uipc_socket2.c revision 1.131 1 /* $NetBSD: uipc_socket2.c,v 1.131 2018/07/20 08:26:25 msaitoh Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*
30 * Copyright (c) 1982, 1986, 1988, 1990, 1993
31 * The Regents of the University of California. All rights reserved.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 * 3. Neither the name of the University nor the names of its contributors
42 * may be used to endorse or promote products derived from this software
43 * without specific prior written permission.
44 *
45 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 * SUCH DAMAGE.
56 *
57 * @(#)uipc_socket2.c 8.2 (Berkeley) 2/14/95
58 */
59
60 #include <sys/cdefs.h>
61 __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.131 2018/07/20 08:26:25 msaitoh Exp $");
62
63 #ifdef _KERNEL_OPT
64 #include "opt_ddb.h"
65 #include "opt_mbuftrace.h"
66 #include "opt_sb_max.h"
67 #endif
68
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/proc.h>
72 #include <sys/file.h>
73 #include <sys/buf.h>
74 #include <sys/mbuf.h>
75 #include <sys/protosw.h>
76 #include <sys/domain.h>
77 #include <sys/poll.h>
78 #include <sys/socket.h>
79 #include <sys/socketvar.h>
80 #include <sys/signalvar.h>
81 #include <sys/kauth.h>
82 #include <sys/pool.h>
83 #include <sys/uidinfo.h>
84
85 #ifdef DDB
86 #include <sys/filedesc.h>
87 #endif
88
89 /*
90 * Primitive routines for operating on sockets and socket buffers.
91 *
92 * Connection life-cycle:
93 *
94 * Normal sequence from the active (originating) side:
95 *
96 * - soisconnecting() is called during processing of connect() call,
97 * - resulting in an eventual call to soisconnected() if/when the
98 * connection is established.
99 *
100 * When the connection is torn down during processing of disconnect():
101 *
102 * - soisdisconnecting() is called and,
103 * - soisdisconnected() is called when the connection to the peer
104 * is totally severed.
105 *
106 * The semantics of these routines are such that connectionless protocols
107 * can call soisconnected() and soisdisconnected() only, bypassing the
108 * in-progress calls when setting up a ``connection'' takes no time.
109 *
110 * From the passive side, a socket is created with two queues of sockets:
111 *
112 * - so_q0 (0) for partial connections (i.e. connections in progress)
113 * - so_q (1) for connections already made and awaiting user acceptance.
114 *
115 * As a protocol is preparing incoming connections, it creates a socket
116 * structure queued on so_q0 by calling sonewconn(). When the connection
117 * is established, soisconnected() is called, and transfers the
118 * socket structure to so_q, making it available to accept().
119 *
120 * If a socket is closed with sockets on either so_q0 or so_q, these
121 * sockets are dropped.
122 *
123 * Locking rules and assumptions:
124 *
125 * o socket::so_lock can change on the fly. The low level routines used
126 * to lock sockets are aware of this. When so_lock is acquired, the
127 * routine locking must check to see if so_lock still points to the
128 * lock that was acquired. If so_lock has changed in the meantime, the
129 * now irrelevant lock that was acquired must be dropped and the lock
130 * operation retried. Although not proven here, this is completely safe
131 * on a multiprocessor system, even with relaxed memory ordering, given
132 * the next two rules:
133 *
134 * o In order to mutate so_lock, the lock pointed to by the current value
135 * of so_lock must be held: i.e., the socket must be held locked by the
136 * changing thread. The thread must issue membar_exit() to prevent
137 * memory accesses being reordered, and can set so_lock to the desired
138 * value. If the lock pointed to by the new value of so_lock is not
139 * held by the changing thread, the socket must then be considered
140 * unlocked.
141 *
142 * o If so_lock is mutated, and the previous lock referred to by so_lock
143 * could still be visible to other threads in the system (e.g. via file
144 * descriptor or protocol-internal reference), then the old lock must
145 * remain valid until the socket and/or protocol control block has been
146 * torn down.
147 *
148 * o If a socket has a non-NULL so_head value (i.e. is in the process of
149 * connecting), then locking the socket must also lock the socket pointed
150 * to by so_head: their lock pointers must match.
151 *
152 * o If a socket has connections in progress (so_q, so_q0 not empty) then
153 * locking the socket must also lock the sockets attached to both queues.
154 * Again, their lock pointers must match.
155 *
156 * o Beyond the initial lock assignment in socreate(), assigning locks to
157 * sockets is the responsibility of the individual protocols / protocol
158 * domains.
159 */
160
161 static pool_cache_t socket_cache;
162 u_long sb_max = SB_MAX;/* maximum socket buffer size */
163 static u_long sb_max_adj; /* adjusted sb_max */
164
165 void
166 soisconnecting(struct socket *so)
167 {
168
169 KASSERT(solocked(so));
170
171 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
172 so->so_state |= SS_ISCONNECTING;
173 }
174
175 void
176 soisconnected(struct socket *so)
177 {
178 struct socket *head;
179
180 head = so->so_head;
181
182 KASSERT(solocked(so));
183 KASSERT(head == NULL || solocked2(so, head));
184
185 so->so_state &= ~(SS_ISCONNECTING | SS_ISDISCONNECTING);
186 so->so_state |= SS_ISCONNECTED;
187 if (head && so->so_onq == &head->so_q0) {
188 if ((so->so_options & SO_ACCEPTFILTER) == 0) {
189 /*
190 * Re-enqueue and wake up any waiters, e.g.
191 * processes blocking on accept().
192 */
193 soqremque(so, 0);
194 soqinsque(head, so, 1);
195 sorwakeup(head);
196 cv_broadcast(&head->so_cv);
197 } else {
198 so->so_upcall =
199 head->so_accf->so_accept_filter->accf_callback;
200 so->so_upcallarg = head->so_accf->so_accept_filter_arg;
201 so->so_rcv.sb_flags |= SB_UPCALL;
202 so->so_options &= ~SO_ACCEPTFILTER;
203 (*so->so_upcall)(so, so->so_upcallarg,
204 POLLIN|POLLRDNORM, M_DONTWAIT);
205 }
206 } else {
207 cv_broadcast(&so->so_cv);
208 sorwakeup(so);
209 sowwakeup(so);
210 }
211 }
212
213 void
214 soisdisconnecting(struct socket *so)
215 {
216
217 KASSERT(solocked(so));
218
219 so->so_state &= ~SS_ISCONNECTING;
220 so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
221 cv_broadcast(&so->so_cv);
222 sowwakeup(so);
223 sorwakeup(so);
224 }
225
226 void
227 soisdisconnected(struct socket *so)
228 {
229
230 KASSERT(solocked(so));
231
232 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
233 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
234 cv_broadcast(&so->so_cv);
235 sowwakeup(so);
236 sorwakeup(so);
237 }
238
239 void
240 soinit2(void)
241 {
242
243 socket_cache = pool_cache_init(sizeof(struct socket), 0, 0, 0,
244 "socket", NULL, IPL_SOFTNET, NULL, NULL, NULL);
245 }
246
247 /*
248 * sonewconn: accept a new connection.
