uipc_socket2.c revision 1.126.4.1 1 /* $NetBSD: uipc_socket2.c,v 1.126.4.1 2018/03/22 01:44:50 pgoyette Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*
30 * Copyright (c) 1982, 1986, 1988, 1990, 1993
31 * The Regents of the University of California. All rights reserved.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 * 3. Neither the name of the University nor the names of its contributors
42 * may be used to endorse or promote products derived from this software
43 * without specific prior written permission.
44 *
45 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 * SUCH DAMAGE.
56 *
57 * @(#)uipc_socket2.c 8.2 (Berkeley) 2/14/95
58 */
59
60 #include <sys/cdefs.h>
61 __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.126.4.1 2018/03/22 01:44:50 pgoyette Exp $");
62
63 #ifdef _KERNEL_OPT
64 #include "opt_mbuftrace.h"
65 #include "opt_sb_max.h"
66 #endif
67
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/proc.h>
71 #include <sys/file.h>
72 #include <sys/buf.h>
73 #include <sys/mbuf.h>
74 #include <sys/protosw.h>
75 #include <sys/domain.h>
76 #include <sys/poll.h>
77 #include <sys/socket.h>
78 #include <sys/socketvar.h>
79 #include <sys/signalvar.h>
80 #include <sys/kauth.h>
81 #include <sys/pool.h>
82 #include <sys/uidinfo.h>
83
84 /*
85 * Primitive routines for operating on sockets and socket buffers.
86 *
87 * Connection life-cycle:
88 *
89 * Normal sequence from the active (originating) side:
90 *
91 * - soisconnecting() is called during processing of connect() call,
92 * - resulting in an eventual call to soisconnected() if/when the
93 * connection is established.
94 *
95 * When the connection is torn down during processing of disconnect():
96 *
97 * - soisdisconnecting() is called and,
98 * - soisdisconnected() is called when the connection to the peer
99 * is totally severed.
100 *
101 * The semantics of these routines are such that connectionless protocols
102 * can call soisconnected() and soisdisconnected() only, bypassing the
103 * in-progress calls when setting up a ``connection'' takes no time.
104 *
105 * From the passive side, a socket is created with two queues of sockets:
106 *
107 * - so_q0 (0) for partial connections (i.e. connections in progress)
108 * - so_q (1) for connections already made and awaiting user acceptance.
109 *
110 * As a protocol is preparing incoming connections, it creates a socket
111 * structure queued on so_q0 by calling sonewconn(). When the connection
112 * is established, soisconnected() is called, and transfers the
113 * socket structure to so_q, making it available to accept().
114 *
115 * If a socket is closed with sockets on either so_q0 or so_q, these
116 * sockets are dropped.
117 *
118 * Locking rules and assumptions:
119 *
120 * o socket::so_lock can change on the fly. The low level routines used
121 * to lock sockets are aware of this. When so_lock is acquired, the
122 * routine locking must check to see if so_lock still points to the
123 * lock that was acquired. If so_lock has changed in the meantime, the
124 * now irrelevant lock that was acquired must be dropped and the lock
125 * operation retried. Although not proven here, this is completely safe
126 * on a multiprocessor system, even with relaxed memory ordering, given
127 * the next two rules:
128 *
129 * o In order to mutate so_lock, the lock pointed to by the current value
130 * of so_lock must be held: i.e., the socket must be held locked by the
131 * changing thread. The thread must issue membar_exit() to prevent
132 * memory accesses being reordered, and can set so_lock to the desired
133 * value. If the lock pointed to by the new value of so_lock is not
134 * held by the changing thread, the socket must then be considered
135 * unlocked.
136 *
137 * o If so_lock is mutated, and the previous lock referred to by so_lock
138 * could still be visible to other threads in the system (e.g. via file
139 * descriptor or protocol-internal reference), then the old lock must
140 * remain valid until the socket and/or protocol control block has been
141 * torn down.
142 *
143 * o If a socket has a non-NULL so_head value (i.e. is in the process of
144 * connecting), then locking the socket must also lock the socket pointed
145 * to by so_head: their lock pointers must match.
146 *
147 * o If a socket has connections in progress (so_q, so_q0 not empty) then
148 * locking the socket must also lock the sockets attached to both queues.
149 * Again, their lock pointers must match.
150 *
151 * o Beyond the initial lock assignment in socreate(), assigning locks to
152 * sockets is the responsibility of the individual protocols / protocol
153 * domains.
154 */
155
156 static pool_cache_t socket_cache;
157 u_long sb_max = SB_MAX;/* maximum socket buffer size */
158 static u_long sb_max_adj; /* adjusted sb_max */
159
160 void
161 soisconnecting(struct socket *so)
162 {
163
164 KASSERT(solocked(so));
165
166 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
167 so->so_state |= SS_ISCONNECTING;
168 }
169
170 void
171 soisconnected(struct socket *so)
172 {
173 struct socket *head;
174
175 head = so->so_head;
176
177 KASSERT(solocked(so));
178 KASSERT(head == NULL || solocked2(so, head));
179
180 so->so_state &= ~(SS_ISCONNECTING | SS_ISDISCONNECTING);
181 so->so_state |= SS_ISCONNECTED;
182 if (head && so->so_onq == &head->so_q0) {
183 if ((so->so_options & SO_ACCEPTFILTER) == 0) {
184 /*
185 * Re-enqueue and wake up any waiters, e.g.
186 * processes blocking on accept().
