIPE_BUF;
600
601 if (sndcc < hiwat)
602 sndcc = hiwat;
603 if (sbreserve(&so->so_snd, sndcc, so) == 0)
604 goto bad;
605 if (sbreserve(&so->so_rcv, rcvcc, so) == 0)
606 goto bad2;
607 if (so->so_rcv.sb_lowat == 0)
608 so->so_rcv.sb_lowat = 1;
609 if (so->so_snd.sb_lowat == 0)
610 so->so_snd.sb_lowat = lowat;
611 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
612 so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
613 return (0);
614 bad2:
615 sbrelease(&so->so_snd, so);
616 bad:
617 return (ENOBUFS);
618 }
619
620 /*
621 * Allot mbufs to a sockbuf.
622 * Attempt to scale mbmax so that mbcnt doesn't become limiting
623 * if buffering efficiency is near the normal case.
624 */
625 int
626 sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
627 {
628 struct lwp *l = curlwp; /* XXX */
629 rlim_t maxcc;
630 struct uidinfo *uidinfo;
631
632 KASSERT(so->so_pcb == NULL || solocked(so));
633 KASSERT(sb->sb_so == so);
634 KASSERT(sb_max_adj != 0);
635
636 if (cc == 0 || cc > sb_max_adj)
637 return (0);
638
639 maxcc = l->l_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur;
640
641 uidinfo = so->so_uidinfo;
642 if (!chgsbsize(uidinfo, &sb->sb_hiwat, cc, maxcc))
643 return 0;
644 sb->sb_mbmax = min(cc * 2, sb_max);
645 if (sb->sb_lowat > sb->sb_hiwat)
646 sb->sb_lowat = sb->sb_hiwat;
647 return (1);
648 }
649
650 /*
651 * Free mbufs held by a socket, and reserved mbuf space. We do not assert
652 * that the socket is held locked here: see sorflush().
653 */
654 void
655 sbrelease(struct sockbuf *sb, struct socket *so)
656 {
657
658 KASSERT(sb->sb_so == so);
659
660 sbflush(sb);
661 (void)chgsbsize(so->so_uidinfo, &sb->sb_hiwat, 0, RLIM_INFINITY);
662 sb->sb_mbmax = 0;
663 }
664
665 /*
666 * Routines to add and remove
667 * data from an mbuf queue.
668 *
669 * The routines sbappend() or sbappendrecord() are normally called to
670 * append new mbufs to a socket buffer, after checking that adequate
671 * space is available, comparing the function sbspace() with the amount
672 * of data to be added. sbappendrecord() differs from sbappend() in
673 * that data supplied is treated as the beginning of a new record.
674 * To place a sender's address, optional access rights, and data in a
675 * socket receive buffer, sbappendaddr() should be used. To place
676 * access rights and data in a socket receive buffer, sbappendrights()
677 * should be used. In either case, the new data begins a new record.
678 * Note that unlike sbappend() and sbappendrecord(), these routines check
679 * for the caller that there will be enough space to store the data.
680 * Each fails if there is not enough space, or if it cannot find mbufs
681 * to store additional information in.
682 *
683 * Reliable protocols may use the socket send buffer to hold data
684 * awaiting acknowledgement. Data is normally copied from a socket
685 * send buffer in a protocol with m_copy for output to a peer,
686 * and then removing the data from the socket buffer with sbdrop()
687 * or sbdroprecord() when the data is acknowledged by the peer.