249 *
250 * When an attempt at a new connection is noted on a socket which accepts
251 * connections, sonewconn(9) is called. If the connection is possible
252 * (subject to space constraints, etc) then we allocate a new structure,
253 * properly linked into the data structure of the original socket.
254 *
255 * => If 'soready' is true, then socket will become ready for accept() i.e.
256 * inserted into the so_q queue, SS_ISCONNECTED set and waiters awoken.
257 * => May be called from soft-interrupt context.
258 * => Listening socket should be locked.
259 * => Returns the new socket locked.
260 */
261 struct socket *
262 sonewconn(struct socket *head, bool soready)
263 {
264 struct socket *so;
265 int soqueue, error;
266
267 KASSERT(solocked(head));
268
269 if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2) {
270 /*
271 * Listen queue overflow. If there is an accept filter
272 * active, pass through the oldest cxn it's handling.
273 */
274 if (head->so_accf == NULL) {
275 return NULL;
276 } else {
277 struct socket *so2, *next;
278
279 /* Pass the oldest connection waiting in the
280 accept filter */
281 for (so2 = TAILQ_FIRST(&head->so_q0);
282 so2 != NULL; so2 = next) {
283 next = TAILQ_NEXT(so2, so_qe);
284 if (so2->so_upcall == NULL) {
285 continue;
286 }
287 so2->so_upcall = NULL;
288 so2->so_upcallarg = NULL;
289 so2->so_options &= ~SO_ACCEPTFILTER;
290 so2->so_rcv.sb_flags &= ~SB_UPCALL;
291 soisconnected(so2);
292 break;
293 }
294
295 /* If nothing was nudged out of the acept filter, bail
296 * out; otherwise proceed allocating the socket. */
297 if (so2 == NULL) {
298 return NULL;
299 }
300 }
301 }
302 if ((head->so_options & SO_ACCEPTFILTER) != 0) {
303 soready = false;
304 }
305 soqueue = soready ? 1 : 0;
306
307 if ((so = soget(false)) == NULL) {
308 return NULL;
309 }
310 so->so_type = head->so_type;
311 so->so_options = head->so_options & ~SO_ACCEPTCONN;
312 so->so_linger = head->so_linger;
313 so->so_state = head->so_state | SS_NOFDREF;
314 so->so_proto = head->so_proto;
315 so->so_timeo = head->so_timeo;
316 so->so_pgid = head->so_pgid;
317 so->so_send = head->so_send;
318 so->so_receive = head->so_receive;
319 so->so_uidinfo = head->so_uidinfo;
320 so->so_cpid = head->so_cpid;
321
322 /*
323 * Share the lock with the listening-socket, it may get unshared
324 * once the connection is complete.
325 */
326 mutex_obj_hold(head->so_lock);
327 so->so_lock = head->so_lock;
328
329 /*
330 * Reserve the space for socket buffers.
331 */
332 #ifdef MBUFTRACE
333 so->so_mowner = head->so_mowner;
334 so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
335 so->so_snd.sb_mowner = head->so_snd.sb_mowner;
336 #endif
337 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) {
338 goto out;
339 }
340 so->so_snd.sb_lowat = head->so_snd.sb_lowat;
341 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
342 so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
343 so->so_snd.sb_timeo = head->so_snd.sb_timeo;
344 so->so_rcv.sb_flags |= head->so_rcv.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
345 so->so_snd.sb_flags |= head->so_snd.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
346
347 /*
348 * Finally, perform the protocol attach. Note: a new socket
349 * lock may be assigned at this point (if so, it will be held).
350 */
351 error = (*so->so_proto->pr_usrreqs->pr_attach)(so, 0);
352 if (error) {
353 out:
354 KASSERT(solocked(so));
355 KASSERT(so->so_accf == NULL);
356 soput(so);
357
358 /* Note: the listening socket shall stay locked. */
359 KASSERT(solocked(head));
360 return NULL;
361 }
362 KASSERT(solocked2(head, so));
363
364 /*
365 * Insert into the queue. If ready, update the connection status
366 * and wake up any waiters, e.g. processes blocking on accept().
367 */
368 soqinsque(head, so, soqueue);
369 if (soready) {
370 so->so_state |= SS_ISCONNECTED;
371 sorwakeup(head);
372 cv_broadcast(&head->so_cv);
373 }
374 return so;
375 }
376
377 struct socket *
378 soget(bool waitok)
379 {
380 struct socket *so;
381
382 so = pool_cache_get(socket_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
383 if (__predict_false(so == NULL))
384 return (NULL);
385 memset(so, 0, sizeof(*so));
386 TAILQ_INIT(&so->so_q0);
387 TAILQ_INIT(&so->so_q);
388 cv_init(&so->so_cv, "socket");
389 cv_init(&so->so_rcv.sb_cv, "netio");
390 cv_init(&so->so_snd.sb_cv, "netio");
391 selinit(&so->so_rcv.sb_sel);
392 selinit(&so->so_snd.sb_sel);
393 so->so_rcv.sb_so = so;
394 so->so_snd.sb_so = so;
395 return so;
396 }
397
398 void
399 soput(struct socket *so)
400 {
401
402 KASSERT(!cv_has_waiters(&so->so_cv));
403 KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
404 KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
405 seldestroy(&so->so_rcv.sb_sel);
406 seldestroy(&so->so_snd.sb_sel);
407 mutex_obj_free(so->so_lock);
408 cv_destroy(&so->so_cv);
409 cv_destroy(&so->so_rcv.sb_cv);
410 cv_destroy(&so->so_snd.sb_cv);
411 pool_cache_put(socket_cache, so);
412 }
413
414 /*
415 * soqinsque: insert socket of a new connection into the specified
416 * accept queue of the listening socket (head).
417 *
418 * q = 0: queue of partial connections
419 * q = 1: queue of incoming connections
420 */
421 void
422 soqinsque(struct socket *head, struct socket *so, int q)
423 {
424 KASSERT(q == 0 || q == 1);
425 KASSERT(solocked2(head, so));
426 KASSERT(so->so_onq == NULL);
427 KASSERT(so->so_head == NULL);
428
429 so->so_head = head;
430 if (q == 0) {
431 head->so_q0len++;
432 so->so_onq = &head->so_q0;
433 } else {
434 head->so_qlen++;
435 so->so_onq = &head->so_q;
436 }
437 TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
438 }
439
440 /*
441 * soqremque: remove socket from the specified queue.
442 *
443 * => Returns true if socket was removed from the specified queue.
444 * => False if socket was not removed (because it was in other queue).