187 */
188 soqremque(so, 0);
189 soqinsque(head, so, 1);
190 sorwakeup(head);
191 cv_broadcast(&head->so_cv);
192 } else {
193 so->so_upcall =
194 head->so_accf->so_accept_filter->accf_callback;
195 so->so_upcallarg = head->so_accf->so_accept_filter_arg;
196 so->so_rcv.sb_flags |= SB_UPCALL;
197 so->so_options &= ~SO_ACCEPTFILTER;
198 (*so->so_upcall)(so, so->so_upcallarg,
199 POLLIN|POLLRDNORM, M_DONTWAIT);
200 }
201 } else {
202 cv_broadcast(&so->so_cv);
203 sorwakeup(so);
204 sowwakeup(so);
205 }
206 }
207
208 void
209 soisdisconnecting(struct socket *so)
210 {
211
212 KASSERT(solocked(so));
213
214 so->so_state &= ~SS_ISCONNECTING;
215 so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
216 cv_broadcast(&so->so_cv);
217 sowwakeup(so);
218 sorwakeup(so);
219 }
220
221 void
222 soisdisconnected(struct socket *so)
223 {
224
225 KASSERT(solocked(so));
226
227 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
228 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
229 cv_broadcast(&so->so_cv);
230 sowwakeup(so);
231 sorwakeup(so);
232 }
233
234 void
235 soinit2(void)
236 {
237
238 socket_cache = pool_cache_init(sizeof(struct socket), 0, 0, 0,
239 "socket", NULL, IPL_SOFTNET, NULL, NULL, NULL);
240 }
241
242 /*
243 * sonewconn: accept a new connection.
244 *
245 * When an attempt at a new connection is noted on a socket which accepts
246 * connections, sonewconn(9) is called. If the connection is possible
247 * (subject to space constraints, etc) then we allocate a new structure,
248 * properly linked into the data structure of the original socket.
249 *
250 * => If 'soready' is true, then socket will become ready for accept() i.e.
251 * inserted into the so_q queue, SS_ISCONNECTED set and waiters awoken.
252 * => May be called from soft-interrupt context.
253 * => Listening socket should be locked.
254 * => Returns the new socket locked.
255 */
256 struct socket *
257 sonewconn(struct socket *head, bool soready)
258 {
259 struct socket *so;
260 int soqueue, error;
261
262 KASSERT(solocked(head));
263
264 if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2) {
265 /*
266 * Listen queue overflow. If there is an accept filter
267 * active, pass through the oldest cxn it's handling.
268 */
269 if (head->so_accf == NULL) {
270 return NULL;
271 } else {
272 struct socket *so2, *next;
273
274 /* Pass the oldest connection waiting in the
275 accept filter */
276 for (so2 = TAILQ_FIRST(&head->so_q0);
277 so2 != NULL; so2 = next) {
278 next = TAILQ_NEXT(so2, so_qe);
279 if (so2->so_upcall == NULL) {
280 continue;
281 }
282 so2->so_upcall = NULL;
283 so2->so_upcallarg = NULL;
284 so2->so_options &= ~SO_ACCEPTFILTER;
285 so2->so_rcv.sb_flags &= ~SB_UPCALL;
286 soisconnected(so2);
287 break;
288 }
289
290 /* If nothing was nudged out of the acept filter, bail
291 * out; otherwise proceed allocating the socket. */
292 if (so2 == NULL) {
293 return NULL;
294 }
295 }
296 }
297 if ((head->so_options & SO_ACCEPTFILTER) != 0) {
298 soready = false;
299 }
300 soqueue = soready ? 1 : 0;
301
302 if ((so = soget(false)) == NULL) {
303 return NULL;
304 }
305 so->so_type = head->so_type;
306 so->so_options = head->so_options & ~SO_ACCEPTCONN;
307 so->so_linger = head->so_linger;
308 so->so_state = head->so_state | SS_NOFDREF;
309 so->so_proto = head->so_proto;
310 so->so_timeo = head->so_timeo;
311 so->so_pgid = head->so_pgid;
312 so->so_send = head->so_send;
313 so->so_receive = head->so_receive;
314 so->so_uidinfo = head->so_uidinfo;
315 so->so_cpid = head->so_cpid;
316
317 /*
318 * Share the lock with the listening-socket, it may get unshared
319 * once the connection is complete.
320 */
321 mutex_obj_hold(head->so_lock);
322 so->so_lock = head->so_lock;
323
324 /*
325 * Reserve the space for socket buffers.
326 */
327 #ifdef MBUFTRACE
328 so->so_mowner = head->so_mowner;
329 so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
330 so->so_snd.sb_mowner = head->so_snd.sb_mowner;
331 #endif
332 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) {
333 goto out;
334 }
335 so->so_snd.sb_lowat = head->so_snd.sb_lowat;
336 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
337 so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
338 so->so_snd.sb_timeo = head->so_snd.sb_timeo;
339 so->so_rcv.sb_flags |= head->so_rcv.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
340 so->so_snd.sb_flags |= head->so_snd.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
341
342 /*
343 * Finally, perform the protocol attach. Note: a new socket
344 * lock may be assigned at this point (if so, it will be held).
345 */
346 error = (*so->so_proto->pr_usrreqs->pr_attach)(so, 0);
347 if (error) {
348 out:
349 KASSERT(solocked(so));
350 KASSERT(so->so_accf == NULL);
351 soput(so);
352
353 /* Note: the listening socket shall stay locked. */
354 KASSERT(solocked(head));
355 return NULL;
356 }
357 KASSERT(solocked2(head, so));
358
359 /*
360 * Insert into the queue. If ready, update the connection status
361 * and wake up any waiters, e.g. processes blocking on accept().
362 */
363 soqinsque(head, so, soqueue);
364 if (soready) {
365 so->so_state |= SS_ISCONNECTED;
366 sorwakeup(head);
367 cv_broadcast(&head->so_cv);
368 }
369 return so;
370 }
371
372 struct socket *
373 soget(bool waitok)
374 {
375 struct socket *so;
376
377 so = pool_cache_get(socket_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
378 if (__predict_false(so == NULL))
379 return (NULL);
380 memset(so, 0, sizeof(*so));
381 TAILQ_INIT(&so->so_q0);
382 TAILQ_INIT(&so->so_q);
383 cv_init(&so->so_cv, "socket");
384 cv_init(&so->so_rcv.sb_cv, "netio");
385 cv_init(&so->so_snd.sb_cv, "netio");
386 selinit(&so->so_rcv.sb_sel);
387 selinit(&so->so_snd.sb_sel);
388 so->so_rcv.sb_so = so;
389 so->so_snd.sb_so = so;
390 return so;
391 }
392
393 void
394 soput(struct socket *so)
395 {
396
397 KASSERT(!cv_has_waiters(&so->so_cv));
398 KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
399 KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
400 seldestroy(&so->so_rcv.sb_sel);
401 seldestroy(&so->so_snd.sb_sel);
402 mutex_obj_free(so->so_lock);
403 cv_destroy(&so->so_cv);
404 cv_destroy(&so->so_rcv.sb_cv);
405 cv_destroy(&so->so_snd.sb_cv);
406 pool_cache_put(socket_cache, so);
407 }
408
409 /*
410 * soqinsque: insert socket of a new connection into the specified
411 * accept queue of the listening socket (head).
