uipc_socket2.c revision 1.125 1 /* $NetBSD: uipc_socket2.c,v 1.125 2017/07/06 17:08:57 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*
30 * Copyright (c) 1982, 1986, 1988, 1990, 1993
31 * The Regents of the University of California. All rights reserved.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 * 3. Neither the name of the University nor the names of its contributors
42 * may be used to endorse or promote products derived from this software
43 * without specific prior written permission.
44 *
45 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 * SUCH DAMAGE.
56 *
57 * @(#)uipc_socket2.c 8.2 (Berkeley) 2/14/95
58 */
59
60 #include <sys/cdefs.h>
61 __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.125 2017/07/06 17:08:57 christos Exp $");
62
63 #ifdef _KERNEL_OPT
64 #include "opt_mbuftrace.h"
65 #include "opt_sb_max.h"
66 #include "opt_compat_netbsd.h"
67 #endif
68
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/proc.h>
72 #include <sys/file.h>
73 #include <sys/buf.h>
74 #include <sys/mbuf.h>
75 #include <sys/protosw.h>
76 #include <sys/domain.h>
77 #include <sys/poll.h>
78 #include <sys/socket.h>
79 #include <sys/socketvar.h>
80 #include <sys/signalvar.h>
81 #include <sys/kauth.h>
82 #include <sys/pool.h>
83 #include <sys/uidinfo.h>
84
85 /*
86 * Primitive routines for operating on sockets and socket buffers.
87 *
88 * Connection life-cycle:
89 *
90 * Normal sequence from the active (originating) side:
91 *
92 * - soisconnecting() is called during processing of connect() call,
93 * - resulting in an eventual call to soisconnected() if/when the
94 * connection is established.
95 *
96 * When the connection is torn down during processing of disconnect():
97 *
98 * - soisdisconnecting() is called and,
99 * - soisdisconnected() is called when the connection to the peer
100 * is totally severed.
101 *
102 * The semantics of these routines are such that connectionless protocols
103 * can call soisconnected() and soisdisconnected() only, bypassing the
104 * in-progress calls when setting up a ``connection'' takes no time.
105 *
106 * From the passive side, a socket is created with two queues of sockets:
107 *
108 * - so_q0 (0) for partial connections (i.e. connections in progress)
109 * - so_q (1) for connections already made and awaiting user acceptance.
110 *
111 * As a protocol is preparing incoming connections, it creates a socket
112 * structure queued on so_q0 by calling sonewconn(). When the connection
113 * is established, soisconnected() is called, and transfers the
114 * socket structure to so_q, making it available to accept().
115 *
116 * If a socket is closed with sockets on either so_q0 or so_q, these
117 * sockets are dropped.
118 *
119 * Locking rules and assumptions:
120 *
121 * o socket::so_lock can change on the fly. The low level routines used
122 * to lock sockets are aware of this. When so_lock is acquired, the
123 * routine locking must check to see if so_lock still points to the
124 * lock that was acquired. If so_lock has changed in the meantime, the
125 * now irrelevant lock that was acquired must be dropped and the lock
126 * operation retried. Although not proven here, this is completely safe
127 * on a multiprocessor system, even with relaxed memory ordering, given
128 * the next two rules:
129 *
130 * o In order to mutate so_lock, the lock pointed to by the current value
131 * of so_lock must be held: i.e., the socket must be held locked by the
132 * changing thread. The thread must issue membar_exit() to prevent
133 * memory accesses being reordered, and can set so_lock to the desired
134 * value. If the lock pointed to by the new value of so_lock is not
135 * held by the changing thread, the socket must then be considered
136 * unlocked.
137 *
138 * o If so_lock is mutated, and the previous lock referred to by so_lock
139 * could still be visible to other threads in the system (e.g. via file
140 * descriptor or protocol-internal reference), then the old lock must
141 * remain valid until the socket and/or protocol control block has been
142 * torn down.
143 *
144 * o If a socket has a non-NULL so_head value (i.e. is in the process of
145 * connecting), then locking the socket must also lock the socket pointed
146 * to by so_head: their lock pointers must match.
147 *
148 * o If a socket has connections in progress (so_q, so_q0 not empty) then
149 * locking the socket must also lock the sockets attached to both queues.
150 * Again, their lock pointers must match.
151 *
152 * o Beyond the initial lock assignment in socreate(), assigning locks to
153 * sockets is the responsibility of the individual protocols / protocol
154 * domains.
155 */
156
157 static pool_cache_t socket_cache;
158 u_long sb_max = SB_MAX;/* maximum socket buffer size */
159 static u_long sb_max_adj; /* adjusted sb_max */
160
161 void
162 soisconnecting(struct socket *so)
163 {
164
165 KASSERT(solocked(so));
166
167 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
168 so->so_state |= SS_ISCONNECTING;
169 }
170
171 void
172 soisconnected(struct socket *so)
173 {
174 struct socket *head;
175
176 head = so->so_head;
177
178 KASSERT(solocked(so));
179 KASSERT(head == NULL || solocked2(so, head));
180
181 so->so_state &= ~(SS_ISCONNECTING | SS_ISDISCONNECTING);
182 so->so_state |= SS_ISCONNECTED;
183 if (head && so->so_onq == &head->so_q0) {
184 if ((so->so_options & SO_ACCEPTFILTER) == 0) {
185 /*
186 * Re-enqueue and wake up any waiters, e.g.
187 * processes blocking on accept().
188 */
189 soqremque(so, 0);
190 soqinsque(head, so, 1);
191 sorwakeup(head);
192 cv_broadcast(&head->so_cv);
193 } else {
194 so->so_upcall =
195 head->so_accf->so_accept_filter->accf_callback;
196 so->so_upcallarg = head->so_accf->so_accept_filter_arg;
197 so->so_rcv.sb_flags |= SB_UPCALL;
198 so->so_options &= ~SO_ACCEPTFILTER;
199 (*so->so_upcall)(so, so->so_upcallarg,
200 POLLIN|POLLRDNORM, M_DONTWAIT);
201 }
202 } else {
203 cv_broadcast(&so->so_cv);
204 sorwakeup(so);
205 sowwakeup(so);
206 }
207 }
208
209 void
210 soisdisconnecting(struct socket *so)
211 {
212
213 KASSERT(solocked(so));
214
215 so->so_state &= ~SS_ISCONNECTING;
216 so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
217 cv_broadcast(&so->so_cv);
218 sowwakeup(so);
219 sorwakeup(so);
220 }
221
222 void
223 soisdisconnected(struct socket *so)
224 {
225
226 KASSERT(solocked(so));
227
228 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
229 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
230 cv_broadcast(&so->so_cv);
231 sowwakeup(so);
232 sorwakeup(so);
233 }
234
235 void
236 soinit2(void)
237 {
238
239 socket_cache = pool_cache_init(sizeof(struct socket), 0, 0, 0,
240 "socket", NULL, IPL_SOFTNET, NULL, NULL, NULL);
241 }
242
243 /*
244 * sonewconn: accept a new connection.