688 */
689
690 #ifdef SOCKBUF_DEBUG
691 void
692 sblastrecordchk(struct sockbuf *sb, const char *where)
693 {
694 struct mbuf *m = sb->sb_mb;
695
696 KASSERT(solocked(sb->sb_so));
697
698 while (m && m->m_nextpkt)
699 m = m->m_nextpkt;
700
701 if (m != sb->sb_lastrecord) {
702 printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
703 sb->sb_mb, sb->sb_lastrecord, m);
704 printf("packet chain:\n");
705 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
706 printf("\t%p\n", m);
707 panic("sblastrecordchk from %s", where);
708 }
709 }
710
711 void
712 sblastmbufchk(struct sockbuf *sb, const char *where)
713 {
714 struct mbuf *m = sb->sb_mb;
715 struct mbuf *n;
716
717 KASSERT(solocked(sb->sb_so));
718
719 while (m && m->m_nextpkt)
720 m = m->m_nextpkt;
721
722 while (m && m->m_next)
723 m = m->m_next;
724
725 if (m != sb->sb_mbtail) {
726 printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
727 sb->sb_mb, sb->sb_mbtail, m);
728 printf("packet tree:\n");
729 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
730 printf("\t");
731 for (n = m; n != NULL; n = n->m_next)
732 printf("%p ", n);
733 printf("\n");
734 }
735 panic("sblastmbufchk from %s", where);
736 }
737 }
738 #endif /* SOCKBUF_DEBUG */
739
740 /*
741 * Link a chain of records onto a socket buffer
742 */
743 #define SBLINKRECORDCHAIN(sb, m0, mlast) \
744 do { \
745 if ((sb)->sb_lastrecord != NULL) \
746 (sb)->sb_lastrecord->m_nextpkt = (m0); \
747 else \
748 (sb)->sb_mb = (m0); \
749 (sb)->sb_lastrecord = (mlast); \
750 } while (/*CONSTCOND*/0)
751
752
753 #define SBLINKRECORD(sb, m0) \
754 SBLINKRECORDCHAIN(sb, m0, m0)
755
756 /*
757 * Append mbuf chain m to the last record in the
758 * socket buffer sb. The additional space associated
759 * the mbuf chain is recorded in sb. Empty mbufs are
760 * discarded and mbufs are compacted where possible.
761 */
762 void
763 sbappend(struct sockbuf *sb, struct mbuf *m)
764 {
765 struct mbuf *n;
766
767 KASSERT(solocked(sb->sb_so));
768
769 if (m == NULL)
770 return;
771
772 #ifdef MBUFTRACE
773 m_claimm(m, sb->sb_mowner);
774 #endif
775
776 SBLASTRECORDCHK(sb, "sbappend 1");
777
778 if ((n = sb->sb_lastrecord) != NULL) {
779 /*
780 * XXX Would like to simply use sb_mbtail here, but
781 * XXX I need to verify that I won't miss an EOR that
782 * XXX way.
783 */
784 do {
785 if (n->m_flags & M_EOR) {
786 sbappendrecord(sb, m); /* XXXXXX!!!! */
787 return;
788 }
789 } while (n->m_next && (n = n->m_next));
790 } else {
791 /*
792 * If this is the first record in the socket buffer, it's
793 * also the last record.
794 */
795 sb->sb_lastrecord = m;
796 }
797 sbcompress(sb, m, n);
798 SBLASTRECORDCHK(sb, "sbappend 2");
799 }
800
801 /*
802 * This version of sbappend() should only be used when the caller
803 * absolutely knows that there will never be more than one record
804 * in the socket buffer, that is, a stream protocol (such as TCP).
805 */
806 void
807 sbappendstream(struct sockbuf *sb, struct mbuf *m)
808 {
809
810 KASSERT(solocked(sb->sb_so));
811 KDASSERT(m->m_nextpkt == NULL);
812 KASSERT(sb->sb_mb == sb->sb_lastrecord);
813
814 SBLASTMBUFCHK(sb, __func__);
815
816 #ifdef MBUFTRACE
817 m_claimm(m, sb->sb_mowner);
818 #endif
819
820 sbcompress(sb, m, sb->sb_mbtail);
821
822 sb->sb_lastrecord = sb->sb_mb;
823 SBLASTRECORDCHK(sb, __func__);
824 }
825
826 #ifdef SOCKBUF_DEBUG
827 void
828 sbcheck(struct sockbuf *sb)
829 {
830 struct mbuf *m, *m2;
831 u_long len, mbcnt;
832
833 KASSERT(solocked(sb->sb_so));
834
835 len = 0;
836 mbcnt = 0;
837 for (m = sb->sb_mb; m; m = m->m_nextpkt) {
838 for (m2 = m; m2 != NULL; m2 = m2->m_next) {
839 len += m2->m_len;
840 mbcnt += MSIZE;
841 if (m2->m_flags & M_EXT)
842 mbcnt += m2->m_ext.ext_size;
843 if (m2->m_nextpkt != NULL)
844 panic("sbcheck nextpkt");
845 }
846 }
847 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
848 printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
849 mbcnt, sb->sb_mbcnt);
850 panic("sbcheck");
851 }
852 }
853 #endif
854
855 /*
856 * As above, except the mbuf chain
857 * begins a new record.