412 *
413 * q = 0: queue of partial connections
414 * q = 1: queue of incoming connections
415 */
416 void
417 soqinsque(struct socket *head, struct socket *so, int q)
418 {
419 KASSERT(q == 0 || q == 1);
420 KASSERT(solocked2(head, so));
421 KASSERT(so->so_onq == NULL);
422 KASSERT(so->so_head == NULL);
423
424 so->so_head = head;
425 if (q == 0) {
426 head->so_q0len++;
427 so->so_onq = &head->so_q0;
428 } else {
429 head->so_qlen++;
430 so->so_onq = &head->so_q;
431 }
432 TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
433 }
434
435 /*
436 * soqremque: remove socket from the specified queue.
437 *
438 * => Returns true if socket was removed from the specified queue.
439 * => False if socket was not removed (because it was in other queue).
440 */
441 bool
442 soqremque(struct socket *so, int q)
443 {
444 struct socket *head = so->so_head;
445
446 KASSERT(q == 0 || q == 1);
447 KASSERT(solocked(so));
448 KASSERT(so->so_onq != NULL);
449 KASSERT(head != NULL);
450
451 if (q == 0) {
452 if (so->so_onq != &head->so_q0)
453 return false;
454 head->so_q0len--;
455 } else {
456 if (so->so_onq != &head->so_q)
457 return false;
458 head->so_qlen--;
459 }
460 KASSERT(solocked2(so, head));
461 TAILQ_REMOVE(so->so_onq, so, so_qe);
462 so->so_onq = NULL;
463 so->so_head = NULL;
464 return true;
465 }
466
467 /*
468 * socantsendmore: indicates that no more data will be sent on the
469 * socket; it would normally be applied to a socket when the user
470 * informs the system that no more data is to be sent, by the protocol
471 * code (in case pr_shutdown()).
472 */
473 void
474 socantsendmore(struct socket *so)
475 {
476 KASSERT(solocked(so));
477
478 so->so_state |= SS_CANTSENDMORE;
479 sowwakeup(so);
480 }
481
482 /*
483 * socantrcvmore(): indicates that no more data will be received and
484 * will normally be applied to the socket by a protocol when it detects
485 * that the peer will send no more data. Data queued for reading in
486 * the socket may yet be read.
487 */
488 void
489 socantrcvmore(struct socket *so)
490 {
491 KASSERT(solocked(so));
492
493 so->so_state |= SS_CANTRCVMORE;
494 sorwakeup(so);
495 }
496
497 /*
498 * soroverflow(): indicates that data was attempted to be sent
499 * but the receiving buffer overflowed.
500 */
501 void
502 soroverflow(struct socket *so)
503 {
504 KASSERT(solocked(so));
505
506 so->so_rcv.sb_overflowed++;
507 so->so_error = ENOBUFS;
508 sorwakeup(so);
509 }
510
511 /*
512 * Wait for data to arrive at/drain from a socket buffer.
513 */
514 int
515 sbwait(struct sockbuf *sb)
516 {
517 struct socket *so;
518 kmutex_t *lock;
519 int error;
520
521 so = sb->sb_so;
522
523 KASSERT(solocked(so));
524
525 sb->sb_flags |= SB_NOTIFY;
526 lock = so->so_lock;
527 if ((sb->sb_flags & SB_NOINTR) != 0)
528 error = cv_timedwait(&sb->sb_cv, lock, sb->sb_timeo);
529 else
530 error = cv_timedwait_sig(&sb->sb_cv, lock, sb->sb_timeo);
531 if (__predict_false(lock != so->so_lock))
532 solockretry(so, lock);
533 return error;
534 }
535
536 /*
537 * Wakeup processes waiting on a socket buffer.
538 * Do asynchronous notification via SIGIO
539 * if the socket buffer has the SB_ASYNC flag set.
540 */
541 void
542 sowakeup(struct socket *so, struct sockbuf *sb, int code)
543 {
544 int band;
545
546 KASSERT(solocked(so));
547 KASSERT(sb->sb_so == so);
548
549 if (code == POLL_IN)
550 band = POLLIN|POLLRDNORM;
551 else
552 band = POLLOUT|POLLWRNORM;
553 sb->sb_flags &= ~SB_NOTIFY;
554 selnotify(&sb->sb_sel, band, NOTE_SUBMIT);
555 cv_broadcast(&sb->sb_cv);
556 if (sb->sb_flags & SB_ASYNC)
557 fownsignal(so->so_pgid, SIGIO, code, band, so);
558 if (sb->sb_flags & SB_UPCALL)
559 (*so->so_upcall)(so, so->so_upcallarg, band, M_DONTWAIT);
560 }
561
562 /*
563 * Reset a socket's lock pointer. Wake all threads waiting on the
564 * socket's condition variables so that they can restart their waits
565 * using the new lock. The existing lock must be held.
566 */
567 void
568 solockreset(struct socket *so, kmutex_t *lock)
569 {
570
571 KASSERT(solocked(so));
572
573 so->so_lock = lock;
574 cv_broadcast(&so->so_snd.sb_cv);
575 cv_broadcast(&so->so_rcv.sb_cv);
576 cv_broadcast(&so->so_cv);
577 }
578
579 /*
580 * Socket buffer (struct sockbuf) utility routines.
581 *
582 * Each socket contains two socket buffers: one for sending data and
583 * one for receiving data. Each buffer contains a queue of mbufs,
584 * information about the number of mbufs and amount of data in the
585 * queue, and other fields allowing poll() statements and notification
586 * on data availability to be implemented.
587 *
588 * Data stored in a socket buffer is maintained as a list of records.
589 * Each record is a list of mbufs chained together with the m_next
590 * field. Records are chained together with the m_nextpkt field. The upper
591 * level routine soreceive() expects the following conventions to be
592 * observed when placing information in the receive buffer:
593 *
594 * 1. If the protocol requires each message be preceded by the sender's
595 * name, then a record containing that name must be present before
596 * any associated data (mbuf's must be of type MT_SONAME).
