uipc_socket2.c revision 1.134.2.3 1 /* $NetBSD: uipc_socket2.c,v 1.134.2.3 2024/11/20 14:01:59 martin Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*
30 * Copyright (c) 1982, 1986, 1988, 1990, 1993
31 * The Regents of the University of California. All rights reserved.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 * 3. Neither the name of the University nor the names of its contributors
42 * may be used to endorse or promote products derived from this software
43 * without specific prior written permission.
44 *
45 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 * SUCH DAMAGE.
56 *
57 * @(#)uipc_socket2.c 8.2 (Berkeley) 2/14/95
58 */
59
60 #include <sys/cdefs.h>
61 __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.134.2.3 2024/11/20 14:01:59 martin Exp $");
62
63 #ifdef _KERNEL_OPT
64 #include "opt_ddb.h"
65 #include "opt_mbuftrace.h"
66 #include "opt_sb_max.h"
67 #endif
68
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/proc.h>
72 #include <sys/file.h>
73 #include <sys/buf.h>
74 #include <sys/mbuf.h>
75 #include <sys/protosw.h>
76 #include <sys/domain.h>
77 #include <sys/poll.h>
78 #include <sys/socket.h>
79 #include <sys/socketvar.h>
80 #include <sys/signalvar.h>
81 #include <sys/kauth.h>
82 #include <sys/pool.h>
83 #include <sys/uidinfo.h>
84
85 #ifdef DDB
86 #include <sys/filedesc.h>
87 #endif
88
89 /*
90 * Primitive routines for operating on sockets and socket buffers.
91 *
92 * Connection life-cycle:
93 *
94 * Normal sequence from the active (originating) side:
95 *
96 * - soisconnecting() is called during processing of connect() call,
97 * - resulting in an eventual call to soisconnected() if/when the
98 * connection is established.
99 *
100 * When the connection is torn down during processing of disconnect():
101 *
102 * - soisdisconnecting() is called and,
103 * - soisdisconnected() is called when the connection to the peer
104 * is totally severed.
105 *
106 * The semantics of these routines are such that connectionless protocols
107 * can call soisconnected() and soisdisconnected() only, bypassing the
108 * in-progress calls when setting up a ``connection'' takes no time.
109 *
110 * From the passive side, a socket is created with two queues of sockets:
111 *
112 * - so_q0 (0) for partial connections (i.e. connections in progress)
113 * - so_q (1) for connections already made and awaiting user acceptance.
114 *
115 * As a protocol is preparing incoming connections, it creates a socket
116 * structure queued on so_q0 by calling sonewconn(). When the connection
117 * is established, soisconnected() is called, and transfers the
118 * socket structure to so_q, making it available to accept().
119 *
120 * If a socket is closed with sockets on either so_q0 or so_q, these
121 * sockets are dropped.
122 *
123 * Locking rules and assumptions:
124 *
125 * o socket::so_lock can change on the fly. The low level routines used
126 * to lock sockets are aware of this. When so_lock is acquired, the
127 * routine locking must check to see if so_lock still points to the
128 * lock that was acquired. If so_lock has changed in the meantime, the
129 * now irrelevant lock that was acquired must be dropped and the lock
130 * operation retried. Although not proven here, this is completely safe
131 * on a multiprocessor system, even with relaxed memory ordering, given
132 * the next two rules:
133 *
134 * o In order to mutate so_lock, the lock pointed to by the current value
135 * of so_lock must be held: i.e., the socket must be held locked by the
136 * changing thread. The thread must issue membar_exit() to prevent
137 * memory accesses being reordered, and can set so_lock to the desired
138 * value. If the lock pointed to by the new value of so_lock is not
139 * held by the changing thread, the socket must then be considered
140 * unlocked.
141 *
142 * o If so_lock is mutated, and the previous lock referred to by so_lock
143 * could still be visible to other threads in the system (e.g. via file
144 * descriptor or protocol-internal reference), then the old lock must
145 * remain valid until the socket and/or protocol control block has been
146 * torn down.
147 *
148 * o If a socket has a non-NULL so_head value (i.e. is in the process of
149 * connecting), then locking the socket must also lock the socket pointed
150 * to by so_head: their lock pointers must match.
151 *
152 * o If a socket has connections in progress (so_q, so_q0 not empty) then
153 * locking the socket must also lock the sockets attached to both queues.
154 * Again, their lock pointers must match.
155 *
156 * o Beyond the initial lock assignment in socreate(), assigning locks to
157 * sockets is the responsibility of the individual protocols / protocol
158 * domains.
159 */
160
161 static pool_cache_t socket_cache;
162 u_long sb_max = SB_MAX;/* maximum socket buffer size */
163 static u_long sb_max_adj; /* adjusted sb_max */
164
165 void
166 soisconnecting(struct socket *so)
167 {
168
169 KASSERT(solocked(so));
170
171 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
172 so->so_state |= SS_ISCONNECTING;
173 }
174
175 void
176 soisconnected(struct socket *so)
177 {
178 struct socket *head;
179
180 head = so->so_head;
181
182 KASSERT(solocked(so));
183 KASSERT(head == NULL || solocked2(so, head));
184
185 so->so_state &= ~(SS_ISCONNECTING | SS_ISDISCONNECTING);
186 so->so_state |= SS_ISCONNECTED;
187 if (head && so->so_onq == &head->so_q0) {
188 if ((so->so_options & SO_ACCEPTFILTER) == 0) {
189 /*
190 * Re-enqueue and wake up any waiters, e.g.
191 * processes blocking on accept().