445 */
446 bool
447 soqremque(struct socket *so, int q)
448 {
449 struct socket *head = so->so_head;
450
451 KASSERT(q == 0 || q == 1);
452 KASSERT(solocked(so));
453 KASSERT(so->so_onq != NULL);
454 KASSERT(head != NULL);
455
456 if (q == 0) {
457 if (so->so_onq != &head->so_q0)
458 return false;
459 head->so_q0len--;
460 } else {
461 if (so->so_onq != &head->so_q)
462 return false;
463 head->so_qlen--;
464 }
465 KASSERT(solocked2(so, head));
466 TAILQ_REMOVE(so->so_onq, so, so_qe);
467 so->so_onq = NULL;
468 so->so_head = NULL;
469 return true;
470 }
471
472 /*
473 * socantsendmore: indicates that no more data will be sent on the
474 * socket; it would normally be applied to a socket when the user
475 * informs the system that no more data is to be sent, by the protocol
476 * code (in case pr_shutdown()).
477 */
478 void
479 socantsendmore(struct socket *so)
480 {
481 KASSERT(solocked(so));
482
483 so->so_state |= SS_CANTSENDMORE;
484 sowwakeup(so);
485 }
486
487 /*
488 * socantrcvmore(): indicates that no more data will be received and
489 * will normally be applied to the socket by a protocol when it detects
490 * that the peer will send no more data. Data queued for reading in
491 * the socket may yet be read.
492 */
493 void
494 socantrcvmore(struct socket *so)
495 {
496 KASSERT(solocked(so));
497
498 so->so_state |= SS_CANTRCVMORE;
499 sorwakeup(so);
500 }
501
502 /*
503 * soroverflow(): indicates that data was attempted to be sent
504 * but the receiving buffer overflowed.
505 */
506 void
507 soroverflow(struct socket *so)
508 {
509 KASSERT(solocked(so));
510
511 so->so_rcv.sb_overflowed++;
512 so->so_rerror = ENOBUFS;
513 sorwakeup(so);
514 }
515
516 /*
517 * Wait for data to arrive at/drain from a socket buffer.
518 */
519 int
520 sbwait(struct sockbuf *sb)
521 {
522 struct socket *so;
523 kmutex_t *lock;
524 int error;
525
526 so = sb->sb_so;
527
528 KASSERT(solocked(so));
529
530 sb->sb_flags |= SB_NOTIFY;
531 lock = so->so_lock;
532 if ((sb->sb_flags & SB_NOINTR) != 0)
533 error = cv_timedwait(&sb->sb_cv, lock, sb->sb_timeo);
534 else
535 error = cv_timedwait_sig(&sb->sb_cv, lock, sb->sb_timeo);
536 if (__predict_false(lock != so->so_lock))
537 solockretry(so, lock);
538 return error;
539 }
540
541 /*
542 * Wakeup processes waiting on a socket buffer.
543 * Do asynchronous notification via SIGIO
544 * if the socket buffer has the SB_ASYNC flag set.
545 */
546 void
547 sowakeup(struct socket *so, struct sockbuf *sb, int code)
548 {
549 int band;
550
551 KASSERT(solocked(so));
552 KASSERT(sb->sb_so == so);
553
554 if (code == POLL_IN)
555 band = POLLIN|POLLRDNORM;
556 else
557 band = POLLOUT|POLLWRNORM;
558 sb->sb_flags &= ~SB_NOTIFY;
559 selnotify(&sb->sb_sel, band, NOTE_SUBMIT);
560 cv_broadcast(&sb->sb_cv);
561 if (sb->sb_flags & SB_ASYNC)
562 fownsignal(so->so_pgid, SIGIO, code, band, so);
563 if (sb->sb_flags & SB_UPCALL)
564 (*so->so_upcall)(so, so->so_upcallarg, band, M_DONTWAIT);
565 }
566
567 /*
568 * Reset a socket's lock pointer. Wake all threads waiting on the
569 * socket's condition variables so that they can restart their waits
570 * using the new lock. The existing lock must be held.
571 */
572 void
573 solockreset(struct socket *so, kmutex_t *lock)
574 {
575
576 KASSERT(solocked(so));
577
578 so->so_lock = lock;
579 cv_broadcast(&so->so_snd.sb_cv);
580 cv_broadcast(&so->so_rcv.sb_cv);
581 cv_broadcast(&so->so_cv);
582 }
583
584 /*
585 * Socket buffer (struct sockbuf) utility routines.
586 *
587 * Each socket contains two socket buffers: one for sending data and
588 * one for receiving data. Each buffer contains a queue of mbufs,
589 * information about the number of mbufs and amount of data in the
590 * queue, and other fields allowing poll() statements and notification
591 * on data availability to be implemented.
592 *
593 * Data stored in a socket buffer is maintained as a list of records.
594 * Each record is a list of mbufs chained together with the m_next
595 * field. Records are chained together with the m_nextpkt field. The upper
596 * level routine soreceive() expects the following conventions to be
597 * observed when placing information in the receive buffer:
598 *
599 * 1. If the protocol requires each message be preceded by the sender's
600 * name, then a record containing that name must be present before
601 * any associated data (mbuf's must be of type MT_SONAME).
602 * 2. If the protocol supports the exchange of ``access rights'' (really
603 * just additional data associated with the message), and there are
604 * ``rights'' to be received, then a record containing this data
605 * should be present (mbuf's must be of type MT_CONTROL).
606 * 3. If a name or rights record exists, then it must be followed by
607 * a data record, perhaps of zero length.
608 *
609 * Before using a new socket structure it is first necessary to reserve
610 * buffer space to the socket, by calling sbreserve(). This should commit
611 * some of the available buffer space in the system buffer pool for the
612 * socket (currently, it does nothing but enforce limits). The space
613 * should be released by calling sbrelease() when the socket is destroyed.
614 */
615
616 int
617 sb_max_set(u_long new_sbmax)
618 {
619 int s;
620
621 if (new_sbmax < (16 * 1024))
622 return (EINVAL);
623
624 s = splsoftnet();
625 sb_max = new_sbmax;
626 sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
627 splx(s);
628
629 return (0);
630 }
631
632 int
633 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
634 {
635 KASSERT(so->so_pcb == NULL || solocked(so));
636
637 /*
638 * there's at least one application (a configure script of screen)
639 * which expects a fifo is writable even if it has "some" bytes
640 * in its buffer.
641 * so we want to make sure (hiwat - lowat) >= (some bytes).
642 *
643 * PIPE_BUF here is an arbitrary value chosen as (some bytes) above.
644 * we expect it's large enough for such applications.
645 */
646 u_long lowat = MAX(sock_loan_thresh, MCLBYTES);
647 u_long hiwat = lowat + PIPE_BUF;
648
649 if (sndcc < hiwat)
650 sndcc = hiwat;
651 if (sbreserve(&so->so_snd, sndcc, so) == 0)
652 goto bad;
653 if (sbreserve(&so->so_rcv, rcvcc, so) == 0)
654 goto bad2;
655 if (so->so_rcv.sb_lowat == 0)
656 so->so_rcv.sb_lowat = 1;
657 if (so->so_snd.sb_lowat == 0)
658 so->so_snd.sb_lowat = lowat;
659 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
660 so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
661 return (0);
662 bad2:
663 sbrelease(&so->so_snd, so);
664 bad:
665 return (ENOBUFS);
666 }
667
668 /*
669 * Allot mbufs to a sockbuf.