597 * 2. If the protocol supports the exchange of ``access rights'' (really
598 * just additional data associated with the message), and there are
599 * ``rights'' to be received, then a record containing this data
600 * should be present (mbuf's must be of type MT_CONTROL).
601 * 3. If a name or rights record exists, then it must be followed by
602 * a data record, perhaps of zero length.
603 *
604 * Before using a new socket structure it is first necessary to reserve
605 * buffer space to the socket, by calling sbreserve(). This should commit
606 * some of the available buffer space in the system buffer pool for the
607 * socket (currently, it does nothing but enforce limits). The space
608 * should be released by calling sbrelease() when the socket is destroyed.
609 */
610
611 int
612 sb_max_set(u_long new_sbmax)
613 {
614 int s;
615
616 if (new_sbmax < (16 * 1024))
617 return (EINVAL);
618
619 s = splsoftnet();
620 sb_max = new_sbmax;
621 sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
622 splx(s);
623
624 return (0);
625 }
626
627 int
628 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
629 {
630 KASSERT(so->so_pcb == NULL || solocked(so));
631
632 /*
633 * there's at least one application (a configure script of screen)
634 * which expects a fifo is writable even if it has "some" bytes
635 * in its buffer.
636 * so we want to make sure (hiwat - lowat) >= (some bytes).
637 *
638 * PIPE_BUF here is an arbitrary value chosen as (some bytes) above.
639 * we expect it's large enough for such applications.
640 */
641 u_long lowat = MAX(sock_loan_thresh, MCLBYTES);
642 u_long hiwat = lowat + PIPE_BUF;
643
644 if (sndcc < hiwat)
645 sndcc = hiwat;
646 if (sbreserve(&so->so_snd, sndcc, so) == 0)
647 goto bad;
648 if (sbreserve(&so->so_rcv, rcvcc, so) == 0)
649 goto bad2;
650 if (so->so_rcv.sb_lowat == 0)
651 so->so_rcv.sb_lowat = 1;
652 if (so->so_snd.sb_lowat == 0)
653 so->so_snd.sb_lowat = lowat;
654 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
655 so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
656 return (0);
657 bad2:
658 sbrelease(&so->so_snd, so);
659 bad:
660 return (ENOBUFS);
661 }
662
663 /*
664 * Allot mbufs to a sockbuf.
665 * Attempt to scale mbmax so that mbcnt doesn't become limiting
666 * if buffering efficiency is near the normal case.
667 */
668 int
669 sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
670 {
671 struct lwp *l = curlwp; /* XXX */
672 rlim_t maxcc;
673 struct uidinfo *uidinfo;
674
675 KASSERT(so->so_pcb == NULL || solocked(so));
676 KASSERT(sb->sb_so == so);
677 KASSERT(sb_max_adj != 0);
678
679 if (cc == 0 || cc > sb_max_adj)
680 return (0);
681
682 maxcc = l->l_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur;
683
684 uidinfo = so->so_uidinfo;
685 if (!chgsbsize(uidinfo, &sb->sb_hiwat, cc, maxcc))
686 return 0;
687 sb->sb_mbmax = min(cc * 2, sb_max);
688 if (sb->sb_lowat > sb->sb_hiwat)
689 sb->sb_lowat = sb->sb_hiwat;
690 return (1);
691 }
692
693 /*
694 * Free mbufs held by a socket, and reserved mbuf space. We do not assert
695 * that the socket is held locked here: see sorflush().
696 */
697 void
698 sbrelease(struct sockbuf *sb, struct socket *so)
699 {
700
701 KASSERT(sb->sb_so == so);
702
703 sbflush(sb);
704 (void)chgsbsize(so->so_uidinfo, &sb->sb_hiwat, 0, RLIM_INFINITY);
705 sb->sb_mbmax = 0;
706 }
707
708 /*
709 * Routines to add and remove
710 * data from an mbuf queue.
711 *
712 * The routines sbappend() or sbappendrecord() are normally called to
713 * append new mbufs to a socket buffer, after checking that adequate
714 * space is available, comparing the function sbspace() with the amount
715 * of data to be added. sbappendrecord() differs from sbappend() in
716 * that data supplied is treated as the beginning of a new record.
717 * To place a sender's address, optional access rights, and data in a
718 * socket receive buffer, sbappendaddr() should be used. To place
719 * access rights and data in a socket receive buffer, sbappendrights()
720 * should be used. In either case, the new data begins a new record.
721 * Note that unlike sbappend() and sbappendrecord(), these routines check
722 * for the caller that there will be enough space to store the data.
723 * Each fails if there is not enough space, or if it cannot find mbufs
724 * to store additional information in.
725 *
726 * Reliable protocols may use the socket send buffer to hold data
727 * awaiting acknowledgement. Data is normally copied from a socket
728 * send buffer in a protocol with m_copy for output to a peer,
729 * and then removing the data from the socket buffer with sbdrop()
730 * or sbdroprecord() when the data is acknowledged by the peer.