192 */
193 soqremque(so, 0);
194 soqinsque(head, so, 1);
195 sorwakeup(head);
196 cv_broadcast(&head->so_cv);
197 } else {
198 so->so_upcall =
199 head->so_accf->so_accept_filter->accf_callback;
200 so->so_upcallarg = head->so_accf->so_accept_filter_arg;
201 so->so_rcv.sb_flags |= SB_UPCALL;
202 so->so_options &= ~SO_ACCEPTFILTER;
203 (*so->so_upcall)(so, so->so_upcallarg,
204 POLLIN|POLLRDNORM, M_DONTWAIT);
205 }
206 } else {
207 cv_broadcast(&so->so_cv);
208 sorwakeup(so);
209 sowwakeup(so);
210 }
211 }
212
213 void
214 soisdisconnecting(struct socket *so)
215 {
216
217 KASSERT(solocked(so));
218
219 so->so_state &= ~SS_ISCONNECTING;
220 so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
221 cv_broadcast(&so->so_cv);
222 sowwakeup(so);
223 sorwakeup(so);
224 }
225
226 void
227 soisdisconnected(struct socket *so)
228 {
229
230 KASSERT(solocked(so));
231
232 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
233 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
234 cv_broadcast(&so->so_cv);
235 sowwakeup(so);
236 sorwakeup(so);
237 }
238
239 void
240 soinit2(void)
241 {
242
243 socket_cache = pool_cache_init(sizeof(struct socket), 0, 0, 0,
244 "socket", NULL, IPL_SOFTNET, NULL, NULL, NULL);
245 }
246
247 /*
248 * sonewconn: accept a new connection.
249 *
250 * When an attempt at a new connection is noted on a socket which accepts
251 * connections, sonewconn(9) is called. If the connection is possible
252 * (subject to space constraints, etc) then we allocate a new structure,
253 * properly linked into the data structure of the original socket.
254 *
255 * => If 'soready' is true, then socket will become ready for accept() i.e.
256 * inserted into the so_q queue, SS_ISCONNECTED set and waiters awoken.
257 * => May be called from soft-interrupt context.
258 * => Listening socket should be locked.
259 * => Returns the new socket locked.
260 */
261 struct socket *
262 sonewconn(struct socket *head, bool soready)
263 {
264 struct socket *so;
265 int soqueue, error;
266
267 KASSERT(solocked(head));
268
269 if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2) {
270 /*
271 * Listen queue overflow. If there is an accept filter
272 * active, pass through the oldest cxn it's handling.
273 */
274 if (head->so_accf == NULL) {
275 return NULL;
276 } else {
277 struct socket *so2, *next;
278
279 /* Pass the oldest connection waiting in the
280 accept filter */
281 for (so2 = TAILQ_FIRST(&head->so_q0);
282 so2 != NULL; so2 = next) {
283 next = TAILQ_NEXT(so2, so_qe);
284 if (so2->so_upcall == NULL) {
285 continue;
286 }
287 so2->so_upcall = NULL;
288 so2->so_upcallarg = NULL;
289 so2->so_options &= ~SO_ACCEPTFILTER;
290 so2->so_rcv.sb_flags &= ~SB_UPCALL;
291 soisconnected(so2);
292 break;
293 }
294
295 /* If nothing was nudged out of the acept filter, bail
296 * out; otherwise proceed allocating the socket. */
297 if (so2 == NULL) {
298 return NULL;
299 }
300 }
301 }
302 if ((head->so_options & SO_ACCEPTFILTER) != 0) {
303 soready = false;
304 }
305 soqueue = soready ? 1 : 0;
306
307 if ((so = soget(false)) == NULL) {
308 return NULL;
309 }
310 so->so_type = head->so_type;
311 so->so_options = head->so_options & ~SO_ACCEPTCONN;
312 so->so_linger = head->so_linger;
313 so->so_state = head->so_state | SS_NOFDREF;
314 so->so_proto = head->so_proto;
315 so->so_timeo = head->so_timeo;
316 so->so_pgid = head->so_pgid;
317 so->so_send = head->so_send;
318 so->so_receive = head->so_receive;
319 so->so_uidinfo = head->so_uidinfo;
320 so->so_egid = head->so_egid;
321 so->so_cpid = head->so_cpid;
322
323 /*
324 * Share the lock with the listening-socket, it may get unshared
325 * once the connection is complete.
326 */
327 mutex_obj_hold(head->so_lock);
328 so->so_lock = head->so_lock;
329
330 /*
331 * Reserve the space for socket buffers.
332 */
333 #ifdef MBUFTRACE
334 so->so_mowner = head->so_mowner;
335 so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
336 so->so_snd.sb_mowner = head->so_snd.sb_mowner;
337 #endif
338 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) {
339 goto out;
340 }
341 so->so_snd.sb_lowat = head->so_snd.sb_lowat;
342 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
343 so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
344 so->so_snd.sb_timeo = head->so_snd.sb_timeo;
345 so->so_rcv.sb_flags |= head->so_rcv.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
346 so->so_snd.sb_flags |= head->so_snd.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
347
348 /*
349 * Finally, perform the protocol attach. Note: a new socket
350 * lock may be assigned at this point (if so, it will be held).
351 */
352 error = (*so->so_proto->pr_usrreqs->pr_attach)(so, 0);
353 if (error) {
354 out:
355 KASSERT(solocked(so));
356 KASSERT(so->so_accf == NULL);
357 soput(so);
358
359 /* Note: the listening socket shall stay locked. */
360 KASSERT(solocked(head));
361 return NULL;
362 }
363 KASSERT(solocked2(head, so));
364
365 /*
366 * Insert into the queue. If ready, update the connection status
367 * and wake up any waiters, e.g. processes blocking on accept().
368 */
369 soqinsque(head, so, soqueue);
370 if (soready) {
371 so->so_state |= SS_ISCONNECTED;
372 sorwakeup(head);
373 cv_broadcast(&head->so_cv);
374 }
375 return so;
376 }
377
378 struct socket *
379 soget(bool waitok)
380 {
381 struct socket *so;
382
383 so = pool_cache_get(socket_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
384 if (__predict_false(so == NULL))
385 return (NULL);
386 memset(so, 0, sizeof(*so));
387 TAILQ_INIT(&so->so_q0);
388 TAILQ_INIT(&so->so_q);
389 cv_init(&so->so_cv, "socket");
390 cv_init(&so->so_rcv.sb_cv, "netio");
391 cv_init(&so->so_snd.sb_cv, "netio");
392 selinit(&so->so_rcv.sb_sel);
393 selinit(&so->so_snd.sb_sel);
394 so->so_rcv.sb_so = so;
395 so->so_snd.sb_so = so;
396 return so;
397 }
398
399 void
400 soput(struct socket *so)
401 {
402
403 KASSERT(!cv_has_waiters(&so->so_cv));
404 KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
405 KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
406 seldestroy(&so->so_rcv.sb_sel);
407 seldestroy(&so->so_snd.sb_sel);
408 mutex_obj_free(so->so_lock);
409 cv_destroy(&so->so_cv);
410 cv_destroy(&so->so_rcv.sb_cv);
411 cv_destroy(&so->so_snd.sb_cv);
412 pool_cache_put(socket_cache, so);
413 }
414
415 /*
416 * soqinsque: insert socket of a new connection into the specified
417 * accept queue of the listening socket (head).