670 * Attempt to scale mbmax so that mbcnt doesn't become limiting
671 * if buffering efficiency is near the normal case.
672 */
673 int
674 sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
675 {
676 struct lwp *l = curlwp; /* XXX */
677 rlim_t maxcc;
678 struct uidinfo *uidinfo;
679
680 KASSERT(so->so_pcb == NULL || solocked(so));
681 KASSERT(sb->sb_so == so);
682 KASSERT(sb_max_adj != 0);
683
684 if (cc == 0 || cc > sb_max_adj)
685 return (0);
686
687 maxcc = l->l_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur;
688
689 uidinfo = so->so_uidinfo;
690 if (!chgsbsize(uidinfo, &sb->sb_hiwat, cc, maxcc))
691 return 0;
692 sb->sb_mbmax = min(cc * 2, sb_max);
693 if (sb->sb_lowat > sb->sb_hiwat)
694 sb->sb_lowat = sb->sb_hiwat;
695
696 return (1);
697 }
698
699 /*
700 * Free mbufs held by a socket, and reserved mbuf space. We do not assert
701 * that the socket is held locked here: see sorflush().
702 */
703 void
704 sbrelease(struct sockbuf *sb, struct socket *so)
705 {
706
707 KASSERT(sb->sb_so == so);
708
709 sbflush(sb);
710 (void)chgsbsize(so->so_uidinfo, &sb->sb_hiwat, 0, RLIM_INFINITY);
711 sb->sb_mbmax = 0;
712 }
713
714 /*
715 * Routines to add and remove
716 * data from an mbuf queue.
717 *
718 * The routines sbappend() or sbappendrecord() are normally called to
719 * append new mbufs to a socket buffer, after checking that adequate
720 * space is available, comparing the function sbspace() with the amount
721 * of data to be added. sbappendrecord() differs from sbappend() in
722 * that data supplied is treated as the beginning of a new record.
723 * To place a sender's address, optional access rights, and data in a
724 * socket receive buffer, sbappendaddr() should be used. To place
725 * access rights and data in a socket receive buffer, sbappendrights()
726 * should be used. In either case, the new data begins a new record.
727 * Note that unlike sbappend() and sbappendrecord(), these routines check
728 * for the caller that there will be enough space to store the data.
729 * Each fails if there is not enough space, or if it cannot find mbufs
730 * to store additional information in.
731 *
732 * Reliable protocols may use the socket send buffer to hold data
733 * awaiting acknowledgement. Data is normally copied from a socket
734 * send buffer in a protocol with m_copym for output to a peer,
735 * and then removing the data from the socket buffer with sbdrop()
736 * or sbdroprecord() when the data is acknowledged by the peer.
737 */
738
739 #ifdef SOCKBUF_DEBUG
740 void
741 sblastrecordchk(struct sockbuf *sb, const char *where)
742 {
743 struct mbuf *m = sb->sb_mb;
744
745 KASSERT(solocked(sb->sb_so));
746
747 while (m && m->m_nextpkt)
748 m = m->m_nextpkt;
749
750 if (m != sb->sb_lastrecord) {
751 printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
752 sb->sb_mb, sb->sb_lastrecord, m);
753 printf("packet chain:\n");
754 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
755 printf("\t%p\n", m);
756 panic("sblastrecordchk from %s", where);
757 }
758 }
759
760 void
761 sblastmbufchk(struct sockbuf *sb, const char *where)
762 {
763 struct mbuf *m = sb->sb_mb;
764 struct mbuf *n;
765
766 KASSERT(solocked(sb->sb_so));
767
768 while (m && m->m_nextpkt)
769 m = m->m_nextpkt;
770
771 while (m && m->m_next)
772 m = m->m_next;
773
774 if (m != sb->sb_mbtail) {
775 printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
776 sb->sb_mb, sb->sb_mbtail, m);
777 printf("packet tree:\n");
778 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
779 printf("\t");
780 for (n = m; n != NULL; n = n->m_next)
781 printf("%p ", n);
782 printf("\n");
783 }
784 panic("sblastmbufchk from %s", where);
785 }
786 }
787 #endif /* SOCKBUF_DEBUG */
788
789 /*
790 * Link a chain of records onto a socket buffer
791 */
792 #define SBLINKRECORDCHAIN(sb, m0, mlast) \
793 do { \
794 if ((sb)->sb_lastrecord != NULL) \
795 (sb)->sb_lastrecord->m_nextpkt = (m0); \
796 else \
797 (sb)->sb_mb = (m0); \
798 (sb)->sb_lastrecord = (mlast); \
799 } while (/*CONSTCOND*/0)
800
801
802 #define SBLINKRECORD(sb, m0) \
803 SBLINKRECORDCHAIN(sb, m0, m0)
804
805 /*
806 * Append mbuf chain m to the last record in the
807 * socket buffer sb. The additional space associated
808 * the mbuf chain is recorded in sb. Empty mbufs are
809 * discarded and mbufs are compacted where possible.
810 */
811 void
812 sbappend(struct sockbuf *sb, struct mbuf *m)
813 {
814 struct mbuf *n;
815
816 KASSERT(solocked(sb->sb_so));
817
818 if (m == NULL)
819 return;
820
821 #ifdef MBUFTRACE
822 m_claimm(m, sb->sb_mowner);
823 #endif
824
825 SBLASTRECORDCHK(sb, "sbappend 1");
826
827 if ((n = sb->sb_lastrecord) != NULL) {
828 /*
829 * XXX Would like to simply use sb_mbtail here, but
830 * XXX I need to verify that I won't miss an EOR that
831 * XXX way.
832 */
833 do {
834 if (n->m_flags & M_EOR) {
835 sbappendrecord(sb, m); /* XXXXXX!!!! */
836 return;
837 }
838 } while (n->m_next && (n = n->m_next));
839 } else {
840 /*
841 * If this is the first record in the socket buffer, it's
842 * also the last record.
843 */
844 sb->sb_lastrecord = m;
845 }
846 sbcompress(sb, m, n);
847 SBLASTRECORDCHK(sb, "sbappend 2");
848 }
849
850 /*
851 * This version of sbappend() should only be used when the caller
852 * absolutely knows that there will never be more than one record
853 * in the socket buffer, that is, a stream protocol (such as TCP).