245 *
246 * When an attempt at a new connection is noted on a socket which accepts
247 * connections, sonewconn(9) is called. If the connection is possible
248 * (subject to space constraints, etc) then we allocate a new structure,
249 * properly linked into the data structure of the original socket.
250 *
251 * => If 'soready' is true, then socket will become ready for accept() i.e.
252 * inserted into the so_q queue, SS_ISCONNECTED set and waiters awoken.
253 * => May be called from soft-interrupt context.
254 * => Listening socket should be locked.
255 * => Returns the new socket locked.
256 */
257 struct socket *
258 sonewconn(struct socket *head, bool soready)
259 {
260 struct socket *so;
261 int soqueue, error;
262
263 KASSERT(solocked(head));
264
265 if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2) {
266 /*
267 * Listen queue overflow. If there is an accept filter
268 * active, pass through the oldest cxn it's handling.
269 */
270 if (head->so_accf == NULL) {
271 return NULL;
272 } else {
273 struct socket *so2, *next;
274
275 /* Pass the oldest connection waiting in the
276 accept filter */
277 for (so2 = TAILQ_FIRST(&head->so_q0);
278 so2 != NULL; so2 = next) {
279 next = TAILQ_NEXT(so2, so_qe);
280 if (so2->so_upcall == NULL) {
281 continue;
282 }
283 so2->so_upcall = NULL;
284 so2->so_upcallarg = NULL;
285 so2->so_options &= ~SO_ACCEPTFILTER;
286 so2->so_rcv.sb_flags &= ~SB_UPCALL;
287 soisconnected(so2);
288 break;
289 }
290
291 /* If nothing was nudged out of the acept filter, bail
292 * out; otherwise proceed allocating the socket. */
293 if (so2 == NULL) {
294 return NULL;
295 }
296 }
297 }
298 if ((head->so_options & SO_ACCEPTFILTER) != 0) {
299 soready = false;
300 }
301 soqueue = soready ? 1 : 0;
302
303 if ((so = soget(false)) == NULL) {
304 return NULL;
305 }
306 so->so_type = head->so_type;
307 so->so_options = head->so_options & ~SO_ACCEPTCONN;
308 so->so_linger = head->so_linger;
309 so->so_state = head->so_state | SS_NOFDREF;
310 so->so_proto = head->so_proto;
311 so->so_timeo = head->so_timeo;
312 so->so_pgid = head->so_pgid;
313 so->so_send = head->so_send;
314 so->so_receive = head->so_receive;
315 so->so_uidinfo = head->so_uidinfo;
316 so->so_cpid = head->so_cpid;
317
318 /*
319 * Share the lock with the listening-socket, it may get unshared
320 * once the connection is complete.
321 */
322 mutex_obj_hold(head->so_lock);
323 so->so_lock = head->so_lock;
324
325 /*
326 * Reserve the space for socket buffers.
327 */
328 #ifdef MBUFTRACE
329 so->so_mowner = head->so_mowner;
330 so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
331 so->so_snd.sb_mowner = head->so_snd.sb_mowner;
332 #endif
333 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) {
334 goto out;
335 }
336 so->so_snd.sb_lowat = head->so_snd.sb_lowat;
337 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
338 so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
339 so->so_snd.sb_timeo = head->so_snd.sb_timeo;
340 so->so_rcv.sb_flags |= head->so_rcv.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
341 so->so_snd.sb_flags |= head->so_snd.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
342
343 /*
344 * Finally, perform the protocol attach. Note: a new socket
345 * lock may be assigned at this point (if so, it will be held).
346 */
347 error = (*so->so_proto->pr_usrreqs->pr_attach)(so, 0);
348 if (error) {
349 out:
350 KASSERT(solocked(so));
351 KASSERT(so->so_accf == NULL);
352 soput(so);
353
354 /* Note: the listening socket shall stay locked. */
355 KASSERT(solocked(head));
356 return NULL;
357 }
358 KASSERT(solocked2(head, so));
359
360 /*
361 * Insert into the queue. If ready, update the connection status
362 * and wake up any waiters, e.g. processes blocking on accept().
363 */
364 soqinsque(head, so, soqueue);
365 if (soready) {
366 so->so_state |= SS_ISCONNECTED;
367 sorwakeup(head);
368 cv_broadcast(&head->so_cv);
369 }
370 return so;
371 }
372
373 struct socket *
374 soget(bool waitok)
375 {
376 struct socket *so;
377
378 so = pool_cache_get(socket_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
379 if (__predict_false(so == NULL))
380 return (NULL);
381 memset(so, 0, sizeof(*so));
382 TAILQ_INIT(&so->so_q0);
383 TAILQ_INIT(&so->so_q);
384 cv_init(&so->so_cv, "socket");
385 cv_init(&so->so_rcv.sb_cv, "netio");
386 cv_init(&so->so_snd.sb_cv, "netio");
387 selinit(&so->so_rcv.sb_sel);
388 selinit(&so->so_snd.sb_sel);
389 so->so_rcv.sb_so = so;
390 so->so_snd.sb_so = so;
391 return so;
392 }
393
394 void
395 soput(struct socket *so)
396 {
397
398 KASSERT(!cv_has_waiters(&so->so_cv));
399 KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
400 KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
401 seldestroy(&so->so_rcv.sb_sel);
402 seldestroy(&so->so_snd.sb_sel);
403 mutex_obj_free(so->so_lock);
404 cv_destroy(&so->so_cv);
405 cv_destroy(&so->so_rcv.sb_cv);
406 cv_destroy(&so->so_snd.sb_cv);
407 pool_cache_put(socket_cache, so);
408 }
409
410 /*
411 * soqinsque: insert socket of a new connection into the specified
412 * accept queue of the listening socket (head).