418 *
419 * q = 0: queue of partial connections
420 * q = 1: queue of incoming connections
421 */
422 void
423 soqinsque(struct socket *head, struct socket *so, int q)
424 {
425 KASSERT(q == 0 || q == 1);
426 KASSERT(solocked2(head, so));
427 KASSERT(so->so_onq == NULL);
428 KASSERT(so->so_head == NULL);
429
430 so->so_head = head;
431 if (q == 0) {
432 head->so_q0len++;
433 so->so_onq = &head->so_q0;
434 } else {
435 head->so_qlen++;
436 so->so_onq = &head->so_q;
437 }
438 TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
439 }
440
441 /*
442 * soqremque: remove socket from the specified queue.
443 *
444 * => Returns true if socket was removed from the specified queue.
445 * => False if socket was not removed (because it was in other queue).
446 */
447 bool
448 soqremque(struct socket *so, int q)
449 {
450 struct socket *head = so->so_head;
451
452 KASSERT(q == 0 || q == 1);
453 KASSERT(solocked(so));
454 KASSERT(so->so_onq != NULL);
455 KASSERT(head != NULL);
456
457 if (q == 0) {
458 if (so->so_onq != &head->so_q0)
459 return false;
460 head->so_q0len--;
461 } else {
462 if (so->so_onq != &head->so_q)
463 return false;
464 head->so_qlen--;
465 }
466 KASSERT(solocked2(so, head));
467 TAILQ_REMOVE(so->so_onq, so, so_qe);
468 so->so_onq = NULL;
469 so->so_head = NULL;
470 return true;
471 }
472
473 /*
474 * socantsendmore: indicates that no more data will be sent on the
475 * socket; it would normally be applied to a socket when the user
476 * informs the system that no more data is to be sent, by the protocol
477 * code (in case pr_shutdown()).
478 */
479 void
480 socantsendmore(struct socket *so)
481 {
482 KASSERT(solocked(so));
483
484 so->so_state |= SS_CANTSENDMORE;
485 sowwakeup(so);
486 }
487
488 /*
489 * socantrcvmore(): indicates that no more data will be received and
490 * will normally be applied to the socket by a protocol when it detects
491 * that the peer will send no more data. Data queued for reading in
492 * the socket may yet be read.
493 */
494 void
495 socantrcvmore(struct socket *so)
496 {
497 KASSERT(solocked(so));
498
499 so->so_state |= SS_CANTRCVMORE;
500 sorwakeup(so);
501 }
502
503 /*
504 * soroverflow(): indicates that data was attempted to be sent
505 * but the receiving buffer overflowed.
506 */
507 void
508 soroverflow(struct socket *so)
509 {
510 KASSERT(solocked(so));
511
512 so->so_rcv.sb_overflowed++;
513 if (so->so_options & SO_RERROR) {
514 so->so_rerror = ENOBUFS;
515 sorwakeup(so);
516 }
517 }
518
519 /*
520 * Wait for data to arrive at/drain from a socket buffer.
521 */
522 int
523 sbwait(struct sockbuf *sb)
524 {
525 struct socket *so;
526 kmutex_t *lock;
527 int error;
528
529 so = sb->sb_so;
530
531 KASSERT(solocked(so));
532
533 sb->sb_flags |= SB_NOTIFY;
534 lock = so->so_lock;
535 if ((sb->sb_flags & SB_NOINTR) != 0)
536 error = cv_timedwait(&sb->sb_cv, lock, sb->sb_timeo);
537 else
538 error = cv_timedwait_sig(&sb->sb_cv, lock, sb->sb_timeo);
539 if (__predict_false(lock != so->so_lock))
540 solockretry(so, lock);
541 return error;
542 }
543
544 /*
545 * Wakeup processes waiting on a socket buffer.
546 * Do asynchronous notification via SIGIO
547 * if the socket buffer has the SB_ASYNC flag set.
548 */
549 void
550 sowakeup(struct socket *so, struct sockbuf *sb, int code)
551 {
552 int band;
553
554 KASSERT(solocked(so));
555 KASSERT(sb->sb_so == so);
556
557 switch (code) {
558 case POLL_IN:
559 band = POLLIN|POLLRDNORM;
560 break;
561
562 case POLL_OUT:
563 band = POLLOUT|POLLWRNORM;
564 break;
565
566 case POLL_HUP:
567 band = POLLHUP;
568 break;
569
570 default:
571 band = 0;
572 #ifdef DIAGNOSTIC
573 printf("bad siginfo code %d in socket notification.\n", code);
574 #endif
575 break;
576 }
577
578 sb->sb_flags &= ~SB_NOTIFY;
579 selnotify(&sb->sb_sel, band, NOTE_SUBMIT);
580 cv_broadcast(&sb->sb_cv);
581 if (sb->sb_flags & SB_ASYNC)
582 fownsignal(so->so_pgid, SIGIO, code, band, so);
583 if (sb->sb_flags & SB_UPCALL)
584 (*so->so_upcall)(so, so->so_upcallarg, band, M_DONTWAIT);
585 }
586
587 /*
588 * Reset a socket's lock pointer. Wake all threads waiting on the
589 * socket's condition variables so that they can restart their waits
590 * using the new lock. The existing lock must be held.
591 */
592 void
593 solockreset(struct socket *so, kmutex_t *lock)
594 {
595
596 KASSERT(solocked(so));
597
598 so->so_lock = lock;
599 cv_broadcast(&so->so_snd.sb_cv);
600 cv_broadcast(&so->so_rcv.sb_cv);
601 cv_broadcast(&so->so_cv);
602 }
603
604 /*
605 * Socket buffer (struct sockbuf) utility routines.