854 */
855 void
856 sbappendstream(struct sockbuf *sb, struct mbuf *m)
857 {
858
859 KASSERT(solocked(sb->sb_so));
860 KDASSERT(m->m_nextpkt == NULL);
861 KASSERT(sb->sb_mb == sb->sb_lastrecord);
862
863 SBLASTMBUFCHK(sb, __func__);
864
865 #ifdef MBUFTRACE
866 m_claimm(m, sb->sb_mowner);
867 #endif
868
869 sbcompress(sb, m, sb->sb_mbtail);
870
871 sb->sb_lastrecord = sb->sb_mb;
872 SBLASTRECORDCHK(sb, __func__);
873 }
874
875 #ifdef SOCKBUF_DEBUG
876 void
877 sbcheck(struct sockbuf *sb)
878 {
879 struct mbuf *m, *m2;
880 u_long len, mbcnt;
881
882 KASSERT(solocked(sb->sb_so));
883
884 len = 0;
885 mbcnt = 0;
886 for (m = sb->sb_mb; m; m = m->m_nextpkt) {
887 for (m2 = m; m2 != NULL; m2 = m2->m_next) {
888 len += m2->m_len;
889 mbcnt += MSIZE;
890 if (m2->m_flags & M_EXT)
891 mbcnt += m2->m_ext.ext_size;
892 if (m2->m_nextpkt != NULL)
893 panic("sbcheck nextpkt");
894 }
895 }
896 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
897 printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
898 mbcnt, sb->sb_mbcnt);
899 panic("sbcheck");
900 }
901 }
902 #endif
903
904 /*
905 * As above, except the mbuf chain
906 * begins a new record.
907 */
908 void
909 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
910 {
911 struct mbuf *m;
912
913 KASSERT(solocked(sb->sb_so));
914
915 if (m0 == NULL)
916 return;
917
918 #ifdef MBUFTRACE
919 m_claimm(m0, sb->sb_mowner);
920 #endif
921 /*
922 * Put the first mbuf on the queue.
923 * Note this permits zero length records.
924 */
925 sballoc(sb, m0);
926 SBLASTRECORDCHK(sb, "sbappendrecord 1");
927 SBLINKRECORD(sb, m0);
928 m = m0->m_next;
929 m0->m_next = 0;
930 if (m && (m0->m_flags & M_EOR)) {
931 m0->m_flags &= ~M_EOR;
932 m->m_flags |= M_EOR;
933 }
934 sbcompress(sb, m, m0);
935 SBLASTRECORDCHK(sb, "sbappendrecord 2");
936 }
937
938 /*
939 * As above except that OOB data
940 * is inserted at the beginning of the sockbuf,
941 * but after any other OOB data.
942 */
943 void
944 sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
945 {
946 struct mbuf *m, **mp;
947
948 KASSERT(solocked(sb->sb_so));
949
950 if (m0 == NULL)
951 return;
952
953 SBLASTRECORDCHK(sb, "sbinsertoob 1");
954
955 for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
956 again:
957 switch (m->m_type) {
958
959 case MT_OOBDATA:
960 continue; /* WANT next train */
961
962 case MT_CONTROL:
963 if ((m = m->m_next) != NULL)
964 goto again; /* inspect THIS train further */
965 }
966 break;
967 }
968 /*
969 * Put the first mbuf on the queue.
970 * Note this permits zero length records.
971 */
972 sballoc(sb, m0);
973 m0->m_nextpkt = *mp;
974 if (*mp == NULL) {
975 /* m0 is actually the new tail */
976 sb->sb_lastrecord = m0;
977 }
978 *mp = m0;
979 m = m0->m_next;
980 m0->m_next = 0;
981 if (m && (m0->m_flags & M_EOR)) {
982 m0->m_flags &= ~M_EOR;
983 m->m_flags |= M_EOR;
984 }
985 sbcompress(sb, m, m0);
986 SBLASTRECORDCHK(sb, "sbinsertoob 2");
987 }
988
989 /*
990 * Append address and data, and optionally, control (ancillary) data
991 * to the receive queue of a socket. If present,
992 * m0 must include a packet header with total length.
993 * Returns 0 if no space in sockbuf or insufficient mbufs.
994 */
995 int
996 sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0,
997 struct mbuf *control)
998 {
999 struct mbuf *m, *n, *nlast;
1000 int space, len;
1001
1002 KASSERT(solocked(sb->sb_so));
1003
1004 space = asa->sa_len;
1005
1006 if (m0 != NULL) {
1007 if ((m0->m_flags & M_PKTHDR) == 0)
1008 panic("sbappendaddr");
1009 space += m0->m_pkthdr.len;
1010 #ifdef MBUFTRACE
1011 m_claimm(m0, sb->sb_mowner);
1012 #endif
1013 }
1014 for (n = control; n; n = n->m_next) {
1015 space += n->m_len;
1016 MCLAIM(n, sb->sb_mowner);
1017 if (n->m_next == NULL) /* keep pointer to last control buf */
1018 break;
1019 }
1020 if (space > sbspace(sb))
1021 return (0);
1022 m = m_get(M_DONTWAIT, MT_SONAME);
1023 if (m == NULL)
1024 return (0);
1025 MCLAIM(m, sb->sb_mowner);
1026 /*
1027 * XXX avoid 'comparison always true' warning which isn't easily
1028 * avoided.
1029 */
1030 len = asa->sa_len;
1031 if (len > MLEN) {
1032 MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
1033 if ((m->m_flags & M_EXT) == 0) {
1034 m_free(m);
1035 return (0);
1036 }
1037 }
1038 m->m_len = asa->sa_len;
1039 memcpy(mtod(m, void *), asa, asa->sa_len);
1040 if (n)
1041 n->m_next = m0; /* concatenate data to control */
1042 else
1043 control = m0;
1044 m->m_next = control;
1045
1046 SBLASTRECORDCHK(sb, "sbappendaddr 1");
1047
1048 for (n = m; n->m_next != NULL; n = n->m_next)
1049 sballoc(sb, n);
1050 sballoc(sb, n);
1051 nlast = n;
1052 SBLINKRECORD(sb, m);
1053
1054 sb->sb_mbtail = nlast;
1055 SBLASTMBUFCHK(sb, "sbappendaddr");
1056 SBLASTRECORDCHK(sb, "sbappendaddr 2");
1057
1058 return (1);
1059 }
1060
1061 /*
1062 * Helper for sbappendchainaddr: prepend a struct sockaddr* to
1063 * an mbuf chain.
1064 */
1065 static inline struct mbuf *
1066 m_prepend_sockaddr(struct sockbuf *sb, struct mbuf *m0,
1067 const struct sockaddr *asa)
1068 {
1069 struct mbuf *m;
1070 const int salen = asa->sa_len;
1071
1072 KASSERT(solocked(sb->sb_so));
1073
1074 /* only the first in each chain need be a pkthdr */
1075 m = m_gethdr(M_DONTWAIT, MT_SONAME);
1076 if (m == NULL)
1077 return NULL;
1078 MCLAIM(m, sb->sb_mowner);
1079 #ifdef notyet
1080 if (salen > MHLEN) {
1081 MEXTMALLOC(m, salen, M_NOWAIT);
1082 if ((m->m_flags & M_EXT) == 0) {
1083 m_free(m);
1084 return NULL;
1085 }
1086 }
1087 #else
1088 KASSERT(salen <= MHLEN);
1089 #endif
1090 m->m_len = salen;
1091 memcpy(mtod(m, void *), asa, salen);
1092 m->m_next = m0;
1093 m->m_pkthdr.len = salen + m0->m_pkthdr.len;
1094
1095 return m;
1096 }
1097
1098 int
1099 sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa,
1100 struct mbuf *m0, int sbprio)
1101 {
1102 struct mbuf *m, *n, *n0, *nlast;
1103 int error;
1104
1105 KASSERT(solocked(sb->sb_so));
1106
1107 /*
1108 * XXX sbprio reserved for encoding priority of this* request:
1109 * SB_PRIO_NONE --> honour normal sb limits
1110 * SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space,
1111 * take whole chain. Intended for large requests
1112 * that should be delivered atomically (all, or none).