731 */
732
733 #ifdef SOCKBUF_DEBUG
734 void
735 sblastrecordchk(struct sockbuf *sb, const char *where)
736 {
737 struct mbuf *m = sb->sb_mb;
738
739 KASSERT(solocked(sb->sb_so));
740
741 while (m && m->m_nextpkt)
742 m = m->m_nextpkt;
743
744 if (m != sb->sb_lastrecord) {
745 printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
746 sb->sb_mb, sb->sb_lastrecord, m);
747 printf("packet chain:\n");
748 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
749 printf("\t%p\n", m);
750 panic("sblastrecordchk from %s", where);
751 }
752 }
753
754 void
755 sblastmbufchk(struct sockbuf *sb, const char *where)
756 {
757 struct mbuf *m = sb->sb_mb;
758 struct mbuf *n;
759
760 KASSERT(solocked(sb->sb_so));
761
762 while (m && m->m_nextpkt)
763 m = m->m_nextpkt;
764
765 while (m && m->m_next)
766 m = m->m_next;
767
768 if (m != sb->sb_mbtail) {
769 printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
770 sb->sb_mb, sb->sb_mbtail, m);
771 printf("packet tree:\n");
772 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
773 printf("\t");
774 for (n = m; n != NULL; n = n->m_next)
775 printf("%p ", n);
776 printf("\n");
777 }
778 panic("sblastmbufchk from %s", where);
779 }
780 }
781 #endif /* SOCKBUF_DEBUG */
782
783 /*
784 * Link a chain of records onto a socket buffer
785 */
786 #define SBLINKRECORDCHAIN(sb, m0, mlast) \
787 do { \
788 if ((sb)->sb_lastrecord != NULL) \
789 (sb)->sb_lastrecord->m_nextpkt = (m0); \
790 else \
791 (sb)->sb_mb = (m0); \
792 (sb)->sb_lastrecord = (mlast); \
793 } while (/*CONSTCOND*/0)
794
795
796 #define SBLINKRECORD(sb, m0) \
797 SBLINKRECORDCHAIN(sb, m0, m0)
798
799 /*
800 * Append mbuf chain m to the last record in the
801 * socket buffer sb. The additional space associated
802 * the mbuf chain is recorded in sb. Empty mbufs are
803 * discarded and mbufs are compacted where possible.
804 */
805 void
806 sbappend(struct sockbuf *sb, struct mbuf *m)
807 {
808 struct mbuf *n;
809
810 KASSERT(solocked(sb->sb_so));
811
812 if (m == NULL)
813 return;
814
815 #ifdef MBUFTRACE
816 m_claimm(m, sb->sb_mowner);
817 #endif
818
819 SBLASTRECORDCHK(sb, "sbappend 1");
820
821 if ((n = sb->sb_lastrecord) != NULL) {
822 /*
823 * XXX Would like to simply use sb_mbtail here, but
824 * XXX I need to verify that I won't miss an EOR that
825 * XXX way.
826 */
827 do {
828 if (n->m_flags & M_EOR) {
829 sbappendrecord(sb, m); /* XXXXXX!!!! */
830 return;
831 }
832 } while (n->m_next && (n = n->m_next));
833 } else {
834 /*
835 * If this is the first record in the socket buffer, it's
836 * also the last record.
837 */
838 sb->sb_lastrecord = m;
839 }
840 sbcompress(sb, m, n);
841 SBLASTRECORDCHK(sb, "sbappend 2");
842 }
843
844 /*
845 * This version of sbappend() should only be used when the caller
846 * absolutely knows that there will never be more than one record
847 * in the socket buffer, that is, a stream protocol (such as TCP).
848 */
849 void
850 sbappendstream(struct sockbuf *sb, struct mbuf *m)
851 {
852
853 KASSERT(solocked(sb->sb_so));
854 KDASSERT(m->m_nextpkt == NULL);
855 KASSERT(sb->sb_mb == sb->sb_lastrecord);
856
857 SBLASTMBUFCHK(sb, __func__);
858
859 #ifdef MBUFTRACE
860 m_claimm(m, sb->sb_mowner);
861 #endif
862
863 sbcompress(sb, m, sb->sb_mbtail);
864
865 sb->sb_lastrecord = sb->sb_mb;
866 SBLASTRECORDCHK(sb, __func__);
867 }
868
869 #ifdef SOCKBUF_DEBUG
870 void
871 sbcheck(struct sockbuf *sb)
872 {
873 struct mbuf *m, *m2;
874 u_long len, mbcnt;
875
876 KASSERT(solocked(sb->sb_so));
877
878 len = 0;
879 mbcnt = 0;
880 for (m = sb->sb_mb; m; m = m->m_nextpkt) {
881 for (m2 = m; m2 != NULL; m2 = m2->m_next) {
882 len += m2->m_len;
883 mbcnt += MSIZE;
884 if (m2->m_flags & M_EXT)
885 mbcnt += m2->m_ext.ext_size;
886 if (m2->m_nextpkt != NULL)
887 panic("sbcheck nextpkt");
888 }
889 }
890 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
891 printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
892 mbcnt, sb->sb_mbcnt);
893 panic("sbcheck");
894 }
895 }
896 #endif
897
898 /*
899 * As above, except the mbuf chain
900 * begins a new record.
901 */
902 void
903 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
904 {
905 struct mbuf *m;
906
907 KASSERT(solocked(sb->sb_so));
908
909 if (m0 == NULL)
910 return;
911
912 #ifdef MBUFTRACE
913 m_claimm(m0, sb->sb_mowner);
914 #endif
915 /*
916 * Put the first mbuf on the queue.
917 * Note this permits zero length records.
918 */
919 sballoc(sb, m0);
920 SBLASTRECORDCHK(sb, "sbappendrecord 1");
921 SBLINKRECORD(sb, m0);
922 m = m0->m_next;
923 m0->m_next = 0;
924 if (m && (m0->m_flags & M_EOR)) {
925 m0->m_flags &= ~M_EOR;
926 m->m_flags |= M_EOR;
927 }
928 sbcompress(sb, m, m0);
929 SBLASTRECORDCHK(sb, "sbappendrecord 2");
930 }
931
932 /*
933 * As above except that OOB data
934 * is inserted at the beginning of the sockbuf,
935 * but after any other OOB data.
936 */
937 void
938 sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
939 {
940 struct mbuf *m, **mp;
941
942 KASSERT(solocked(sb->sb_so));
943
944 if (m0 == NULL)
945 return;
946
947 SBLASTRECORDCHK(sb, "sbinsertoob 1");
948
949 for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
950 again:
951 switch (m->m_type) {
952
953 case MT_OOBDATA:
954 continue; /* WANT next train */
955
956 case MT_CONTROL:
957 if ((m = m->m_next) != NULL)
958 goto again; /* inspect THIS train further */
959 }
960 break;
961 }
962 /*
963 * Put the first mbuf on the queue.
964 * Note this permits zero length records.