606 *
607 * Each socket contains two socket buffers: one for sending data and
608 * one for receiving data. Each buffer contains a queue of mbufs,
609 * information about the number of mbufs and amount of data in the
610 * queue, and other fields allowing poll() statements and notification
611 * on data availability to be implemented.
612 *
613 * Data stored in a socket buffer is maintained as a list of records.
614 * Each record is a list of mbufs chained together with the m_next
615 * field. Records are chained together with the m_nextpkt field. The upper
616 * level routine soreceive() expects the following conventions to be
617 * observed when placing information in the receive buffer:
618 *
619 * 1. If the protocol requires each message be preceded by the sender's
620 * name, then a record containing that name must be present before
621 * any associated data (mbuf's must be of type MT_SONAME).
622 * 2. If the protocol supports the exchange of ``access rights'' (really
623 * just additional data associated with the message), and there are
624 * ``rights'' to be received, then a record containing this data
625 * should be present (mbuf's must be of type MT_CONTROL).
626 * 3. If a name or rights record exists, then it must be followed by
627 * a data record, perhaps of zero length.
628 *
629 * Before using a new socket structure it is first necessary to reserve
630 * buffer space to the socket, by calling sbreserve(). This should commit
631 * some of the available buffer space in the system buffer pool for the
632 * socket (currently, it does nothing but enforce limits). The space
633 * should be released by calling sbrelease() when the socket is destroyed.
634 */
635
636 int
637 sb_max_set(u_long new_sbmax)
638 {
639 int s;
640
641 if (new_sbmax < (16 * 1024))
642 return (EINVAL);
643
644 s = splsoftnet();
645 sb_max = new_sbmax;
646 sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
647 splx(s);
648
649 return (0);
650 }
651
652 int
653 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
654 {
655 KASSERT(so->so_pcb == NULL || solocked(so));
656
657 /*
658 * there's at least one application (a configure script of screen)
659 * which expects a fifo is writable even if it has "some" bytes
660 * in its buffer.
661 * so we want to make sure (hiwat - lowat) >= (some bytes).
662 *
663 * PIPE_BUF here is an arbitrary value chosen as (some bytes) above.
664 * we expect it's large enough for such applications.
665 */
666 u_long lowat = MAX(sock_loan_thresh, MCLBYTES);
667 u_long hiwat = lowat + PIPE_BUF;
668
669 if (sndcc < hiwat)
670 sndcc = hiwat;
671 if (sbreserve(&so->so_snd, sndcc, so) == 0)
672 goto bad;
673 if (sbreserve(&so->so_rcv, rcvcc, so) == 0)
674 goto bad2;
675 if (so->so_rcv.sb_lowat == 0)
676 so->so_rcv.sb_lowat = 1;
677 if (so->so_snd.sb_lowat == 0)
678 so->so_snd.sb_lowat = lowat;
679 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
680 so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
681 return (0);
682 bad2:
683 sbrelease(&so->so_snd, so);
684 bad:
685 return (ENOBUFS);
686 }
687
688 /*
689 * Allot mbufs to a sockbuf.
690 * Attempt to scale mbmax so that mbcnt doesn't become limiting
691 * if buffering efficiency is near the normal case.
692 */
693 int
694 sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
695 {
696 struct lwp *l = curlwp; /* XXX */
697 rlim_t maxcc;
698 struct uidinfo *uidinfo;
699
700 KASSERT(so->so_pcb == NULL || solocked(so));
701 KASSERT(sb->sb_so == so);
702 KASSERT(sb_max_adj != 0);
703
704 if (cc == 0 || cc > sb_max_adj)
705 return (0);
706
707 maxcc = l->l_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur;
708
709 uidinfo = so->so_uidinfo;
710 if (!chgsbsize(uidinfo, &sb->sb_hiwat, cc, maxcc))
711 return 0;
712 sb->sb_mbmax = uimin(cc * 2, sb_max);
713 if (sb->sb_lowat > sb->sb_hiwat)
714 sb->sb_lowat = sb->sb_hiwat;
715
716 return (1);
717 }
718
719 /*
720 * Free mbufs held by a socket, and reserved mbuf space. We do not assert
721 * that the socket is held locked here: see sorflush().
722 */
723 void
724 sbrelease(struct sockbuf *sb, struct socket *so)
725 {
726
727 KASSERT(sb->sb_so == so);
728
729 sbflush(sb);
730 (void)chgsbsize(so->so_uidinfo, &sb->sb_hiwat, 0, RLIM_INFINITY);
731 sb->sb_mbmax = 0;
732 }
733
734 /*
735 * Routines to add and remove
736 * data from an mbuf queue.
737 *
738 * The routines sbappend() or sbappendrecord() are normally called to
739 * append new mbufs to a socket buffer, after checking that adequate
740 * space is available, comparing the function sbspace() with the amount
741 * of data to be added. sbappendrecord() differs from sbappend() in
742 * that data supplied is treated as the beginning of a new record.
743 * To place a sender's address, optional access rights, and data in a
744 * socket receive buffer, sbappendaddr() should be used. To place
745 * access rights and data in a socket receive buffer, sbappendrights()
746 * should be used. In either case, the new data begins a new record.
747 * Note that unlike sbappend() and sbappendrecord(), these routines check
748 * for the caller that there will be enough space to store the data.
749 * Each fails if there is not enough space, or if it cannot find mbufs
750 * to store additional information in.
751 *
752 * Reliable protocols may use the socket send buffer to hold data
753 * awaiting acknowledgement. Data is normally copied from a socket
754 * send buffer in a protocol with m_copym for output to a peer,
755 * and then removing the data from the socket buffer with sbdrop()
756 * or sbdroprecord() when the data is acknowledged by the peer.