413 *
414 * q = 0: queue of partial connections
415 * q = 1: queue of incoming connections
416 */
417 void
418 soqinsque(struct socket *head, struct socket *so, int q)
419 {
420 KASSERT(q == 0 || q == 1);
421 KASSERT(solocked2(head, so));
422 KASSERT(so->so_onq == NULL);
423 KASSERT(so->so_head == NULL);
424
425 so->so_head = head;
426 if (q == 0) {
427 head->so_q0len++;
428 so->so_onq = &head->so_q0;
429 } else {
430 head->so_qlen++;
431 so->so_onq = &head->so_q;
432 }
433 TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
434 }
435
436 /*
437 * soqremque: remove socket from the specified queue.
438 *
439 * => Returns true if socket was removed from the specified queue.
440 * => False if socket was not removed (because it was in other queue).
441 */
442 bool
443 soqremque(struct socket *so, int q)
444 {
445 struct socket *head = so->so_head;
446
447 KASSERT(q == 0 || q == 1);
448 KASSERT(solocked(so));
449 KASSERT(so->so_onq != NULL);
450 KASSERT(head != NULL);
451
452 if (q == 0) {
453 if (so->so_onq != &head->so_q0)
454 return false;
455 head->so_q0len--;
456 } else {
457 if (so->so_onq != &head->so_q)
458 return false;
459 head->so_qlen--;
460 }
461 KASSERT(solocked2(so, head));
462 TAILQ_REMOVE(so->so_onq, so, so_qe);
463 so->so_onq = NULL;
464 so->so_head = NULL;
465 return true;
466 }
467
468 /*
469 * socantsendmore: indicates that no more data will be sent on the
470 * socket; it would normally be applied to a socket when the user
471 * informs the system that no more data is to be sent, by the protocol
472 * code (in case pr_shutdown()).
473 */
474 void
475 socantsendmore(struct socket *so)
476 {
477 KASSERT(solocked(so));
478
479 so->so_state |= SS_CANTSENDMORE;
480 sowwakeup(so);
481 }
482
483 /*
484 * socantrcvmore(): indicates that no more data will be received and
485 * will normally be applied to the socket by a protocol when it detects
486 * that the peer will send no more data. Data queued for reading in
487 * the socket may yet be read.
488 */
489 void
490 socantrcvmore(struct socket *so)
491 {
492 KASSERT(solocked(so));
493
494 so->so_state |= SS_CANTRCVMORE;
495 sorwakeup(so);
496 }
497
498 /*
499 * Wait for data to arrive at/drain from a socket buffer.
500 */
501 int
502 sbwait(struct sockbuf *sb)
503 {
504 struct socket *so;
505 kmutex_t *lock;
506 int error;
507
508 so = sb->sb_so;
509
510 KASSERT(solocked(so));
511
512 sb->sb_flags |= SB_NOTIFY;
513 lock = so->so_lock;
514 if ((sb->sb_flags & SB_NOINTR) != 0)
515 error = cv_timedwait(&sb->sb_cv, lock, sb->sb_timeo);
516 else
517 error = cv_timedwait_sig(&sb->sb_cv, lock, sb->sb_timeo);
518 if (__predict_false(lock != so->so_lock))
519 solockretry(so, lock);
520 return error;
521 }
522
523 /*
524 * Wakeup processes waiting on a socket buffer.
525 * Do asynchronous notification via SIGIO
526 * if the socket buffer has the SB_ASYNC flag set.
527 */
528 void
529 sowakeup(struct socket *so, struct sockbuf *sb, int code)
530 {
531 int band;
532
533 KASSERT(solocked(so));
534 KASSERT(sb->sb_so == so);
535
536 if (code == POLL_IN)
537 band = POLLIN|POLLRDNORM;
538 else
539 band = POLLOUT|POLLWRNORM;
540 sb->sb_flags &= ~SB_NOTIFY;
541 selnotify(&sb->sb_sel, band, NOTE_SUBMIT);
542 cv_broadcast(&sb->sb_cv);
543 if (sb->sb_flags & SB_ASYNC)
544 fownsignal(so->so_pgid, SIGIO, code, band, so);
545 if (sb->sb_flags & SB_UPCALL)
546 (*so->so_upcall)(so, so->so_upcallarg, band, M_DONTWAIT);
547 }
548
549 /*
550 * Reset a socket's lock pointer. Wake all threads waiting on the
551 * socket's condition variables so that they can restart their waits
552 * using the new lock. The existing lock must be held.
553 */
554 void
555 solockreset(struct socket *so, kmutex_t *lock)
556 {
557
558 KASSERT(solocked(so));
559
560 so->so_lock = lock;
561 cv_broadcast(&so->so_snd.sb_cv);
562 cv_broadcast(&so->so_rcv.sb_cv);
563 cv_broadcast(&so->so_cv);
564 }
565
566 /*
567 * Socket buffer (struct sockbuf) utility routines.
568 *
569 * Each socket contains two socket buffers: one for sending data and
570 * one for receiving data. Each buffer contains a queue of mbufs,
571 * information about the number of mbufs and amount of data in the
572 * queue, and other fields allowing poll() statements and notification
573 * on data availability to be implemented.
574 *
575 * Data stored in a socket buffer is maintained as a list of records.
576 * Each record is a list of mbufs chained together with the m_next
577 * field. Records are chained together with the m_nextpkt field. The upper
578 * level routine soreceive() expects the following conventions to be
579 * observed when placing information in the receive buffer:
580 *
581 * 1. If the protocol requires each message be preceded by the sender's
582 * name, then a record containing that name must be present before
583 * any associated data (mbuf's must be of type MT_SONAME).
584 * 2. If the protocol supports the exchange of ``access rights'' (really
585 * just additional data associated with the message), and there are
586 * ``rights'' to be received, then a record containing this data
587 * should be present (mbuf's must be of type MT_CONTROL).
588 * 3. If a name or rights record exists, then it must be followed by
589 * a data record, perhaps of zero length.