1113 * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow
1114 * over normal socket limits, for messages indicating
1115 * buffer overflow in earlier normal/lower-priority messages
1116 * SB_PRIO_BESTEFFORT --> ignore limits entirely.
1117 * Intended for kernel-generated messages only.
1118 * Up to generator to avoid total mbuf resource exhaustion.
1119 */
1120 (void)sbprio;
1121
1122 if (m0 && (m0->m_flags & M_PKTHDR) == 0)
1123 panic("sbappendaddrchain");
1124
1125 #ifdef notyet
1126 space = sbspace(sb);
1127
1128 /*
1129 * Enforce SB_PRIO_* limits as described above.
1130 */
1131 #endif
1132
1133 n0 = NULL;
1134 nlast = NULL;
1135 for (m = m0; m; m = m->m_nextpkt) {
1136 struct mbuf *np;
1137
1138 #ifdef MBUFTRACE
1139 m_claimm(m, sb->sb_mowner);
1140 #endif
1141
1142 /* Prepend sockaddr to this record (m) of input chain m0 */
1143 n = m_prepend_sockaddr(sb, m, asa);
1144 if (n == NULL) {
1145 error = ENOBUFS;
1146 goto bad;
1147 }
1148
1149 /* Append record (asa+m) to end of new chain n0 */
1150 if (n0 == NULL) {
1151 n0 = n;
1152 } else {
1153 nlast->m_nextpkt = n;
1154 }
1155 /* Keep track of last record on new chain */
1156 nlast = n;
1157
1158 for (np = n; np; np = np->m_next)
1159 sballoc(sb, np);
1160 }
1161
1162 SBLASTRECORDCHK(sb, "sbappendaddrchain 1");
1163
1164 /* Drop the entire chain of (asa+m) records onto the socket */
1165 SBLINKRECORDCHAIN(sb, n0, nlast);
1166
1167 SBLASTRECORDCHK(sb, "sbappendaddrchain 2");
1168
1169 for (m = nlast; m->m_next; m = m->m_next)
1170 ;
1171 sb->sb_mbtail = m;
1172 SBLASTMBUFCHK(sb, "sbappendaddrchain");
1173
1174 return (1);
1175
1176 bad:
1177 /*
1178 * On error, free the prepended addreseses. For consistency
1179 * with sbappendaddr(), leave it to our caller to free
1180 * the input record chain passed to us as m0.
1181 */
1182 while ((n = n0) != NULL) {
1183 struct mbuf *np;
1184
1185 /* Undo the sballoc() of this record */
1186 for (np = n; np; np = np->m_next)
1187 sbfree(sb, np);
1188
1189 n0 = n->m_nextpkt; /* iterate at next prepended address */
1190 np = m_free(n); /* free prepended address (not data) */
1191 }
1192 return error;
1193 }
1194
1195
1196 int
1197 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
1198 {
1199 struct mbuf *m, *mlast, *n;
1200 int space;
1201
1202 KASSERT(solocked(sb->sb_so));
1203
1204 space = 0;
1205 if (control == NULL)
1206 panic("sbappendcontrol");
1207 for (m = control; ; m = m->m_next) {
1208 space += m->m_len;
1209 MCLAIM(m, sb->sb_mowner);
1210 if (m->m_next == NULL)
1211 break;
1212 }
1213 n = m; /* save pointer to last control buffer */
1214 for (m = m0; m; m = m->m_next) {
1215 MCLAIM(m, sb->sb_mowner);
1216 space += m->m_len;
1217 }
1218 if (space > sbspace(sb))
1219 return (0);
1220 n->m_next = m0; /* concatenate data to control */
1221
1222 SBLASTRECORDCHK(sb, "sbappendcontrol 1");
1223
1224 for (m = control; m->m_next != NULL; m = m->m_next)
1225 sballoc(sb, m);
1226 sballoc(sb, m);
1227 mlast = m;
1228 SBLINKRECORD(sb, control);
1229
1230 sb->sb_mbtail = mlast;
1231 SBLASTMBUFCHK(sb, "sbappendcontrol");
1232 SBLASTRECORDCHK(sb, "sbappendcontrol 2");
1233
1234 return (1);
1235 }
1236
1237 /*
1238 * Compress mbuf chain m into the socket
1239 * buffer sb following mbuf n. If n
1240 * is null, the buffer is presumed empty.
1241 */
1242 void
1243 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
1244 {
1245 int eor;
1246 struct mbuf *o;
1247
1248 KASSERT(solocked(sb->sb_so));
1249
1250 eor = 0;
1251 while (m) {
1252 eor |= m->m_flags & M_EOR;
1253 if (m->m_len == 0 &&
1254 (eor == 0 ||
1255 (((o = m->m_next) || (o = n)) &&
1256 o->m_type == m->m_type))) {
1257 if (sb->sb_lastrecord == m)
1258 sb->sb_lastrecord = m->m_next;
1259 m = m_free(m);
1260 continue;
1261 }
1262 if (n && (n->m_flags & M_EOR) == 0 &&
1263 /* M_TRAILINGSPACE() checks buffer writeability */
1264 m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
1265 m->m_len <= M_TRAILINGSPACE(n) &&
1266 n->m_type == m->m_type) {
1267 memcpy(mtod(n, char *) + n->m_len, mtod(m, void *),
1268 (unsigned)m->m_len);
1269 n->m_len += m->m_len;
1270 sb->sb_cc += m->m_len;
1271 m = m_free(m);
1272 continue;
1273 }
1274 if (n)
1275 n->m_next = m;
1276 else
1277 sb->sb_mb = m;
1278 sb->sb_mbtail = m;
1279 sballoc(sb, m);
1280 n = m;
1281 m->m_flags &= ~M_EOR;
1282 m = m->m_next;
1283 n->m_next = 0;
1284 }
1285 if (eor) {
1286 if (n)
1287 n->m_flags |= eor;
1288 else
1289 printf("semi-panic: sbcompress\n");
1290 }
1291 SBLASTMBUFCHK(sb, __func__);
1292 }
1293
1294 /*
1295 * Free all mbufs in a sockbuf.
1296 * Check that all resources are reclaimed.