757 */
758
759 #ifdef SOCKBUF_DEBUG
760 void
761 sblastrecordchk(struct sockbuf *sb, const char *where)
762 {
763 struct mbuf *m = sb->sb_mb;
764
765 KASSERT(solocked(sb->sb_so));
766
767 while (m && m->m_nextpkt)
768 m = m->m_nextpkt;
769
770 if (m != sb->sb_lastrecord) {
771 printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
772 sb->sb_mb, sb->sb_lastrecord, m);
773 printf("packet chain:\n");
774 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
775 printf("\t%p\n", m);
776 panic("sblastrecordchk from %s", where);
777 }
778 }
779
780 void
781 sblastmbufchk(struct sockbuf *sb, const char *where)
782 {
783 struct mbuf *m = sb->sb_mb;
784 struct mbuf *n;
785
786 KASSERT(solocked(sb->sb_so));
787
788 while (m && m->m_nextpkt)
789 m = m->m_nextpkt;
790
791 while (m && m->m_next)
792 m = m->m_next;
793
794 if (m != sb->sb_mbtail) {
795 printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
796 sb->sb_mb, sb->sb_mbtail, m);
797 printf("packet tree:\n");
798 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
799 printf("\t");
800 for (n = m; n != NULL; n = n->m_next)
801 printf("%p ", n);
802 printf("\n");
803 }
804 panic("sblastmbufchk from %s", where);
805 }
806 }
807 #endif /* SOCKBUF_DEBUG */
808
809 /*
810 * Link a chain of records onto a socket buffer
811 */
812 #define SBLINKRECORDCHAIN(sb, m0, mlast) \
813 do { \
814 if ((sb)->sb_lastrecord != NULL) \
815 (sb)->sb_lastrecord->m_nextpkt = (m0); \
816 else \
817 (sb)->sb_mb = (m0); \
818 (sb)->sb_lastrecord = (mlast); \
819 } while (/*CONSTCOND*/0)
820
821
822 #define SBLINKRECORD(sb, m0) \
823 SBLINKRECORDCHAIN(sb, m0, m0)
824
825 /*
826 * Append mbuf chain m to the last record in the
827 * socket buffer sb. The additional space associated
828 * the mbuf chain is recorded in sb. Empty mbufs are
829 * discarded and mbufs are compacted where possible.
830 */
831 void
832 sbappend(struct sockbuf *sb, struct mbuf *m)
833 {
834 struct mbuf *n;
835
836 KASSERT(solocked(sb->sb_so));
837
838 if (m == NULL)
839 return;
840
841 #ifdef MBUFTRACE
842 m_claimm(m, sb->sb_mowner);
843 #endif
844
845 SBLASTRECORDCHK(sb, "sbappend 1");
846
847 if ((n = sb->sb_lastrecord) != NULL) {
848 /*
849 * XXX Would like to simply use sb_mbtail here, but
850 * XXX I need to verify that I won't miss an EOR that
851 * XXX way.
852 */
853 do {
854 if (n->m_flags & M_EOR) {
855 sbappendrecord(sb, m); /* XXXXXX!!!! */
856 return;
857 }
858 } while (n->m_next && (n = n->m_next));
859 } else {
860 /*
861 * If this is the first record in the socket buffer, it's
862 * also the last record.
863 */
864 sb->sb_lastrecord = m;
865 }
866 sbcompress(sb, m, n);
867 SBLASTRECORDCHK(sb, "sbappend 2");
868 }
869
870 /*
871 * This version of sbappend() should only be used when the caller
872 * absolutely knows that there will never be more than one record
873 * in the socket buffer, that is, a stream protocol (such as TCP).
874 */
875 void
876 sbappendstream(struct sockbuf *sb, struct mbuf *m)
877 {
878
879 KASSERT(solocked(sb->sb_so));
880 KDASSERT(m->m_nextpkt == NULL);
881 KASSERT(sb->sb_mb == sb->sb_lastrecord);
882
883 SBLASTMBUFCHK(sb, __func__);
884
885 #ifdef MBUFTRACE
886 m_claimm(m, sb->sb_mowner);
887 #endif
888
889 sbcompress(sb, m, sb->sb_mbtail);
890
891 sb->sb_lastrecord = sb->sb_mb;
892 SBLASTRECORDCHK(sb, __func__);
893 }
894
895 #ifdef SOCKBUF_DEBUG
896 void
897 sbcheck(struct sockbuf *sb)
898 {
899 struct mbuf *m, *m2;
900 u_long len, mbcnt;
901
902 KASSERT(solocked(sb->sb_so));
903
904 len = 0;
905 mbcnt = 0;
906 for (m = sb->sb_mb; m; m = m->m_nextpkt) {
907 for (m2 = m; m2 != NULL; m2 = m2->m_next) {
908 len += m2->m_len;
909 mbcnt += MSIZE;
910 if (m2->m_flags & M_EXT)
911 mbcnt += m2->m_ext.ext_size;
912 if (m2->m_nextpkt != NULL)
913 panic("sbcheck nextpkt");
914 }
915 }
916 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
917 printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
918 mbcnt, sb->sb_mbcnt);
919 panic("sbcheck");
920 }
921 }
922 #endif
923
924 /*
925 * As above, except the mbuf chain
926 * begins a new record.
927 */
928 void
929 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
930 {
931 struct mbuf *m;
932
933 KASSERT(solocked(sb->sb_so));
934
935 if (m0 == NULL)
936 return;
937
938 #ifdef MBUFTRACE
939 m_claimm(m0, sb->sb_mowner);
940 #endif
941 /*
942 * Put the first mbuf on the queue.
943 * Note this permits zero length records.
944 */
945 sballoc(sb, m0);
946 SBLASTRECORDCHK(sb, "sbappendrecord 1");
947 SBLINKRECORD(sb, m0);
948 m = m0->m_next;
949 m0->m_next = 0;
950 if (m && (m0->m_flags & M_EOR)) {
951 m0->m_flags &= ~M_EOR;
952 m->m_flags |= M_EOR;
953 }
954 sbcompress(sb, m, m0);
955 SBLASTRECORDCHK(sb, "sbappendrecord 2");
956 }
957
958 /*
959 * As above except that OOB data
960 * is inserted at the beginning of the sockbuf,
961 * but after any other OOB data.