590 *
591 * Before using a new socket structure it is first necessary to reserve
592 * buffer space to the socket, by calling sbreserve(). This should commit
593 * some of the available buffer space in the system buffer pool for the
594 * socket (currently, it does nothing but enforce limits). The space
595 * should be released by calling sbrelease() when the socket is destroyed.
596 */
597
598 int
599 sb_max_set(u_long new_sbmax)
600 {
601 int s;
602
603 if (new_sbmax < (16 * 1024))
604 return (EINVAL);
605
606 s = splsoftnet();
607 sb_max = new_sbmax;
608 sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
609 splx(s);
610
611 return (0);
612 }
613
614 int
615 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
616 {
617 KASSERT(so->so_pcb == NULL || solocked(so));
618
619 /*
620 * there's at least one application (a configure script of screen)
621 * which expects a fifo is writable even if it has "some" bytes
622 * in its buffer.
623 * so we want to make sure (hiwat - lowat) >= (some bytes).
624 *
625 * PIPE_BUF here is an arbitrary value chosen as (some bytes) above.
626 * we expect it's large enough for such applications.
627 */
628 u_long lowat = MAX(sock_loan_thresh, MCLBYTES);
629 u_long hiwat = lowat + PIPE_BUF;
630
631 if (sndcc < hiwat)
632 sndcc = hiwat;
633 if (sbreserve(&so->so_snd, sndcc, so) == 0)
634 goto bad;
635 if (sbreserve(&so->so_rcv, rcvcc, so) == 0)
636 goto bad2;
637 if (so->so_rcv.sb_lowat == 0)
638 so->so_rcv.sb_lowat = 1;
639 if (so->so_snd.sb_lowat == 0)
640 so->so_snd.sb_lowat = lowat;
641 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
642 so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
643 return (0);
644 bad2:
645 sbrelease(&so->so_snd, so);
646 bad:
647 return (ENOBUFS);
648 }
649
650 /*
651 * Allot mbufs to a sockbuf.
652 * Attempt to scale mbmax so that mbcnt doesn't become limiting
653 * if buffering efficiency is near the normal case.
654 */
655 int
656 sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
657 {
658 struct lwp *l = curlwp; /* XXX */
659 rlim_t maxcc;
660 struct uidinfo *uidinfo;
661
662 KASSERT(so->so_pcb == NULL || solocked(so));
663 KASSERT(sb->sb_so == so);
664 KASSERT(sb_max_adj != 0);
665
666 if (cc == 0 || cc > sb_max_adj)
667 return (0);
668
669 maxcc = l->l_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur;
670
671 uidinfo = so->so_uidinfo;
672 if (!chgsbsize(uidinfo, &sb->sb_hiwat, cc, maxcc))
673 return 0;
674 sb->sb_mbmax = min(cc * 2, sb_max);
675 if (sb->sb_lowat > sb->sb_hiwat)
676 sb->sb_lowat = sb->sb_hiwat;
677 return (1);
678 }
679
680 /*
681 * Free mbufs held by a socket, and reserved mbuf space. We do not assert
682 * that the socket is held locked here: see sorflush().
683 */
684 void
685 sbrelease(struct sockbuf *sb, struct socket *so)
686 {
687
688 KASSERT(sb->sb_so == so);
689
690 sbflush(sb);
691 (void)chgsbsize(so->so_uidinfo, &sb->sb_hiwat, 0, RLIM_INFINITY);
692 sb->sb_mbmax = 0;
693 }
694
695 /*
696 * Routines to add and remove
697 * data from an mbuf queue.
698 *
699 * The routines sbappend() or sbappendrecord() are normally called to
700 * append new mbufs to a socket buffer, after checking that adequate
701 * space is available, comparing the function sbspace() with the amount
702 * of data to be added. sbappendrecord() differs from sbappend() in
703 * that data supplied is treated as the beginning of a new record.
704 * To place a sender's address, optional access rights, and data in a
705 * socket receive buffer, sbappendaddr() should be used. To place
706 * access rights and data in a socket receive buffer, sbappendrights()
707 * should be used. In either case, the new data begins a new record.
708 * Note that unlike sbappend() and sbappendrecord(), these routines check
709 * for the caller that there will be enough space to store the data.
710 * Each fails if there is not enough space, or if it cannot find mbufs
711 * to store additional information in.
712 *
713 * Reliable protocols may use the socket send buffer to hold data
714 * awaiting acknowledgement. Data is normally copied from a socket
715 * send buffer in a protocol with m_copy for output to a peer,
716 * and then removing the data from the socket buffer with sbdrop()
717 * or sbdroprecord() when the data is acknowledged by the peer.
718 */
719
720 #ifdef SOCKBUF_DEBUG
721 void
722 sblastrecordchk(struct sockbuf *sb, const char *where)
723 {
724 struct mbuf *m = sb->sb_mb;
725
726 KASSERT(solocked(sb->sb_so));
727
728 while (m && m->m_nextpkt)
729 m = m->m_nextpkt;
730
731 if (m != sb->sb_lastrecord) {
732 printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
733 sb->sb_mb, sb->sb_lastrecord, m);
734 printf("packet chain:\n");
735 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
736 printf("\t%p\n", m);
737 panic("sblastrecordchk from %s", where);
738 }
739 }
740
741 void
742 sblastmbufchk(struct sockbuf *sb, const char *where)
743 {
744 struct mbuf *m = sb->sb_mb;
745 struct mbuf *n;
746
747 KASSERT(solocked(sb->sb_so));
748
749 while (m && m->m_nextpkt)
750 m = m->m_nextpkt;
751
752 while (m && m->m_next)
753 m = m->m_next;
754
755 if (m != sb->sb_mbtail) {
756 printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
757 sb->sb_mb, sb->sb_mbtail, m);
758 printf("packet tree:\n");
759 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
760 printf("\t");
761 for (n = m; n != NULL; n = n->m_next)
762 printf("%p ", n);
763 printf("\n");
764 }
765 panic("sblastmbufchk from %s", where);
766 }
767 }
768 #endif /* SOCKBUF_DEBUG */
769
770 /*
771 * Link a chain of records onto a socket buffer
772 */
773 #define SBLINKRECORDCHAIN(sb, m0, mlast) \
774 do { \
775 if ((sb)->sb_lastrecord != NULL) \
776 (sb)->sb_lastrecord->m_nextpkt = (m0); \
777 else \
778 (sb)->sb_mb = (m0); \
779 (sb)->sb_lastrecord = (mlast); \
780 } while (/*CONSTCOND*/0)
781
782
783 #define SBLINKRECORD(sb, m0) \
784 SBLINKRECORDCHAIN(sb, m0, m0)
785
786 /*
787 * Append mbuf chain m to the last record in the
788 * socket buffer sb. The additional space associated
789 * the mbuf chain is recorded in sb. Empty mbufs are
790 * discarded and mbufs are compacted where possible.