1297 */
1298 void
1299 sbflush(struct sockbuf *sb)
1300 {
1301
1302 KASSERT(solocked(sb->sb_so));
1303 KASSERT((sb->sb_flags & SB_LOCK) == 0);
1304
1305 while (sb->sb_mbcnt)
1306 sbdrop(sb, (int)sb->sb_cc);
1307
1308 KASSERT(sb->sb_cc == 0);
1309 KASSERT(sb->sb_mb == NULL);
1310 KASSERT(sb->sb_mbtail == NULL);
1311 KASSERT(sb->sb_lastrecord == NULL);
1312 }
1313
1314 /*
1315 * Drop data from (the front of) a sockbuf.
1316 */
1317 void
1318 sbdrop(struct sockbuf *sb, int len)
1319 {
1320 struct mbuf *m, *next;
1321
1322 KASSERT(solocked(sb->sb_so));
1323
1324 next = (m = sb->sb_mb) ? m->m_nextpkt : NULL;
1325 while (len > 0) {
1326 if (m == NULL) {
1327 if (next == NULL)
1328 panic("sbdrop(%p,%d): cc=%lu",
1329 sb, len, sb->sb_cc);
1330 m = next;
1331 next = m->m_nextpkt;
1332 continue;
1333 }
1334 if (m->m_len > len) {
1335 m->m_len -= len;
1336 m->m_data += len;
1337 sb->sb_cc -= len;
1338 break;
1339 }
1340 len -= m->m_len;
1341 sbfree(sb, m);
1342 m = m_free(m);
1343 }
1344 while (m && m->m_len == 0) {
1345 sbfree(sb, m);
1346 m = m_free(m);
1347 }
1348 if (m) {
1349 sb->sb_mb = m;
1350 m->m_nextpkt = next;
1351 } else
1352 sb->sb_mb = next;
1353 /*
1354 * First part is an inline SB_EMPTY_FIXUP(). Second part
1355 * makes sure sb_lastrecord is up-to-date if we dropped
1356 * part of the last record.
1357 */
1358 m = sb->sb_mb;
1359 if (m == NULL) {
1360 sb->sb_mbtail = NULL;
1361 sb->sb_lastrecord = NULL;
1362 } else if (m->m_nextpkt == NULL)
1363 sb->sb_lastrecord = m;
1364 }
1365
1366 /*
1367 * Drop a record off the front of a sockbuf
1368 * and move the next record to the front.
1369 */
1370 void
1371 sbdroprecord(struct sockbuf *sb)
1372 {
1373 struct mbuf *m, *mn;
1374
1375 KASSERT(solocked(sb->sb_so));
1376
1377 m = sb->sb_mb;
1378 if (m) {
1379 sb->sb_mb = m->m_nextpkt;
1380 do {
1381 sbfree(sb, m);
1382 mn = m_free(m);
1383 } while ((m = mn) != NULL);
1384 }
1385 SB_EMPTY_FIXUP(sb);
1386 }
1387
1388 /*
1389 * Create a "control" mbuf containing the specified data
1390 * with the specified type for presentation on a socket buffer.
1391 */
1392 struct mbuf *
1393 sbcreatecontrol1(void **p, int size, int type, int level, int flags)
1394 {
1395 struct cmsghdr *cp;
1396 struct mbuf *m;
1397 int space = CMSG_SPACE(size);
1398
1399 if ((flags & M_DONTWAIT) && space > MCLBYTES) {
1400 printf("%s: message too large %d\n", __func__, space);
1401 return NULL;
1402 }
1403
1404 if ((m = m_get(flags, MT_CONTROL)) == NULL)
1405 return NULL;
1406 if (space > MLEN) {
1407 if (space > MCLBYTES)
1408 MEXTMALLOC(m, space, M_WAITOK);
1409 else
1410 MCLGET(m, flags);
1411 if ((m->m_flags & M_EXT) == 0) {
1412 m_free(m);
1413 return NULL;
1414 }
1415 }
1416 cp = mtod(m, struct cmsghdr *);
1417 *p = CMSG_DATA(cp);
1418 m->m_len = space;
1419 cp->cmsg_len = CMSG_LEN(size);
1420 cp->cmsg_level = level;
1421 cp->cmsg_type = type;
1422 return m;
1423 }
1424
1425 struct mbuf *
1426 sbcreatecontrol(void *p, int size, int type, int level)
1427 {
1428 struct mbuf *m;
1429 void *v;
1430
1431 m = sbcreatecontrol1(&v, size, type, level, M_DONTWAIT);
1432 if (m == NULL)
1433 return NULL;
1434 memcpy(v, p, size);
1435 return m;
1436 }
1437
1438 void
1439 solockretry(struct socket *so, kmutex_t *lock)
1440 {
1441
1442 while (lock != so->so_lock) {
1443 mutex_exit(lock);
1444 lock = so->so_lock;
1445 mutex_enter(lock);
1446 }
1447 }
1448
1449 bool
1450 solocked(const struct socket *so)
1451 {
1452
1453 return mutex_owned(so->so_lock);
1454 }
1455
1456 bool
1457 solocked2(const struct socket *so1, const struct socket *so2)
1458 {
1459 const kmutex_t *lock;
1460
1461 lock = so1->so_lock;
1462 if (lock != so2->so_lock)
1463 return false;
1464 return mutex_owned(lock);
1465 }
1466
1467 /*
1468 * sosetlock: assign a default lock to a new socket.
1469 */
1470 void
1471 sosetlock(struct socket *so)
1472 {
1473 if (so->so_lock == NULL) {
1474 kmutex_t *lock = softnet_lock;
1475
1476 so->so_lock = lock;
1477 mutex_obj_hold(lock);
1478 mutex_enter(lock);
1479 }
1480 KASSERT(solocked(so));
1481 }
1482
1483 /*
1484 * Set lock on sockbuf sb; sleep if lock is already held.
1485 * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
1486 * Returns error without lock if sleep is interrupted.