858 */
859 void
860 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
861 {
862 struct mbuf *m;
863
864 KASSERT(solocked(sb->sb_so));
865
866 if (m0 == NULL)
867 return;
868
869 #ifdef MBUFTRACE
870 m_claimm(m0, sb->sb_mowner);
871 #endif
872 /*
873 * Put the first mbuf on the queue.
874 * Note this permits zero length records.
875 */
876 sballoc(sb, m0);
877 SBLASTRECORDCHK(sb, "sbappendrecord 1");
878 SBLINKRECORD(sb, m0);
879 m = m0->m_next;
880 m0->m_next = 0;
881 if (m && (m0->m_flags & M_EOR)) {
882 m0->m_flags &= ~M_EOR;
883 m->m_flags |= M_EOR;
884 }
885 sbcompress(sb, m, m0);
886 SBLASTRECORDCHK(sb, "sbappendrecord 2");
887 }
888
889 /*
890 * As above except that OOB data
891 * is inserted at the beginning of the sockbuf,
892 * but after any other OOB data.
893 */
894 void
895 sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
896 {
897 struct mbuf *m, **mp;
898
899 KASSERT(solocked(sb->sb_so));
900
901 if (m0 == NULL)
902 return;
903
904 SBLASTRECORDCHK(sb, "sbinsertoob 1");
905
906 for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
907 again:
908 switch (m->m_type) {
909
910 case MT_OOBDATA:
911 continue; /* WANT next train */
912
913 case MT_CONTROL:
914 if ((m = m->m_next) != NULL)
915 goto again; /* inspect THIS train further */
916 }
917 break;
918 }
919 /*
920 * Put the first mbuf on the queue.
921 * Note this permits zero length records.
922 */
923 sballoc(sb, m0);
924 m0->m_nextpkt = *mp;
925 if (*mp == NULL) {
926 /* m0 is actually the new tail */
927 sb->sb_lastrecord = m0;
928 }
929 *mp = m0;
930 m = m0->m_next;
931 m0->m_next = 0;
932 if (m && (m0->m_flags & M_EOR)) {
933 m0->m_flags &= ~M_EOR;
934 m->m_flags |= M_EOR;
935 }
936 sbcompress(sb, m, m0);
937 SBLASTRECORDCHK(sb, "sbinsertoob 2");
938 }
939
940 /*
941 * Append address and data, and optionally, control (ancillary) data
942 * to the receive queue of a socket. If present,
943 * m0 must include a packet header with total length.
944 * Returns 0 if no space in sockbuf or insufficient mbufs.
945 */
946 int
947 sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0,
948 struct mbuf *control)
949 {
950 struct mbuf *m, *n, *nlast;
951 int space, len;
952
953 KASSERT(solocked(sb->sb_so));
954
955 space = asa->sa_len;
956
957 if (m0 != NULL) {
958 if ((m0->m_flags & M_PKTHDR) == 0)
959 panic("sbappendaddr");
960 space += m0->m_pkthdr.len;
961 #ifdef MBUFTRACE
962 m_claimm(m0, sb->sb_mowner);
963 #endif
964 }
965 for (n = control; n; n = n->m_next) {
966 space += n->m_len;
967 MCLAIM(n, sb->sb_mowner);
968 if (n->m_next == NULL) /* keep pointer to last control buf */
969 break;
970 }
971 if (space > sbspace(sb))
972 return (0);
973 m = m_get(M_DONTWAIT, MT_SONAME);
974 if (m == NULL)
975 return (0);
976 MCLAIM(m, sb->sb_mowner);
977 /*
978 * XXX avoid 'comparison always true' warning which isn't easily
979 * avoided.