962 */
963 void
964 sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
965 {
966 struct mbuf *m, **mp;
967
968 KASSERT(solocked(sb->sb_so));
969
970 if (m0 == NULL)
971 return;
972
973 SBLASTRECORDCHK(sb, "sbinsertoob 1");
974
975 for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
976 again:
977 switch (m->m_type) {
978
979 case MT_OOBDATA:
980 continue; /* WANT next train */
981
982 case MT_CONTROL:
983 if ((m = m->m_next) != NULL)
984 goto again; /* inspect THIS train further */
985 }
986 break;
987 }
988 /*
989 * Put the first mbuf on the queue.
990 * Note this permits zero length records.
991 */
992 sballoc(sb, m0);
993 m0->m_nextpkt = *mp;
994 if (*mp == NULL) {
995 /* m0 is actually the new tail */
996 sb->sb_lastrecord = m0;
997 }
998 *mp = m0;
999 m = m0->m_next;
1000 m0->m_next = 0;
1001 if (m && (m0->m_flags & M_EOR)) {
1002 m0->m_flags &= ~M_EOR;
1003 m->m_flags |= M_EOR;
1004 }
1005 sbcompress(sb, m, m0);
1006 SBLASTRECORDCHK(sb, "sbinsertoob 2");
1007 }
1008
1009 /*
1010 * Append address and data, and optionally, control (ancillary) data
1011 * to the receive queue of a socket. If present,
1012 * m0 must include a packet header with total length.
1013 * Returns 0 if no space in sockbuf or insufficient mbufs.
1014 */
1015 int
1016 sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0,
1017 struct mbuf *control)
1018 {
1019 struct mbuf *m, *n, *nlast;
1020 int space, len;
1021
1022 KASSERT(solocked(sb->sb_so));
1023
1024 space = asa->sa_len;
1025
1026 if (m0 != NULL) {
1027 if ((m0->m_flags & M_PKTHDR) == 0)
1028 panic("sbappendaddr");
1029 space += m0->m_pkthdr.len;
1030 #ifdef MBUFTRACE
1031 m_claimm(m0, sb->sb_mowner);
1032 #endif
1033 }
1034 for (n = control; n; n = n->m_next) {
1035 space += n->m_len;
1036 MCLAIM(n, sb->sb_mowner);
1037 if (n->m_next == NULL) /* keep pointer to last control buf */
1038 break;
1039 }
1040 if (space > sbspace(sb))
1041 return (0);
1042 m = m_get(M_DONTWAIT, MT_SONAME);
1043 if (m == NULL)
1044 return (0);
1045 MCLAIM(m, sb->sb_mowner);
1046 /*
1047 * XXX avoid 'comparison always true' warning which isn't easily
1048 * avoided.
1049 */
1050 len = asa->sa_len;
1051 if (len > MLEN) {
1052 MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
1053 if ((m->m_flags & M_EXT) == 0) {
1054 m_free(m);
1055 return (0);
1056 }
1057 }
1058 m->m_len = asa->sa_len;
1059 memcpy(mtod(m, void *), asa, asa->sa_len);
1060 if (n)
1061 n->m_next = m0; /* concatenate data to control */
1062 else
1063 control = m0;
1064 m->m_next = control;
1065
1066 SBLASTRECORDCHK(sb, "sbappendaddr 1");
1067
1068 for (n = m; n->m_next != NULL; n = n->m_next)
1069 sballoc(sb, n);
1070 sballoc(sb, n);
1071 nlast = n;
1072 SBLINKRECORD(sb, m);
1073
1074 sb->sb_mbtail = nlast;
1075 SBLASTMBUFCHK(sb, "sbappendaddr");
1076 SBLASTRECORDCHK(sb, "sbappendaddr 2");
1077
1078 return (1);
1079 }
1080
1081 /*
1082 * Helper for sbappendchainaddr: prepend a struct sockaddr* to
1083 * an mbuf chain.
1084 */
1085 static inline struct mbuf *
1086 m_prepend_sockaddr(struct sockbuf *sb, struct mbuf *m0,
1087 const struct sockaddr *asa)
1088 {
1089 struct mbuf *m;
1090 const int salen = asa->sa_len;
1091
1092 KASSERT(solocked(sb->sb_so));
1093
1094 /* only the first in each chain need be a pkthdr */
1095 m = m_gethdr(M_DONTWAIT, MT_SONAME);
1096 if (m == NULL)
1097 return NULL;
1098 MCLAIM(m, sb->sb_mowner);
1099 #ifdef notyet
1100 if (salen > MHLEN) {
1101 MEXTMALLOC(m, salen, M_NOWAIT);
1102 if ((m->m_flags & M_EXT) == 0) {
1103 m_free(m);
1104 return NULL;
1105 }
1106 }
1107 #else
1108 KASSERT(salen <= MHLEN);
1109 #endif
1110 m->m_len = salen;
1111 memcpy(mtod(m, void *), asa, salen);
1112 m->m_next = m0;
1113 m->m_pkthdr.len = salen + m0->m_pkthdr.len;
1114
1115 return m;
1116 }
1117
1118 int
1119 sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa,
1120 struct mbuf *m0, int sbprio)
1121 {
1122 struct mbuf *m, *n, *n0, *nlast;
1123 int error;
1124
1125 KASSERT(solocked(sb->sb_so));
1126
1127 /*
1128 * XXX sbprio reserved for encoding priority of this* request:
1129 * SB_PRIO_NONE --> honour normal sb limits
1130 * SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space,
1131 * take whole chain. Intended for large requests
1132 * that should be delivered atomically (all, or none).
1133 * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow
1134 * over normal socket limits, for messages indicating
1135 * buffer overflow in earlier normal/lower-priority messages
1136 * SB_PRIO_BESTEFFORT --> ignore limits entirely.
1137 * Intended for kernel-generated messages only.
1138 * Up to generator to avoid total mbuf resource exhaustion.
1139 */
1140 (void)sbprio;
1141
1142 if (m0 && (m0->m_flags & M_PKTHDR) == 0)
1143 panic("sbappendaddrchain");
1144
1145 #ifdef notyet
1146 space = sbspace(sb);
1147
1148 /*
1149 * Enforce SB_PRIO_* limits as described above.