1487 */
1488 int
1489 sblock(struct sockbuf *sb, int wf)
1490 {
1491 struct socket *so;
1492 kmutex_t *lock;
1493 int error;
1494
1495 KASSERT(solocked(sb->sb_so));
1496
1497 for (;;) {
1498 if (__predict_true((sb->sb_flags & SB_LOCK) == 0)) {
1499 sb->sb_flags |= SB_LOCK;
1500 return 0;
1501 }
1502 if (wf != M_WAITOK)
1503 return EWOULDBLOCK;
1504 so = sb->sb_so;
1505 lock = so->so_lock;
1506 if ((sb->sb_flags & SB_NOINTR) != 0) {
1507 cv_wait(&so->so_cv, lock);
1508 error = 0;
1509 } else
1510 error = cv_wait_sig(&so->so_cv, lock);
1511 if (__predict_false(lock != so->so_lock))
1512 solockretry(so, lock);
1513 if (error != 0)
1514 return error;
1515 }
1516 }
1517
1518 void
1519 sbunlock(struct sockbuf *sb)
1520 {
1521 struct socket *so;
1522
1523 so = sb->sb_so;
1524
1525 KASSERT(solocked(so));
1526 KASSERT((sb->sb_flags & SB_LOCK) != 0);
1527
1528 sb->sb_flags &= ~SB_LOCK;
1529 cv_broadcast(&so->so_cv);
1530 }
1531
1532 int
1533 sowait(struct socket *so, bool catch_p, int timo)
1534 {
1535 kmutex_t *lock;
1536 int error;
1537
1538 KASSERT(solocked(so));
1539 KASSERT(catch_p || timo != 0);
1540
1541 lock = so->so_lock;
1542 if (catch_p)
1543 error = cv_timedwait_sig(&so->so_cv, lock, timo);
1544 else
1545 error = cv_timedwait(&so->so_cv, lock, timo);
1546 if (__predict_false(lock != so->so_lock))
1547 solockretry(so, lock);
1548 return error;
1549 }
1550
1551 #ifdef DDB
1552
1553 /*
1554 * Currently, sofindproc() is used only from DDB. It could be used from others
1555 * by using db_mutex_enter()
1556 */
1557
1558 static inline int
1559 db_mutex_enter(kmutex_t *mtx)
1560 {
1561 extern int db_active;
1562 int rv;
1563
1564 if (!db_active) {
1565 mutex_enter(mtx);
1566 rv = 1;
1567 } else
1568 rv = mutex_tryenter(mtx);
1569
1570 return rv;
1571 }
1572
1573 int
1574 sofindproc(struct socket *so, int all, void (*pr)(const char *, ...))
1575 {
1576 proc_t *p;
1577 filedesc_t *fdp;
1578 fdtab_t *dt;
1579 fdfile_t *ff;
1580 file_t *fp = NULL;
1581 int found = 0;
1582 int i, t;
1583
1584 if (so == NULL)
1585 return 0;
1586
1587 t = db_mutex_enter(proc_lock);
1588 if (!t) {
1589 pr("could not acquire proc_lock mutex\n");
1590 return 0;
1591 }
1592 PROCLIST_FOREACH(p, &allproc) {
1593 if (p->p_stat == SIDL)
1594 continue;
1595 fdp = p->p_fd;
1596 t = db_mutex_enter(&fdp->fd_lock);
1597 if (!t) {
1598 pr("could not acquire fd_lock mutex\n");
1599 continue;
1600 }
1601 dt = fdp->fd_dt;
1602 for (i = 0; i < dt->dt_nfiles; i++) {
1603 ff = dt->dt_ff[i];
1604 if (ff == NULL)
1605 continue;
1606
1607 fp = ff->ff_file;
1608 if (fp == NULL)
1609 continue;
1610
1611 t = db_mutex_enter(&fp->f_lock);
1612 if (!t) {
1613 pr("could not acquire f_lock mutex\n");
1614 continue;
1615 }
1616 if ((struct socket *)fp->f_data != so) {
1617 mutex_exit(&fp->f_lock);
1618 continue;
1619 }
1620 found++;
1621 if (pr)
1622 pr("socket %p: owner %s(pid=%d)\n",
1623 so, p->p_comm, p->p_pid);
1624 mutex_exit(&fp->f_lock);
1625 if (all == 0)
1626 break;
1627 }
1628 mutex_exit(&fdp->fd_lock);
1629 if (all == 0 && found != 0)
1630 break;
1631 }
1632 mutex_exit(proc_lock);
1633
1634 return found;
1635 }
1636
1637 void
1638 socket_print(const char *modif, void (*pr)(const char *, ...))
1639 {
1640 file_t *fp;
1641 struct socket *so;
1642 struct sockbuf *sb_snd, *sb_rcv;
1643 struct mbuf *m_rec, *m;
1644 bool opt_v = false;
1645 bool opt_m = false;
1646 bool opt_a = false;
1647 bool opt_p = false;
1648 int nrecs, nmbufs;
1649 char ch;
1650 const char *family;
1651
1652 while ( (ch = *(modif++)) != '\0') {
1653 switch (ch) {
1654 case 'v':
1655 opt_v = true;
1656 break;
1657 case 'm':
1658 opt_m = true;
1659 break;
1660 case 'a':
1661 opt_a = true;
1662 break;
1663 case 'p':
1664 opt_p = true;
1665 break;
1666 }
1667 }
1668 if (opt_v == false && pr)
1669 (pr)("Ignore empty sockets. use /v to print all.\n");
1670 if (opt_p == true && pr)
1671 (pr)("Don't search owner process.\n");
1672
1673 LIST_FOREACH(fp, &filehead, f_list) {
1674 if (fp->f_type != DTYPE_SOCKET)
1675 continue;
1676 so = (struct socket *)fp->f_data;
1677 if (so == NULL)
1678 continue;
1679
1680 if (so->so_proto->pr_domain->dom_family == AF_INET)
1681 family = "INET";
1682 #ifdef INET6
1683 else if (so->so_proto->pr_domain->dom_family == AF_INET6)
1684 family = "INET6";
1685 #endif
1686 else if (so->so_proto->pr_domain->dom_family == pseudo_AF_KEY)
1687 family = "KEY";
1688 else if (so->so_proto->pr_domain->dom_family == AF_ROUTE)
1689 family = "ROUTE";
1690 else
1691 continue;
1692
1693 sb_snd = &so->so_snd;
1694 sb_rcv = &so->so_rcv;
1695
1696 if (opt_v != true &&
1697 sb_snd->sb_cc == 0 && sb_rcv->sb_cc == 0)
1698 continue;
1699
1700 pr("---SOCKET %p: type %s\n", so, family);
1701 if (opt_p != true)
1702 sofindproc(so, opt_a == true ? 1 : 0, pr);
1703 pr("Send Buffer Bytes: %d [bytes]\n", sb_snd->sb_cc);
1704 pr("Send Buffer mbufs:\n");
1705 m_rec = m = sb_snd->sb_mb;
1706 nrecs = 0;
1707 nmbufs = 0;
1708 while (m_rec) {
1709 nrecs++;
1710 if (opt_m == true)
1711 pr(" mbuf chain %p\n", m_rec);
1712 while (m) {
1713 nmbufs++;
1714 m = m->m_next;
1715 }
1716 m_rec = m = m_rec->m_nextpkt;
1717 }
1718 pr(" Total %d records, %d mbufs.\n", nrecs, nmbufs);
1719
1720 pr("Recv Buffer Usage: %d [bytes]\n", sb_rcv->sb_cc);
1721 pr("Recv Buffer mbufs:\n");
1722 m_rec = m = sb_rcv->sb_mb;
1723 nrecs = 0;
1724 nmbufs = 0;
1725 while (m_rec) {
1726 nrecs++;
1727 if (opt_m == true)
1728 pr(" mbuf chain %p\n", m_rec);
1729 while (m) {
1730 nmbufs++;
1731 m = m->m_next;
1732 }
1733 m_rec = m = m_rec->m_nextpkt;
1734 }
1735 pr(" Total %d records, %d mbufs.\n", nrecs, nmbufs);
1736 }
1737 }
1738 #endif /* DDB */
1739