965 */
966 sballoc(sb, m0);
967 m0->m_nextpkt = *mp;
968 if (*mp == NULL) {
969 /* m0 is actually the new tail */
970 sb->sb_lastrecord = m0;
971 }
972 *mp = m0;
973 m = m0->m_next;
974 m0->m_next = 0;
975 if (m && (m0->m_flags & M_EOR)) {
976 m0->m_flags &= ~M_EOR;
977 m->m_flags |= M_EOR;
978 }
979 sbcompress(sb, m, m0);
980 SBLASTRECORDCHK(sb, "sbinsertoob 2");
981 }
982
983 /*
984 * Append address and data, and optionally, control (ancillary) data
985 * to the receive queue of a socket. If present,
986 * m0 must include a packet header with total length.
987 * Returns 0 if no space in sockbuf or insufficient mbufs.
988 */
989 int
990 sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0,
991 struct mbuf *control)
992 {
993 struct mbuf *m, *n, *nlast;
994 int space, len;
995
996 KASSERT(solocked(sb->sb_so));
997
998 space = asa->sa_len;
999
1000 if (m0 != NULL) {
1001 if ((m0->m_flags & M_PKTHDR) == 0)
1002 panic("sbappendaddr");
1003 space += m0->m_pkthdr.len;
1004 #ifdef MBUFTRACE
1005 m_claimm(m0, sb->sb_mowner);
1006 #endif
1007 }
1008 for (n = control; n; n = n->m_next) {
1009 space += n->m_len;
1010 MCLAIM(n, sb->sb_mowner);
1011 if (n->m_next == NULL) /* keep pointer to last control buf */
1012 break;
1013 }
1014 if (space > sbspace(sb))
1015 return (0);
1016 m = m_get(M_DONTWAIT, MT_SONAME);
1017 if (m == NULL)
1018 return (0);
1019 MCLAIM(m, sb->sb_mowner);
1020 /*
1021 * XXX avoid 'comparison always true' warning which isn't easily
1022 * avoided.
1023 */
1024 len = asa->sa_len;
1025 if (len > MLEN) {
1026 MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
1027 if ((m->m_flags & M_EXT) == 0) {
1028 m_free(m);
1029 return (0);
1030 }
1031 }
1032 m->m_len = asa->sa_len;
1033 memcpy(mtod(m, void *), asa, asa->sa_len);
1034 if (n)
1035 n->m_next = m0; /* concatenate data to control */
1036 else
1037 control = m0;
1038 m->m_next = control;
1039
1040 SBLASTRECORDCHK(sb, "sbappendaddr 1");
1041
1042 for (n = m; n->m_next != NULL; n = n->m_next)
1043 sballoc(sb, n);
1044 sballoc(sb, n);
1045 nlast = n;
1046 SBLINKRECORD(sb, m);
1047
1048 sb->sb_mbtail = nlast;
1049 SBLASTMBUFCHK(sb, "sbappendaddr");
1050 SBLASTRECORDCHK(sb, "sbappendaddr 2");
1051
1052 return (1);
1053 }
1054
1055 /*
1056 * Helper for sbappendchainaddr: prepend a struct sockaddr* to
1057 * an mbuf chain.
1058 */
1059 static inline struct mbuf *
1060 m_prepend_sockaddr(struct sockbuf *sb, struct mbuf *m0,
1061 const struct sockaddr *asa)
1062 {
1063 struct mbuf *m;
1064 const int salen = asa->sa_len;
1065
1066 KASSERT(solocked(sb->sb_so));
1067
1068 /* only the first in each chain need be a pkthdr */
1069 m = m_gethdr(M_DONTWAIT, MT_SONAME);
1070 if (m == NULL)
1071 return NULL;
1072 MCLAIM(m, sb->sb_mowner);
1073 #ifdef notyet
1074 if (salen > MHLEN) {
1075 MEXTMALLOC(m, salen, M_NOWAIT);
1076 if ((m->m_flags & M_EXT) == 0) {
1077 m_free(m);
1078 return NULL;
1079 }
1080 }
1081 #else
1082 KASSERT(salen <= MHLEN);
1083 #endif
1084 m->m_len = salen;
1085 memcpy(mtod(m, void *), asa, salen);
1086 m->m_next = m0;
1087 m->m_pkthdr.len = salen + m0->m_pkthdr.len;
1088
1089 return m;
1090 }
1091
1092 int
1093 sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa,
1094 struct mbuf *m0, int sbprio)
1095 {
1096 struct mbuf *m, *n, *n0, *nlast;
1097 int error;
1098
1099 KASSERT(solocked(sb->sb_so));
1100
1101 /*
1102 * XXX sbprio reserved for encoding priority of this* request:
1103 * SB_PRIO_NONE --> honour normal sb limits
1104 * SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space,
1105 * take whole chain. Intended for large requests
1106 * that should be delivered atomically (all, or none).
1107 * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow
1108 * over normal socket limits, for messages indicating
1109 * buffer overflow in earlier normal/lower-priority messages
1110 * SB_PRIO_BESTEFFORT --> ignore limits entirely.
1111 * Intended for kernel-generated messages only.
1112 * Up to generator to avoid total mbuf resource exhaustion.
1113 */
1114 (void)sbprio;
1115
1116 if (m0 && (m0->m_flags & M_PKTHDR) == 0)
1117 panic("sbappendaddrchain");
1118
1119 #ifdef notyet
1120 space = sbspace(sb);
1121
1122 /*
1123 * Enforce SB_PRIO_* limits as described above.
1124 */
1125 #endif
1126
1127 n0 = NULL;
1128 nlast = NULL;
1129 for (m = m0; m; m = m->m_nextpkt) {
1130 struct mbuf *np;
1131
1132 #ifdef MBUFTRACE
1133 m_claimm(m, sb->sb_mowner);
1134 #endif
1135
1136 /* Prepend sockaddr to this record (m) of input chain m0 */
1137 n = m_prepend_sockaddr(sb, m, asa);
1138 if (n == NULL) {
1139 error = ENOBUFS;
1140 goto bad;
1141 }
1142
1143 /* Append record (asa+m) to end of new chain n0 */
1144 if (n0 == NULL) {
1145 n0 = n;
1146 } else {
1147 nlast->m_nextpkt = n;
1148 }
1149 /* Keep track of last record on new chain */
1150 nlast = n;
1151
1152 for (np = n; np; np = np->m_next)
1153 sballoc(sb, np);
1154 }
1155
1156 SBLASTRECORDCHK(sb, "sbappendaddrchain 1");
1157
1158 /* Drop the entire chain of (asa+m) records onto the socket */
1159 SBLINKRECORDCHAIN(sb, n0, nlast);
1160
1161 SBLASTRECORDCHK(sb, "sbappendaddrchain 2");
1162
1163 for (m = nlast; m->m_next; m = m->m_next)
1164 ;
1165 sb->sb_mbtail = m;
1166 SBLASTMBUFCHK(sb, "sbappendaddrchain");
1167
1168 return (1);
1169
1170 bad:
1171 /*
1172 * On error, free the prepended addreseses. For consistency
1173 * with sbappendaddr(), leave it to our caller to free
1174 * the input record chain passed to us as m0.