1150 */
1151 #endif
1152
1153 n0 = NULL;
1154 nlast = NULL;
1155 for (m = m0; m; m = m->m_nextpkt) {
1156 struct mbuf *np;
1157
1158 #ifdef MBUFTRACE
1159 m_claimm(m, sb->sb_mowner);
1160 #endif
1161
1162 /* Prepend sockaddr to this record (m) of input chain m0 */
1163 n = m_prepend_sockaddr(sb, m, asa);
1164 if (n == NULL) {
1165 error = ENOBUFS;
1166 goto bad;
1167 }
1168
1169 /* Append record (asa+m) to end of new chain n0 */
1170 if (n0 == NULL) {
1171 n0 = n;
1172 } else {
1173 nlast->m_nextpkt = n;
1174 }
1175 /* Keep track of last record on new chain */
1176 nlast = n;
1177
1178 for (np = n; np; np = np->m_next)
1179 sballoc(sb, np);
1180 }
1181
1182 SBLASTRECORDCHK(sb, "sbappendaddrchain 1");
1183
1184 /* Drop the entire chain of (asa+m) records onto the socket */
1185 SBLINKRECORDCHAIN(sb, n0, nlast);
1186
1187 SBLASTRECORDCHK(sb, "sbappendaddrchain 2");
1188
1189 for (m = nlast; m->m_next; m = m->m_next)
1190 ;
1191 sb->sb_mbtail = m;
1192 SBLASTMBUFCHK(sb, "sbappendaddrchain");
1193
1194 return (1);
1195
1196 bad:
1197 /*
1198 * On error, free the prepended addreseses. For consistency
1199 * with sbappendaddr(), leave it to our caller to free
1200 * the input record chain passed to us as m0.
1201 */
1202 while ((n = n0) != NULL) {
1203 struct mbuf *np;
1204
1205 /* Undo the sballoc() of this record */
1206 for (np = n; np; np = np->m_next)
1207 sbfree(sb, np);
1208
1209 n0 = n->m_nextpkt; /* iterate at next prepended address */
1210 np = m_free(n); /* free prepended address (not data) */
1211 }
1212 return error;
1213 }
1214
1215
1216 int
1217 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
1218 {
1219 struct mbuf *m, *mlast, *n;
1220 int space;
1221
1222 KASSERT(solocked(sb->sb_so));
1223
1224 space = 0;
1225 if (control == NULL)
1226 panic("sbappendcontrol");
1227 for (m = control; ; m = m->m_next) {
1228 space += m->m_len;
1229 MCLAIM(m, sb->sb_mowner);
1230 if (m->m_next == NULL)
1231 break;
1232 }
1233 n = m; /* save pointer to last control buffer */
1234 for (m = m0; m; m = m->m_next) {
1235 MCLAIM(m, sb->sb_mowner);
1236 space += m->m_len;
1237 }
1238 if (space > sbspace(sb))
1239 return (0);
1240 n->m_next = m0; /* concatenate data to control */
1241
1242 SBLASTRECORDCHK(sb, "sbappendcontrol 1");
1243
1244 for (m = control; m->m_next != NULL; m = m->m_next)
1245 sballoc(sb, m);
1246 sballoc(sb, m);
1247 mlast = m;
1248 SBLINKRECORD(sb, control);
1249
1250 sb->sb_mbtail = mlast;
1251 SBLASTMBUFCHK(sb, "sbappendcontrol");
1252 SBLASTRECORDCHK(sb, "sbappendcontrol 2");
1253
1254 return (1);
1255 }
1256
1257 /*
1258 * Compress mbuf chain m into the socket
1259 * buffer sb following mbuf n. If n
1260 * is null, the buffer is presumed empty.
1261 */
1262 void
1263 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
1264 {
1265 int eor;
1266 struct mbuf *o;
1267
1268 KASSERT(solocked(sb->sb_so));
1269
1270 eor = 0;
1271 while (m) {
1272 eor |= m->m_flags & M_EOR;
1273 if (m->m_len == 0 &&
1274 (eor == 0 ||
1275 (((o = m->m_next) || (o = n)) &&
1276 o->m_type == m->m_type))) {
1277 if (sb->sb_lastrecord == m)
1278 sb->sb_lastrecord = m->m_next;
1279 m = m_free(m);
1280 continue;
1281 }
1282 if (n && (n->m_flags & M_EOR) == 0 &&
1283 /* M_TRAILINGSPACE() checks buffer writeability */
1284 m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
1285 m->m_len <= M_TRAILINGSPACE(n) &&
1286 n->m_type == m->m_type) {
1287 memcpy(mtod(n, char *) + n->m_len, mtod(m, void *),
1288 (unsigned)m->m_len);
1289 n->m_len += m->m_len;
1290 sb->sb_cc += m->m_len;
1291 m = m_free(m);
1292 continue;
1293 }
1294 if (n)
1295 n->m_next = m;
1296 else
1297 sb->sb_mb = m;
1298 sb->sb_mbtail = m;
1299 sballoc(sb, m);
1300 n = m;
1301 m->m_flags &= ~M_EOR;
1302 m = m->m_next;
1303 n->m_next = 0;
1304 }
1305 if (eor) {
1306 if (n)
1307 n->m_flags |= eor;
1308 else
1309 printf("semi-panic: sbcompress\n");
1310 }
1311 SBLASTMBUFCHK(sb, __func__);
1312 }
1313
1314 /*
1315 * Free all mbufs in a sockbuf.
1316 * Check that all resources are reclaimed.
1317 */
1318 void
1319 sbflush(struct sockbuf *sb)
1320 {
1321
1322 KASSERT(solocked(sb->sb_so));
1323 KASSERT((sb->sb_flags & SB_LOCK) == 0);
1324
1325 while (sb->sb_mbcnt)
1326 sbdrop(sb, (int)sb->sb_cc);
1327
1328 KASSERT(sb->sb_cc == 0);
1329 KASSERT(sb->sb_mb == NULL);
1330 KASSERT(sb->sb_mbtail == NULL);
1331 KASSERT(sb->sb_lastrecord == NULL);
1332 }
1333
1334 /*
1335 * Drop data from (the front of) a sockbuf.