791 */
792 void
793 sbappend(struct sockbuf *sb, struct mbuf *m)
794 {
795 struct mbuf *n;
796
797 KASSERT(solocked(sb->sb_so));
798
799 if (m == NULL)
800 return;
801
802 #ifdef MBUFTRACE
803 m_claimm(m, sb->sb_mowner);
804 #endif
805
806 SBLASTRECORDCHK(sb, "sbappend 1");
807
808 if ((n = sb->sb_lastrecord) != NULL) {
809 /*
810 * XXX Would like to simply use sb_mbtail here, but
811 * XXX I need to verify that I won't miss an EOR that
812 * XXX way.
813 */
814 do {
815 if (n->m_flags & M_EOR) {
816 sbappendrecord(sb, m); /* XXXXXX!!!! */
817 return;
818 }
819 } while (n->m_next && (n = n->m_next));
820 } else {
821 /*
822 * If this is the first record in the socket buffer, it's
823 * also the last record.
824 */
825 sb->sb_lastrecord = m;
826 }
827 sbcompress(sb, m, n);
828 SBLASTRECORDCHK(sb, "sbappend 2");
829 }
830
831 /*
832 * This version of sbappend() should only be used when the caller
833 * absolutely knows that there will never be more than one record
834 * in the socket buffer, that is, a stream protocol (such as TCP).
835 */
836 void
837 sbappendstream(struct sockbuf *sb, struct mbuf *m)
838 {
839
840 KASSERT(solocked(sb->sb_so));
841 KDASSERT(m->m_nextpkt == NULL);
842 KASSERT(sb->sb_mb == sb->sb_lastrecord);
843
844 SBLASTMBUFCHK(sb, __func__);
845
846 #ifdef MBUFTRACE
847 m_claimm(m, sb->sb_mowner);
848 #endif
849
850 sbcompress(sb, m, sb->sb_mbtail);
851
852 sb->sb_lastrecord = sb->sb_mb;
853 SBLASTRECORDCHK(sb, __func__);
854 }
855
856 #ifdef SOCKBUF_DEBUG
857 void
858 sbcheck(struct sockbuf *sb)
859 {
860 struct mbuf *m, *m2;
861 u_long len, mbcnt;
862
863 KASSERT(solocked(sb->sb_so));
864
865 len = 0;
866 mbcnt = 0;
867 for (m = sb->sb_mb; m; m = m->m_nextpkt) {
868 for (m2 = m; m2 != NULL; m2 = m2->m_next) {
869 len += m2->m_len;
870 mbcnt += MSIZE;
871 if (m2->m_flags & M_EXT)
872 mbcnt += m2->m_ext.ext_size;
873 if (m2->m_nextpkt != NULL)
874 panic("sbcheck nextpkt");
875 }
876 }
877 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
878 printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
879 mbcnt, sb->sb_mbcnt);
880 panic("sbcheck");
881 }
882 }
883 #endif
884
885 /*
886 * As above, except the mbuf chain
887 * begins a new record.
888 */
889 void
890 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
891 {
892 struct mbuf *m;
893
894 KASSERT(solocked(sb->sb_so));
895
896 if (m0 == NULL)
897 return;
898
899 #ifdef MBUFTRACE
900 m_claimm(m0, sb->sb_mowner);
901 #endif
902 /*
903 * Put the first mbuf on the queue.
904 * Note this permits zero length records.
905 */
906 sballoc(sb, m0);
907 SBLASTRECORDCHK(sb, "sbappendrecord 1");
908 SBLINKRECORD(sb, m0);
909 m = m0->m_next;
910 m0->m_next = 0;
911 if (m && (m0->m_flags & M_EOR)) {
912 m0->m_flags &= ~M_EOR;
913 m->m_flags |= M_EOR;
914 }
915 sbcompress(sb, m, m0);
916 SBLASTRECORDCHK(sb, "sbappendrecord 2");
917 }
918
919 /*
920 * As above except that OOB data
921 * is inserted at the beginning of the sockbuf,
922 * but after any other OOB data.
923 */
924 void
925 sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
926 {
927 struct mbuf *m, **mp;
928
929 KASSERT(solocked(sb->sb_so));
930
931 if (m0 == NULL)
932 return;
933
934 SBLASTRECORDCHK(sb, "sbinsertoob 1");
935
936 for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
937 again:
938 switch (m->m_type) {
939
940 case MT_OOBDATA:
941 continue; /* WANT next train */
942
943 case MT_CONTROL:
944 if ((m = m->m_next) != NULL)
945 goto again; /* inspect THIS train further */
946 }
947 break;
948 }
949 /*
950 * Put the first mbuf on the queue.
951 * Note this permits zero length records.
952 */
953 sballoc(sb, m0);
954 m0->m_nextpkt = *mp;
955 if (*mp == NULL) {
956 /* m0 is actually the new tail */
957 sb->sb_lastrecord = m0;
958 }
959 *mp = m0;
960 m = m0->m_next;
961 m0->m_next = 0;
962 if (m && (m0->m_flags & M_EOR)) {
963 m0->m_flags &= ~M_EOR;
964 m->m_flags |= M_EOR;
965 }
966 sbcompress(sb, m, m0);
967 SBLASTRECORDCHK(sb, "sbinsertoob 2");
968 }
969
970 /*
971 * Append address and data, and optionally, control (ancillary) data
972 * to the receive queue of a socket. If present,
973 * m0 must include a packet header with total length.
974 * Returns 0 if no space in sockbuf or insufficient mbufs.