980 */
981 len = asa->sa_len;
982 if (len > MLEN) {
983 MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
984 if ((m->m_flags & M_EXT) == 0) {
985 m_free(m);
986 return (0);
987 }
988 }
989 m->m_len = asa->sa_len;
990 memcpy(mtod(m, void *), asa, asa->sa_len);
991 if (n)
992 n->m_next = m0; /* concatenate data to control */
993 else
994 control = m0;
995 m->m_next = control;
996
997 SBLASTRECORDCHK(sb, "sbappendaddr 1");
998
999 for (n = m; n->m_next != NULL; n = n->m_next)
1000 sballoc(sb, n);
1001 sballoc(sb, n);
1002 nlast = n;
1003 SBLINKRECORD(sb, m);
1004
1005 sb->sb_mbtail = nlast;
1006 SBLASTMBUFCHK(sb, "sbappendaddr");
1007 SBLASTRECORDCHK(sb, "sbappendaddr 2");
1008
1009 return (1);
1010 }
1011
1012 /*
1013 * Helper for sbappendchainaddr: prepend a struct sockaddr* to
1014 * an mbuf chain.
1015 */
1016 static inline struct mbuf *
1017 m_prepend_sockaddr(struct sockbuf *sb, struct mbuf *m0,
1018 const struct sockaddr *asa)
1019 {
1020 struct mbuf *m;
1021 const int salen = asa->sa_len;
1022
1023 KASSERT(solocked(sb->sb_so));
1024
1025 /* only the first in each chain need be a pkthdr */
1026 m = m_gethdr(M_DONTWAIT, MT_SONAME);
1027 if (m == NULL)
1028 return NULL;
1029 MCLAIM(m, sb->sb_mowner);
1030 #ifdef notyet
1031 if (salen > MHLEN) {
1032 MEXTMALLOC(m, salen, M_NOWAIT);
1033 if ((m->m_flags & M_EXT) == 0) {
1034 m_free(m);
1035 return NULL;
1036 }
1037 }
1038 #else
1039 KASSERT(salen <= MHLEN);
1040 #endif
1041 m->m_len = salen;
1042 memcpy(mtod(m, void *), asa, salen);
1043 m->m_next = m0;
1044 m->m_pkthdr.len = salen + m0->m_pkthdr.len;
1045
1046 return m;
1047 }
1048
1049 int
1050 sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa,
1051 struct mbuf *m0, int sbprio)
1052 {
1053 struct mbuf *m, *n, *n0, *nlast;
1054 int error;
1055
1056 KASSERT(solocked(sb->sb_so));
1057
1058 /*
1059 * XXX sbprio reserved for encoding priority of this* request:
1060 * SB_PRIO_NONE --> honour normal sb limits
1061 * SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space,
1062 * take whole chain. Intended for large requests
1063 * that should be delivered atomically (all, or none).
1064 * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow
1065 * over normal socket limits, for messages indicating
1066 * buffer overflow in earlier normal/lower-priority messages
1067 * SB_PRIO_BESTEFFORT --> ignore limits entirely.
1068 * Intended for kernel-generated messages only.
1069 * Up to generator to avoid total mbuf resource exhaustion.
1070 */
1071 (void)sbprio;
1072
1073 if (m0 && (m0->m_flags & M_PKTHDR) == 0)
1074 panic("sbappendaddrchain");
1075
1076 #ifdef notyet
1077 space = sbspace(sb);
1078
1079 /*
1080 * Enforce SB_PRIO_* limits as described above.
1081 */
1082 #endif
1083
1084 n0 = NULL;
1085 nlast = NULL;
1086 for (m = m0; m; m = m->m_nextpkt) {
1087 struct mbuf *np;
1088
1089 #ifdef MBUFTRACE
1090 m_claimm(m, sb->sb_mowner);
1091 #endif
1092
1093 /* Prepend sockaddr to this record (m) of input chain m0 */
1094 n = m_prepend_sockaddr(sb, m, asa);
1095 if (n == NULL) {
1096 error = ENOBUFS;
1097 goto bad;
1098 }
1099
1100 /* Append record (asa+m) to end of new chain n0 */
1101 if (n0 == NULL) {
1102 n0 = n;
1103 } else {
1104 nlast->m_nextpkt = n;
1105 }
1106 /* Keep track of last record on new chain */
1107 nlast = n;
1108
1109 for (np = n; np; np = np->m_next)
1110 sballoc(sb, np);
1111 }
1112
1113 SBLASTRECORDCHK(sb, "sbappendaddrchain 1");
1114
1115 /* Drop the entire chain of (asa+m) records onto the socket */
1116 SBLINKRECORDCHAIN(sb, n0, nlast);
1117
1118 SBLASTRECORDCHK(sb, "sbappendaddrchain 2");
1119
1120 for (m = nlast; m->m_next; m = m->m_next)
1121 ;
1122 sb->sb_mbtail = m;
1123 SBLASTMBUFCHK(sb, "sbappendaddrchain");
1124
1125 return (1);
1126
1127 bad:
1128 /*
1129 * On error, free the prepended addreseses. For consistency
1130 * with sbappendaddr(), leave it to our caller to free
1131 * the input record chain passed to us as m0.