1175 */
1176 while ((n = n0) != NULL) {
1177 struct mbuf *np;
1178
1179 /* Undo the sballoc() of this record */
1180 for (np = n; np; np = np->m_next)
1181 sbfree(sb, np);
1182
1183 n0 = n->m_nextpkt; /* iterate at next prepended address */
1184 np = m_free(n); /* free prepended address (not data) */
1185 }
1186 return error;
1187 }
1188
1189
1190 int
1191 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
1192 {
1193 struct mbuf *m, *mlast, *n;
1194 int space;
1195
1196 KASSERT(solocked(sb->sb_so));
1197
1198 space = 0;
1199 if (control == NULL)
1200 panic("sbappendcontrol");
1201 for (m = control; ; m = m->m_next) {
1202 space += m->m_len;
1203 MCLAIM(m, sb->sb_mowner);
1204 if (m->m_next == NULL)
1205 break;
1206 }
1207 n = m; /* save pointer to last control buffer */
1208 for (m = m0; m; m = m->m_next) {
1209 MCLAIM(m, sb->sb_mowner);
1210 space += m->m_len;
1211 }
1212 if (space > sbspace(sb))
1213 return (0);
1214 n->m_next = m0; /* concatenate data to control */
1215
1216 SBLASTRECORDCHK(sb, "sbappendcontrol 1");
1217
1218 for (m = control; m->m_next != NULL; m = m->m_next)
1219 sballoc(sb, m);
1220 sballoc(sb, m);
1221 mlast = m;
1222 SBLINKRECORD(sb, control);
1223
1224 sb->sb_mbtail = mlast;
1225 SBLASTMBUFCHK(sb, "sbappendcontrol");
1226 SBLASTRECORDCHK(sb, "sbappendcontrol 2");
1227
1228 return (1);
1229 }
1230
1231 /*
1232 * Compress mbuf chain m into the socket
1233 * buffer sb following mbuf n. If n
1234 * is null, the buffer is presumed empty.
1235 */
1236 void
1237 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
1238 {
1239 int eor;
1240 struct mbuf *o;
1241
1242 KASSERT(solocked(sb->sb_so));
1243
1244 eor = 0;
1245 while (m) {
1246 eor |= m->m_flags & M_EOR;
1247 if (m->m_len == 0 &&
1248 (eor == 0 ||
1249 (((o = m->m_next) || (o = n)) &&
1250 o->m_type == m->m_type))) {
1251 if (sb->sb_lastrecord == m)
1252 sb->sb_lastrecord = m->m_next;
1253 m = m_free(m);
1254 continue;
1255 }
1256 if (n && (n->m_flags & M_EOR) == 0 &&
1257 /* M_TRAILINGSPACE() checks buffer writeability */
1258 m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
1259 m->m_len <= M_TRAILINGSPACE(n) &&
1260 n->m_type == m->m_type) {
1261 memcpy(mtod(n, char *) + n->m_len, mtod(m, void *),
1262 (unsigned)m->m_len);
1263 n->m_len += m->m_len;
1264 sb->sb_cc += m->m_len;
1265 m = m_free(m);
1266 continue;
1267 }
1268 if (n)
1269 n->m_next = m;
1270 else
1271 sb->sb_mb = m;
1272 sb->sb_mbtail = m;
1273 sballoc(sb, m);
1274 n = m;
1275 m->m_flags &= ~M_EOR;
1276 m = m->m_next;
1277 n->m_next = 0;
1278 }
1279 if (eor) {
1280 if (n)
1281 n->m_flags |= eor;
1282 else
1283 printf("semi-panic: sbcompress\n");
1284 }
1285 SBLASTMBUFCHK(sb, __func__);
1286 }
1287
1288 /*
1289 * Free all mbufs in a sockbuf.
1290 * Check that all resources are reclaimed.
1291 */
1292 void
1293 sbflush(struct sockbuf *sb)
1294 {
1295
1296 KASSERT(solocked(sb->sb_so));
1297 KASSERT((sb->sb_flags & SB_LOCK) == 0);
1298
1299 while (sb->sb_mbcnt)
1300 sbdrop(sb, (int)sb->sb_cc);
1301
1302 KASSERT(sb->sb_cc == 0);
1303 KASSERT(sb->sb_mb == NULL);
1304 KASSERT(sb->sb_mbtail == NULL);
1305 KASSERT(sb->sb_lastrecord == NULL);
1306 }
1307
1308 /*
1309 * Drop data from (the front of) a sockbuf.
1310 */
1311 void
1312 sbdrop(struct sockbuf *sb, int len)
1313 {
1314 struct mbuf *m, *next;
1315
1316 KASSERT(solocked(sb->sb_so));
1317
1318 next = (m = sb->sb_mb) ? m->m_nextpkt : NULL;
1319 while (len > 0) {
1320 if (m == NULL) {
1321 if (next == NULL)
1322 panic("sbdrop(%p,%d): cc=%lu",
1323 sb, len, sb->sb_cc);
1324 m = next;
1325 next = m->m_nextpkt;
1326 continue;
1327 }
1328 if (m->m_len > len) {
1329 m->m_len -= len;
1330 m->m_data += len;
1331 sb->sb_cc -= len;
1332 break;
1333 }
1334 len -= m->m_len;
1335 sbfree(sb, m);
1336 m = m_free(m);
1337 }
1338 while (m && m->m_len == 0) {
1339 sbfree(sb, m);
1340 m = m_free(m);
1341 }
1342 if (m) {
1343 sb->sb_mb = m;
1344 m->m_nextpkt = next;
1345 } else
1346 sb->sb_mb = next;
1347 /*
1348 * First part is an inline SB_EMPTY_FIXUP(). Second part
1349 * makes sure sb_lastrecord is up-to-date if we dropped
1350 * part of the last record.