975 */
976 int
977 sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0,
978 struct mbuf *control)
979 {
980 struct mbuf *m, *n, *nlast;
981 int space, len;
982
983 KASSERT(solocked(sb->sb_so));
984
985 space = asa->sa_len;
986
987 if (m0 != NULL) {
988 if ((m0->m_flags & M_PKTHDR) == 0)
989 panic("sbappendaddr");
990 space += m0->m_pkthdr.len;
991 #ifdef MBUFTRACE
992 m_claimm(m0, sb->sb_mowner);
993 #endif
994 }
995 for (n = control; n; n = n->m_next) {
996 space += n->m_len;
997 MCLAIM(n, sb->sb_mowner);
998 if (n->m_next == NULL) /* keep pointer to last control buf */
999 break;
1000 }
1001 if (space > sbspace(sb))
1002 return (0);
1003 m = m_get(M_DONTWAIT, MT_SONAME);
1004 if (m == NULL)
1005 return (0);
1006 MCLAIM(m, sb->sb_mowner);
1007 /*
1008 * XXX avoid 'comparison always true' warning which isn't easily
1009 * avoided.
1010 */
1011 len = asa->sa_len;
1012 if (len > MLEN) {
1013 MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
1014 if ((m->m_flags & M_EXT) == 0) {
1015 m_free(m);
1016 return (0);
1017 }
1018 }
1019 m->m_len = asa->sa_len;
1020 memcpy(mtod(m, void *), asa, asa->sa_len);
1021 if (n)
1022 n->m_next = m0; /* concatenate data to control */
1023 else
1024 control = m0;
1025 m->m_next = control;
1026
1027 SBLASTRECORDCHK(sb, "sbappendaddr 1");
1028
1029 for (n = m; n->m_next != NULL; n = n->m_next)
1030 sballoc(sb, n);
1031 sballoc(sb, n);
1032 nlast = n;
1033 SBLINKRECORD(sb, m);
1034
1035 sb->sb_mbtail = nlast;
1036 SBLASTMBUFCHK(sb, "sbappendaddr");
1037 SBLASTRECORDCHK(sb, "sbappendaddr 2");
1038
1039 return (1);
1040 }
1041
1042 /*
1043 * Helper for sbappendchainaddr: prepend a struct sockaddr* to
1044 * an mbuf chain.
1045 */
1046 static inline struct mbuf *
1047 m_prepend_sockaddr(struct sockbuf *sb, struct mbuf *m0,
1048 const struct sockaddr *asa)
1049 {
1050 struct mbuf *m;
1051 const int salen = asa->sa_len;
1052
1053 KASSERT(solocked(sb->sb_so));
1054
1055 /* only the first in each chain need be a pkthdr */
1056 m = m_gethdr(M_DONTWAIT, MT_SONAME);
1057 if (m == NULL)
1058 return NULL;
1059 MCLAIM(m, sb->sb_mowner);
1060 #ifdef notyet
1061 if (salen > MHLEN) {
1062 MEXTMALLOC(m, salen, M_NOWAIT);
1063 if ((m->m_flags & M_EXT) == 0) {
1064 m_free(m);
1065 return NULL;
1066 }
1067 }
1068 #else
1069 KASSERT(salen <= MHLEN);
1070 #endif
1071 m->m_len = salen;
1072 memcpy(mtod(m, void *), asa, salen);
1073 m->m_next = m0;
1074 m->m_pkthdr.len = salen + m0->m_pkthdr.len;
1075
1076 return m;
1077 }
1078
1079 int
1080 sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa,
1081 struct mbuf *m0, int sbprio)
1082 {
1083 struct mbuf *m, *n, *n0, *nlast;
1084 int error;
1085
1086 KASSERT(solocked(sb->sb_so));
1087
1088 /*
1089 * XXX sbprio reserved for encoding priority of this* request:
1090 * SB_PRIO_NONE --> honour normal sb limits
1091 * SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space,
1092 * take whole chain. Intended for large requests
1093 * that should be delivered atomically (all, or none).
1094 * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow
1095 * over normal socket limits, for messages indicating
1096 * buffer overflow in earlier normal/lower-priority messages
1097 * SB_PRIO_BESTEFFORT --> ignore limits entirely.
1098 * Intended for kernel-generated messages only.
1099 * Up to generator to avoid total mbuf resource exhaustion.
1100 */
1101 (void)sbprio;
1102
1103 if (m0 && (m0->m_flags & M_PKTHDR) == 0)
1104 panic("sbappendaddrchain");
1105
1106 #ifdef notyet
1107 space = sbspace(sb);
1108
1109 /*
1110 * Enforce SB_PRIO_* limits as described above.
1111 */
1112 #endif
1113
1114 n0 = NULL;
1115 nlast = NULL;
1116 for (m = m0; m; m = m->m_nextpkt) {
1117 struct mbuf *np;
1118
1119 #ifdef MBUFTRACE
1120 m_claimm(m, sb->sb_mowner);
1121 #endif
1122
1123 /* Prepend sockaddr to this record (m) of input chain m0 */
1124 n = m_prepend_sockaddr(sb, m, asa);
1125 if (n == NULL) {
1126 error = ENOBUFS;
1127 goto bad;
1128 }
1129
1130 /* Append record (asa+m) to end of new chain n0 */
1131 if (n0 == NULL) {
1132 n0 = n;
1133 } else {
1134 nlast->m_nextpkt = n;
1135 }
1136 /* Keep track of last record on new chain */
1137 nlast = n;
1138
1139 for (np = n; np; np = np->m_next)
1140 sballoc(sb, np);
1141 }
1142
1143 SBLASTRECORDCHK(sb, "sbappendaddrchain 1");
1144
1145 /* Drop the entire chain of (asa+m) records onto the socket */
1146 SBLINKRECORDCHAIN(sb, n0, nlast);
1147
1148 SBLASTRECORDCHK(sb, "sbappendaddrchain 2");
1149
1150 for (m = nlast; m->m_next; m = m->m_next)
1151 ;
1152 sb->sb_mbtail = m;
1153 SBLASTMBUFCHK(sb, "sbappendaddrchain");
1154
1155 return (1);
1156
1157 bad:
1158 /*
1159 * On error, free the prepended addreseses. For consistency
1160 * with sbappendaddr(), leave it to our caller to free
1161 * the input record chain passed to us as m0.