1132 */
1133 while ((n = n0) != NULL) {
1134 struct mbuf *np;
1135
1136 /* Undo the sballoc() of this record */
1137 for (np = n; np; np = np->m_next)
1138 sbfree(sb, np);
1139
1140 n0 = n->m_nextpkt; /* iterate at next prepended address */
1141 MFREE(n, np); /* free prepended address (not data) */
1142 }
1143 return error;
1144 }
1145
1146
1147 int
1148 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
1149 {
1150 struct mbuf *m, *mlast, *n;
1151 int space;
1152
1153 KASSERT(solocked(sb->sb_so));
1154
1155 space = 0;
1156 if (control == NULL)
1157 panic("sbappendcontrol");
1158 for (m = control; ; m = m->m_next) {
1159 space += m->m_len;
1160 MCLAIM(m, sb->sb_mowner);
1161 if (m->m_next == NULL)
1162 break;
1163 }
1164 n = m; /* save pointer to last control buffer */
1165 for (m = m0; m; m = m->m_next) {
1166 MCLAIM(m, sb->sb_mowner);
1167 space += m->m_len;
1168 }
1169 if (space > sbspace(sb))
1170 return (0);
1171 n->m_next = m0; /* concatenate data to control */
1172
1173 SBLASTRECORDCHK(sb, "sbappendcontrol 1");
1174
1175 for (m = control; m->m_next != NULL; m = m->m_next)
1176 sballoc(sb, m);
1177 sballoc(sb, m);
1178 mlast = m;
1179 SBLINKRECORD(sb, control);
1180
1181 sb->sb_mbtail = mlast;
1182 SBLASTMBUFCHK(sb, "sbappendcontrol");
1183 SBLASTRECORDCHK(sb, "sbappendcontrol 2");
1184
1185 return (1);
1186 }
1187
1188 /*
1189 * Compress mbuf chain m into the socket
1190 * buffer sb following mbuf n. If n
1191 * is null, the buffer is presumed empty.
1192 */
1193 void
1194 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
1195 {
1196 int eor;
1197 struct mbuf *o;
1198
1199 KASSERT(solocked(sb->sb_so));
1200
1201 eor = 0;
1202 while (m) {
1203 eor |= m->m_flags & M_EOR;
1204 if (m->m_len == 0 &&
1205 (eor == 0 ||
1206 (((o = m->m_next) || (o = n)) &&
1207 o->m_type == m->m_type))) {
1208 if (sb->sb_lastrecord == m)
1209 sb->sb_lastrecord = m->m_next;
1210 m = m_free(m);
1211 continue;
1212 }
1213 if (n && (n->m_flags & M_EOR) == 0 &&
1214 /* M_TRAILINGSPACE() checks buffer writeability */
1215 m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
1216 m->m_len <= M_TRAILINGSPACE(n) &&
1217 n->m_type == m->m_type) {
1218 memcpy(mtod(n, char *) + n->m_len, mtod(m, void *),
1219 (unsigned)m->m_len);
1220 n->m_len += m->m_len;
1221 sb->sb_cc += m->m_len;
1222 m = m_free(m);
1223 continue;
1224 }
1225 if (n)
1226 n->m_next = m;
1227 else
1228 sb->sb_mb = m;
1229 sb->sb_mbtail = m;
1230 sballoc(sb, m);
1231 n = m;
1232 m->m_flags &= ~M_EOR;
1233 m = m->m_next;
1234 n->m_next = 0;
1235 }
1236 if (eor) {
1237 if (n)
1238 n->m_flags |= eor;
1239 else
1240 printf("semi-panic: sbcompress\n");
1241 }
1242 SBLASTMBUFCHK(sb, __func__);
1243 }
1244
1245 /*
1246 * Free all mbufs in a sockbuf.