1351 */
1352 m = sb->sb_mb;
1353 if (m == NULL) {
1354 sb->sb_mbtail = NULL;
1355 sb->sb_lastrecord = NULL;
1356 } else if (m->m_nextpkt == NULL)
1357 sb->sb_lastrecord = m;
1358 }
1359
1360 /*
1361 * Drop a record off the front of a sockbuf
1362 * and move the next record to the front.
1363 */
1364 void
1365 sbdroprecord(struct sockbuf *sb)
1366 {
1367 struct mbuf *m, *mn;
1368
1369 KASSERT(solocked(sb->sb_so));
1370
1371 m = sb->sb_mb;
1372 if (m) {
1373 sb->sb_mb = m->m_nextpkt;
1374 do {
1375 sbfree(sb, m);
1376 mn = m_free(m);
1377 } while ((m = mn) != NULL);
1378 }
1379 SB_EMPTY_FIXUP(sb);
1380 }
1381
1382 /*
1383 * Create a "control" mbuf containing the specified data
1384 * with the specified type for presentation on a socket buffer.
1385 */
1386 struct mbuf *
1387 sbcreatecontrol1(void **p, int size, int type, int level, int flags)
1388 {
1389 struct cmsghdr *cp;
1390 struct mbuf *m;
1391 int space = CMSG_SPACE(size);
1392
1393 if ((flags & M_DONTWAIT) && space > MCLBYTES) {
1394 printf("%s: message too large %d\n", __func__, space);
1395 return NULL;
1396 }
1397
1398 if ((m = m_get(flags, MT_CONTROL)) == NULL)
1399 return NULL;
1400 if (space > MLEN) {
1401 if (space > MCLBYTES)
1402 MEXTMALLOC(m, space, M_WAITOK);
1403 else
1404 MCLGET(m, flags);
1405 if ((m->m_flags & M_EXT) == 0) {
1406 m_free(m);
1407 return NULL;
1408 }
1409 }
1410 cp = mtod(m, struct cmsghdr *);
1411 *p = CMSG_DATA(cp);
1412 m->m_len = space;
1413 cp->cmsg_len = CMSG_LEN(size);
1414 cp->cmsg_level = level;
1415 cp->cmsg_type = type;
1416 return m;
1417 }
1418
1419 struct mbuf *
1420 sbcreatecontrol(void *p, int size, int type, int level)
1421 {
1422 struct mbuf *m;
1423 void *v;
1424
1425 m = sbcreatecontrol1(&v, size, type, level, M_DONTWAIT);
1426 if (m == NULL)
1427 return NULL;
1428 memcpy(v, p, size);
1429 return m;
1430 }
1431
1432 void
1433 solockretry(struct socket *so, kmutex_t *lock)
1434 {
1435
1436 while (lock != so->so_lock) {
1437 mutex_exit(lock);
1438 lock = so->so_lock;
1439 mutex_enter(lock);
1440 }
1441 }
1442
1443 bool
1444 solocked(const struct socket *so)
1445 {
1446
1447 return mutex_owned(so->so_lock);
1448 }
1449
1450 bool
1451 solocked2(const struct socket *so1, const struct socket *so2)
1452 {
1453 const kmutex_t *lock;
1454
1455 lock = so1->so_lock;
1456 if (lock != so2->so_lock)
1457 return false;
1458 return mutex_owned(lock);
1459 }
1460
1461 /*
1462 * sosetlock: assign a default lock to a new socket.
1463 */
1464 void
1465 sosetlock(struct socket *so)
1466 {
1467 if (so->so_lock == NULL) {
1468 kmutex_t *lock = softnet_lock;
1469
1470 so->so_lock = lock;
1471 mutex_obj_hold(lock);
1472 mutex_enter(lock);
1473 }
1474 KASSERT(solocked(so));
1475 }
1476
1477 /*
1478 * Set lock on sockbuf sb; sleep if lock is already held.
1479 * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
1480 * Returns error without lock if sleep is interrupted.
1481 */
1482 int
1483 sblock(struct sockbuf *sb, int wf)
1484 {
1485 struct socket *so;
1486 kmutex_t *lock;
1487 int error;
1488
1489 KASSERT(solocked(sb->sb_so));
1490
1491 for (;;) {
1492 if (__predict_true((sb->sb_flags & SB_LOCK) == 0)) {
1493 sb->sb_flags |= SB_LOCK;
1494 return 0;
1495 }
1496 if (wf != M_WAITOK)
1497 return EWOULDBLOCK;
1498 so = sb->sb_so;
1499 lock = so->so_lock;
1500 if ((sb->sb_flags & SB_NOINTR) != 0) {
1501 cv_wait(&so->so_cv, lock);
1502 error = 0;
1503 } else
1504 error = cv_wait_sig(&so->so_cv, lock);
1505 if (__predict_false(lock != so->so_lock))
1506 solockretry(so, lock);
1507 if (error != 0)
1508 return error;
1509 }
1510 }
1511
1512 void
1513 sbunlock(struct sockbuf *sb)
1514 {
1515 struct socket *so;
1516
1517 so = sb->sb_so;
1518
1519 KASSERT(solocked(so));
1520 KASSERT((sb->sb_flags & SB_LOCK) != 0);
1521
1522 sb->sb_flags &= ~SB_LOCK;
1523 cv_broadcast(&so->so_cv);
1524 }
1525
1526 int
1527 sowait(struct socket *so, bool catch_p, int timo)
1528 {
1529 kmutex_t *lock;
1530 int error;
1531
1532 KASSERT(solocked(so));
1533 KASSERT(catch_p || timo != 0);
1534
1535 lock = so->so_lock;
1536 if (catch_p)
1537 error = cv_timedwait_sig(&so->so_cv, lock, timo);
1538 else
1539 error = cv_timedwait(&so->so_cv, lock, timo);
1540 if (__predict_false(lock != so->so_lock))
1541 solockretry(so, lock);
1542 return error;
1543 }
1544