1162 */
1163 while ((n = n0) != NULL) {
1164 struct mbuf *np;
1165
1166 /* Undo the sballoc() of this record */
1167 for (np = n; np; np = np->m_next)
1168 sbfree(sb, np);
1169
1170 n0 = n->m_nextpkt; /* iterate at next prepended address */
1171 np = m_free(n); /* free prepended address (not data) */
1172 }
1173 return error;
1174 }
1175
1176
1177 int
1178 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
1179 {
1180 struct mbuf *m, *mlast, *n;
1181 int space;
1182
1183 KASSERT(solocked(sb->sb_so));
1184
1185 space = 0;
1186 if (control == NULL)
1187 panic("sbappendcontrol");
1188 for (m = control; ; m = m->m_next) {
1189 space += m->m_len;
1190 MCLAIM(m, sb->sb_mowner);
1191 if (m->m_next == NULL)
1192 break;
1193 }
1194 n = m; /* save pointer to last control buffer */
1195 for (m = m0; m; m = m->m_next) {
1196 MCLAIM(m, sb->sb_mowner);
1197 space += m->m_len;
1198 }
1199 if (space > sbspace(sb))
1200 return (0);
1201 n->m_next = m0; /* concatenate data to control */
1202
1203 SBLASTRECORDCHK(sb, "sbappendcontrol 1");
1204
1205 for (m = control; m->m_next != NULL; m = m->m_next)
1206 sballoc(sb, m);
1207 sballoc(sb, m);
1208 mlast = m;
1209 SBLINKRECORD(sb, control);
1210
1211 sb->sb_mbtail = mlast;
1212 SBLASTMBUFCHK(sb, "sbappendcontrol");
1213 SBLASTRECORDCHK(sb, "sbappendcontrol 2");
1214
1215 return (1);
1216 }
1217
1218 /*
1219 * Compress mbuf chain m into the socket
1220 * buffer sb following mbuf n. If n
1221 * is null, the buffer is presumed empty.
1222 */
1223 void
1224 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
1225 {
1226 int eor;
1227 struct mbuf *o;
1228
1229 KASSERT(solocked(sb->sb_so));
1230
1231 eor = 0;
1232 while (m) {
1233 eor |= m->m_flags & M_EOR;
1234 if (m->m_len == 0 &&
1235 (eor == 0 ||
1236 (((o = m->m_next) || (o = n)) &&
1237 o->m_type == m->m_type))) {
1238 if (sb->sb_lastrecord == m)
1239 sb->sb_lastrecord = m->m_next;
1240 m = m_free(m);
1241 continue;
1242 }
1243 if (n && (n->m_flags & M_EOR) == 0 &&
1244 /* M_TRAILINGSPACE() checks buffer writeability */
1245 m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
1246 m->m_len <= M_TRAILINGSPACE(n) &&
1247 n->m_type == m->m_type) {
1248 memcpy(mtod(n, char *) + n->m_len, mtod(m, void *),
1249 (unsigned)m->m_len);
1250 n->m_len += m->m_len;
1251 sb->sb_cc += m->m_len;
1252 m = m_free(m);
1253 continue;
1254 }
1255 if (n)
1256 n->m_next = m;
1257 else
1258 sb->sb_mb = m;
1259 sb->sb_mbtail = m;
1260 sballoc(sb, m);
1261 n = m;
1262 m->m_flags &= ~M_EOR;
1263 m = m->m_next;
1264 n->m_next = 0;
1265 }
1266 if (eor) {
1267 if (n)
1268 n->m_flags |= eor;
1269 else
1270 printf("semi-panic: sbcompress\n");
1271 }
1272 SBLASTMBUFCHK(sb, __func__);
1273 }
1274
1275 /*
1276 * Free all mbufs in a sockbuf.
1277 * Check that all resources are reclaimed.
1278 */
1279 void
1280 sbflush(struct sockbuf *sb)
1281 {
1282
1283 KASSERT(solocked(sb->sb_so));
1284 KASSERT((sb->sb_flags & SB_LOCK) == 0);
1285
1286 while (sb->sb_mbcnt)
1287 sbdrop(sb, (int)sb->sb_cc);
1288
1289 KASSERT(sb->sb_cc == 0);
1290 KASSERT(sb->sb_mb == NULL);
1291 KASSERT(sb->sb_mbtail == NULL);
1292 KASSERT(sb->sb_lastrecord == NULL);
1293 }
1294
1295 /*
1296 * Drop data from (the front of) a sockbuf.
1297 */
1298 void
1299 sbdrop(struct sockbuf *sb, int len)
1300 {
1301 struct mbuf *m, *next;
1302
1303 KASSERT(solocked(sb->sb_so));
1304
1305 next = (m = sb->sb_mb) ? m->m_nextpkt : NULL;
1306 while (len > 0) {
1307 if (m == NULL) {
1308 if (next == NULL)
1309 panic("sbdrop(%p,%d): cc=%lu",
1310 sb, len, sb->sb_cc);
1311 m = next;
1312 next = m->m_nextpkt;
1313 continue;
1314 }
1315 if (m->m_len > len) {
1316 m->m_len -= len;
1317 m->m_data += len;
1318 sb->sb_cc -= len;
1319 break;
1320 }
1321 len -= m->m_len;
1322 sbfree(sb, m);
1323 m = m_free(m);
1324 }
1325 while (m && m->m_len == 0) {
1326 sbfree(sb, m);
1327 m = m_free(m);
1328 }
1329 if (m) {
1330 sb->sb_mb = m;
1331 m->m_nextpkt = next;
1332 } else
1333 sb->sb_mb = next;
1334 /*
1335 * First part is an inline SB_EMPTY_FIXUP(). Second part
1336 * makes sure sb_lastrecord is up-to-date if we dropped
1337 * part of the last record.
1338 */
1339 m = sb->sb_mb;
1340 if (m == NULL) {
1341 sb->sb_mbtail = NULL;
1342 sb->sb_lastrecord = NULL;
1343 } else if (m->m_nextpkt == NULL)
1344 sb->sb_lastrecord = m;
1345 }
1346
1347 /*
1348 * Drop a record off the front of a sockbuf
1349 * and move the next record to the front.
1350 */
1351 void
1352 sbdroprecord(struct sockbuf *sb)
1353 {
1354 struct mbuf *m, *mn;
1355
1356 KASSERT(solocked(sb->sb_so));
1357
1358 m = sb->sb_mb;
1359 if (m) {
1360 sb->sb_mb = m->m_nextpkt;
1361 do {
1362 sbfree(sb, m);
1363 mn = m_free(m);
1364 } while ((m = mn) != NULL);
1365 }
1366 SB_EMPTY_FIXUP(sb);
1367 }
1368
1369 /*
1370 * Create a "control" mbuf containing the specified data
1371 * with the specified type for presentation on a socket buffer.