1247 * Check that all resources are reclaimed.
1248 */
1249 void
1250 sbflush(struct sockbuf *sb)
1251 {
1252
1253 KASSERT(solocked(sb->sb_so));
1254 KASSERT((sb->sb_flags & SB_LOCK) == 0);
1255
1256 while (sb->sb_mbcnt)
1257 sbdrop(sb, (int)sb->sb_cc);
1258
1259 KASSERT(sb->sb_cc == 0);
1260 KASSERT(sb->sb_mb == NULL);
1261 KASSERT(sb->sb_mbtail == NULL);
1262 KASSERT(sb->sb_lastrecord == NULL);
1263 }
1264
1265 /*
1266 * Drop data from (the front of) a sockbuf.
1267 */
1268 void
1269 sbdrop(struct sockbuf *sb, int len)
1270 {
1271 struct mbuf *m, *mn, *next;
1272
1273 KASSERT(solocked(sb->sb_so));
1274
1275 next = (m = sb->sb_mb) ? m->m_nextpkt : NULL;
1276 while (len > 0) {
1277 if (m == NULL) {
1278 if (next == NULL)
1279 panic("sbdrop(%p,%d): cc=%lu",
1280 sb, len, sb->sb_cc);
1281 m = next;
1282 next = m->m_nextpkt;
1283 continue;
1284 }
1285 if (m->m_len > len) {
1286 m->m_len -= len;
1287 m->m_data += len;
1288 sb->sb_cc -= len;
1289 break;
1290 }
1291 len -= m->m_len;
1292 sbfree(sb, m);
1293 MFREE(m, mn);
1294 m = mn;
1295 }
1296 while (m && m->m_len == 0) {
1297 sbfree(sb, m);
1298 MFREE(m, mn);
1299 m = mn;
1300 }
1301 if (m) {
1302 sb->sb_mb = m;
1303 m->m_nextpkt = next;
1304 } else
1305 sb->sb_mb = next;
1306 /*
1307 * First part is an inline SB_EMPTY_FIXUP(). Second part
1308 * makes sure sb_lastrecord is up-to-date if we dropped
1309 * part of the last record.
1310 */
1311 m = sb->sb_mb;
1312 if (m == NULL) {
1313 sb->sb_mbtail = NULL;
1314 sb->sb_lastrecord = NULL;
1315 } else if (m->m_nextpkt == NULL)
1316 sb->sb_lastrecord = m;
1317 }
1318
1319 /*
1320 * Drop a record off the front of a sockbuf
1321 * and move the next record to the front.
1322 */
1323 void
1324 sbdroprecord(struct sockbuf *sb)
1325 {
1326 struct mbuf *m, *mn;
1327
1328 KASSERT(solocked(sb->sb_so));
1329
1330 m = sb->sb_mb;
1331 if (m) {
1332 sb->sb_mb = m->m_nextpkt;
1333 do {
1334 sbfree(sb, m);
1335 MFREE(m, mn);
1336 } while ((m = mn) != NULL);
1337 }
1338 SB_EMPTY_FIXUP(sb);
1339 }
1340
1341 /*
1342 * Create a "control" mbuf containing the specified data
1343 * with the specified type for presentation on a socket buffer.