1372 */
1373 struct mbuf *
1374 sbcreatecontrol1(void **p, int size, int type, int level, int flags)
1375 {
1376 struct cmsghdr *cp;
1377 struct mbuf *m;
1378 int space = CMSG_SPACE(size);
1379
1380 if ((flags & M_DONTWAIT) && space > MCLBYTES) {
1381 printf("%s: message too large %d\n", __func__, space);
1382 return NULL;
1383 }
1384
1385 if ((m = m_get(flags, MT_CONTROL)) == NULL)
1386 return NULL;
1387 if (space > MLEN) {
1388 if (space > MCLBYTES)
1389 MEXTMALLOC(m, space, M_WAITOK);
1390 else
1391 MCLGET(m, flags);
1392 if ((m->m_flags & M_EXT) == 0) {
1393 m_free(m);
1394 return NULL;
1395 }
1396 }
1397 cp = mtod(m, struct cmsghdr *);
1398 *p = CMSG_DATA(cp);
1399 m->m_len = space;
1400 cp->cmsg_len = CMSG_LEN(size);
1401 cp->cmsg_level = level;
1402 cp->cmsg_type = type;
1403 return m;
1404 }
1405
1406 struct mbuf *
1407 sbcreatecontrol(void *p, int size, int type, int level)
1408 {
1409 struct mbuf *m;
1410 void *v;
1411
1412 m = sbcreatecontrol1(&v, size, type, level, M_DONTWAIT);
1413 if (m == NULL)
1414 return NULL;
1415 memcpy(v, p, size);
1416 return m;
1417 }
1418
1419 void
1420 solockretry(struct socket *so, kmutex_t *lock)
1421 {
1422
1423 while (lock != so->so_lock) {
1424 mutex_exit(lock);
1425 lock = so->so_lock;
1426 mutex_enter(lock);
1427 }
1428 }
1429
1430 bool
1431 solocked(struct socket *so)
1432 {
1433
1434 return mutex_owned(so->so_lock);
1435 }
1436
1437 bool
1438 solocked2(struct socket *so1, struct socket *so2)
1439 {
1440 kmutex_t *lock;
1441
1442 lock = so1->so_lock;
1443 if (lock != so2->so_lock)
1444 return false;
1445 return mutex_owned(lock);
1446 }
1447
1448 /*
1449 * sosetlock: assign a default lock to a new socket.
1450 */
1451 void
1452 sosetlock(struct socket *so)
1453 {
1454 if (so->so_lock == NULL) {
1455 kmutex_t *lock = softnet_lock;
1456
1457 so->so_lock = lock;
1458 mutex_obj_hold(lock);
1459 mutex_enter(lock);
1460 }
1461 KASSERT(solocked(so));
1462 }
1463
1464 /*
1465 * Set lock on sockbuf sb; sleep if lock is already held.
1466 * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
1467 * Returns error without lock if sleep is interrupted.
1468 */
1469 int
1470 sblock(struct sockbuf *sb, int wf)
1471 {
1472 struct socket *so;
1473 kmutex_t *lock;
1474 int error;
1475
1476 KASSERT(solocked(sb->sb_so));
1477
1478 for (;;) {
1479 if (__predict_true((sb->sb_flags & SB_LOCK) == 0)) {
1480 sb->sb_flags |= SB_LOCK;
1481 return 0;
1482 }
1483 if (wf != M_WAITOK)
1484 return EWOULDBLOCK;
1485 so = sb->sb_so;
1486 lock = so->so_lock;
1487 if ((sb->sb_flags & SB_NOINTR) != 0) {
1488 cv_wait(&so->so_cv, lock);
1489 error = 0;
1490 } else
1491 error = cv_wait_sig(&so->so_cv, lock);
1492 if (__predict_false(lock != so->so_lock))
1493 solockretry(so, lock);
1494 if (error != 0)
1495 return error;
1496 }
1497 }
1498
1499 void
1500 sbunlock(struct sockbuf *sb)
1501 {
1502 struct socket *so;
1503
1504 so = sb->sb_so;
1505
1506 KASSERT(solocked(so));
1507 KASSERT((sb->sb_flags & SB_LOCK) != 0);
1508
1509 sb->sb_flags &= ~SB_LOCK;
1510 cv_broadcast(&so->so_cv);
1511 }
1512
1513 int
1514 sowait(struct socket *so, bool catch_p, int timo)
1515 {
1516 kmutex_t *lock;
1517 int error;
1518
1519 KASSERT(solocked(so));
1520 KASSERT(catch_p || timo != 0);
1521
1522 lock = so->so_lock;
1523 if (catch_p)
1524 error = cv_timedwait_sig(&so->so_cv, lock, timo);
1525 else
1526 error = cv_timedwait(&so->so_cv, lock, timo);
1527 if (__predict_false(lock != so->so_lock))
1528 solockretry(so, lock);
1529 return error;
1530 }
1531
1532 #ifdef COMPAT_50
1533 #include <compat/sys/time.h>
1534 #include <compat/sys/socket.h>
1535 #endif
1536
1537 struct mbuf **
1538 sbsavetimestamp(int opt, struct mbuf *m, struct mbuf **mp)
1539 {
1540 struct timeval tv;
1541 microtime(&tv);
1542
1543 #ifdef SO_OTIMESTAMP
1544 if (opt & SO_OTIMESTAMP) {
1545 struct timeval50 tv50;
1546
1547 timeval_to_timeval50(&tv, &tv50);
1548 *mp = sbcreatecontrol(&tv50, sizeof(tv50),
1549 SCM_OTIMESTAMP, SOL_SOCKET);
1550 if (*mp)
1551 mp = &(*mp)->m_next;
1552 } else
1553 #endif
1554
1555 if (opt & SO_TIMESTAMP) {
1556 *mp = sbcreatecontrol(&tv, sizeof(tv),
1557 SCM_TIMESTAMP, SOL_SOCKET);
1558 if (*mp)
1559 mp = &(*mp)->m_next;
1560 }
1561 return mp;
1562 }
1563