1344 */
1345 struct mbuf *
1346 sbcreatecontrol1(void **p, int size, int type, int level, int flags)
1347 {
1348 struct cmsghdr *cp;
1349 struct mbuf *m;
1350 int space = CMSG_SPACE(size);
1351
1352 if ((flags & M_DONTWAIT) && space > MCLBYTES) {
1353 printf("%s: message too large %d\n", __func__, space);
1354 return NULL;
1355 }
1356
1357 if ((m = m_get(flags, MT_CONTROL)) == NULL)
1358 return NULL;
1359 if (space > MLEN) {
1360 if (space > MCLBYTES)
1361 MEXTMALLOC(m, space, M_WAITOK);
1362 else
1363 MCLGET(m, flags);
1364 if ((m->m_flags & M_EXT) == 0) {
1365 m_free(m);
1366 return NULL;
1367 }
1368 }
1369 cp = mtod(m, struct cmsghdr *);
1370 *p = CMSG_DATA(cp);
1371 m->m_len = space;
1372 cp->cmsg_len = CMSG_LEN(size);
1373 cp->cmsg_level = level;
1374 cp->cmsg_type = type;
1375 return m;
1376 }
1377
1378 struct mbuf *
1379 sbcreatecontrol(void *p, int size, int type, int level)
1380 {
1381 struct mbuf *m;
1382 void *v;
1383
1384 m = sbcreatecontrol1(&v, size, type, level, M_DONTWAIT);
1385 if (m == NULL)
1386 return NULL;
1387 memcpy(v, p, size);
1388 return m;
1389 }
1390
1391 void
1392 solockretry(struct socket *so, kmutex_t *lock)
1393 {
1394
1395 while (lock != so->so_lock) {
1396 mutex_exit(lock);
1397 lock = so->so_lock;
1398 mutex_enter(lock);
1399 }
1400 }
1401
1402 bool
1403 solocked(struct socket *so)
1404 {
1405
1406 return mutex_owned(so->so_lock);
1407 }
1408
1409 bool
1410 solocked2(struct socket *so1, struct socket *so2)
1411 {
1412 kmutex_t *lock;
1413
1414 lock = so1->so_lock;
1415 if (lock != so2->so_lock)
1416 return false;
1417 return mutex_owned(lock);
1418 }
1419
1420 /*
1421 * sosetlock: assign a default lock to a new socket.
1422 */
1423 void
1424 sosetlock(struct socket *so)
1425 {
1426 if (so->so_lock == NULL) {
1427 kmutex_t *lock = softnet_lock;
1428
1429 so->so_lock = lock;
1430 mutex_obj_hold(lock);
1431 mutex_enter(lock);
1432 }
1433 KASSERT(solocked(so));
1434 }
1435
1436 /*
1437 * Set lock on sockbuf sb; sleep if lock is already held.
1438 * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
1439 * Returns error without lock if sleep is interrupted.
1440 */
1441 int
1442 sblock(struct sockbuf *sb, int wf)
1443 {
1444 struct socket *so;
1445 kmutex_t *lock;
1446 int error;
1447
1448 KASSERT(solocked(sb->sb_so));
1449
1450 for (;;) {
1451 if (__predict_true((sb->sb_flags & SB_LOCK) == 0)) {
1452 sb->sb_flags |= SB_LOCK;
1453 return 0;
1454 }
1455 if (wf != M_WAITOK)
1456 return EWOULDBLOCK;
1457 so = sb->sb_so;
1458 lock = so->so_lock;
1459 if ((sb->sb_flags & SB_NOINTR) != 0) {
1460 cv_wait(&so->so_cv, lock);
1461 error = 0;
1462 } else
1463 error = cv_wait_sig(&so->so_cv, lock);
1464 if (__predict_false(lock != so->so_lock))
1465 solockretry(so, lock);
1466 if (error != 0)
1467 return error;
1468 }
1469 }
1470
1471 void
1472 sbunlock(struct sockbuf *sb)
1473 {
1474 struct socket *so;
1475
1476 so = sb->sb_so;
1477
1478 KASSERT(solocked(so));
1479 KASSERT((sb->sb_flags & SB_LOCK) != 0);
1480
1481 sb->sb_flags &= ~SB_LOCK;
1482 cv_broadcast(&so->so_cv);
1483 }
1484
1485 int
1486 sowait(struct socket *so, bool catch_p, int timo)
1487 {
1488 kmutex_t *lock;
1489 int error;
1490
1491 KASSERT(solocked(so));
1492 KASSERT(catch_p || timo != 0);
1493
1494 lock = so->so_lock;
1495 if (catch_p)
1496 error = cv_timedwait_sig(&so->so_cv, lock, timo);
1497 else
1498 error = cv_timedwait(&so->so_cv, lock, timo);
1499 if (__predict_false(lock != so->so_lock))
1500 solockretry(so, lock);
1501 return error;
1502 }
1503