1336 */
1337 void
1338 sbdrop(struct sockbuf *sb, int len)
1339 {
1340 struct mbuf *m, *next;
1341
1342 KASSERT(solocked(sb->sb_so));
1343
1344 next = (m = sb->sb_mb) ? m->m_nextpkt : NULL;
1345 while (len > 0) {
1346 if (m == NULL) {
1347 if (next == NULL)
1348 panic("sbdrop(%p,%d): cc=%lu",
1349 sb, len, sb->sb_cc);
1350 m = next;
1351 next = m->m_nextpkt;
1352 continue;
1353 }
1354 if (m->m_len > len) {
1355 m->m_len -= len;
1356 m->m_data += len;
1357 sb->sb_cc -= len;
1358 break;
1359 }
1360 len -= m->m_len;
1361 sbfree(sb, m);
1362 m = m_free(m);
1363 }
1364 while (m && m->m_len == 0) {
1365 sbfree(sb, m);
1366 m = m_free(m);
1367 }
1368 if (m) {
1369 sb->sb_mb = m;
1370 m->m_nextpkt = next;
1371 } else
1372 sb->sb_mb = next;
1373 /*
1374 * First part is an inline SB_EMPTY_FIXUP(). Second part
1375 * makes sure sb_lastrecord is up-to-date if we dropped
1376 * part of the last record.
1377 */
1378 m = sb->sb_mb;
1379 if (m == NULL) {
1380 sb->sb_mbtail = NULL;
1381 sb->sb_lastrecord = NULL;
1382 } else if (m->m_nextpkt == NULL)
1383 sb->sb_lastrecord = m;
1384 }
1385
1386 /*
1387 * Drop a record off the front of a sockbuf
1388 * and move the next record to the front.
1389 */
1390 void
1391 sbdroprecord(struct sockbuf *sb)
1392 {
1393 struct mbuf *m, *mn;
1394
1395 KASSERT(solocked(sb->sb_so));
1396
1397 m = sb->sb_mb;
1398 if (m) {
1399 sb->sb_mb = m->m_nextpkt;
1400 do {
1401 sbfree(sb, m);
1402 mn = m_free(m);
1403 } while ((m = mn) != NULL);
1404 }
1405 SB_EMPTY_FIXUP(sb);
1406 }
1407
1408 /*
1409 * Create a "control" mbuf containing the specified data
1410 * with the specified type for presentation on a socket buffer.
1411 */
1412 struct mbuf *
1413 sbcreatecontrol1(void **p, int size, int type, int level, int flags)
1414 {
1415 struct cmsghdr *cp;
1416 struct mbuf *m;
1417 int space = CMSG_SPACE(size);
1418
1419 if ((flags & M_DONTWAIT) && space > MCLBYTES) {
1420 printf("%s: message too large %d\n", __func__, space);
1421 return NULL;
1422 }
1423
1424 if ((m = m_get(flags, MT_CONTROL)) == NULL)
1425 return NULL;
1426 if (space > MLEN) {
1427 if (space > MCLBYTES)
1428 MEXTMALLOC(m, space, M_WAITOK);
1429 else
1430 MCLGET(m, flags);
1431 if ((m->m_flags & M_EXT) == 0) {
1432 m_free(m);
1433 return NULL;
1434 }
1435 }
1436 cp = mtod(m, struct cmsghdr *);
1437 *p = CMSG_DATA(cp);
1438 m->m_len = space;
1439 cp->cmsg_len = CMSG_LEN(size);
1440 cp->cmsg_level = level;
1441 cp->cmsg_type = type;
1442
1443 memset(cp + 1, 0, CMSG_LEN(0) - sizeof(*cp));
1444 memset((uint8_t *)*p + size, 0, CMSG_ALIGN(size) - size);
1445
1446 return m;
1447 }
1448
1449 struct mbuf *
1450 sbcreatecontrol(void *p, int size, int type, int level)
1451 {
1452 struct mbuf *m;
1453 void *v;
1454
1455 m = sbcreatecontrol1(&v, size, type, level, M_DONTWAIT);
1456 if (m == NULL)
1457 return NULL;
1458 memcpy(v, p, size);
1459 return m;
1460 }
1461
1462 void
1463 solockretry(struct socket *so, kmutex_t *lock)
1464 {
1465
1466 while (lock != so->so_lock) {
1467 mutex_exit(lock);
1468 lock = so->so_lock;
1469 mutex_enter(lock);
1470 }
1471 }
1472
1473 bool
1474 solocked(const struct socket *so)
1475 {
1476
1477 return mutex_owned(so->so_lock);
1478 }
1479
1480 bool
1481 solocked2(const struct socket *so1, const struct socket *so2)
1482 {
1483 const kmutex_t *lock;
1484
1485 lock = so1->so_lock;
1486 if (lock != so2->so_lock)
1487 return false;
1488 return mutex_owned(lock);
1489 }
1490
1491 /*
1492 * sosetlock: assign a default lock to a new socket.
1493 */
1494 void
1495 sosetlock(struct socket *so)
1496 {
1497 if (so->so_lock == NULL) {
1498 kmutex_t *lock = softnet_lock;
1499
1500 so->so_lock = lock;
1501 mutex_obj_hold(lock);
1502 mutex_enter(lock);
1503 }
1504 KASSERT(solocked(so));
1505 }
1506
1507 /*
1508 * Set lock on sockbuf sb; sleep if lock is already held.
1509 * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
1510 * Returns error without lock if sleep is interrupted.
1511 */
1512 int
1513 sblock(struct sockbuf *sb, int wf)
1514 {
1515 struct socket *so;
1516 kmutex_t *lock;
1517 int error;
1518
1519 KASSERT(solocked(sb->sb_so));
1520
1521 for (;;) {
1522 if (__predict_true((sb->sb_flags & SB_LOCK) == 0)) {
1523 sb->sb_flags |= SB_LOCK;
1524 return 0;
1525 }
1526 if (wf != M_WAITOK)
1527 return EWOULDBLOCK;
1528 so = sb->sb_so;
1529 lock = so->so_lock;
1530 if ((sb->sb_flags & SB_NOINTR) != 0) {
1531 cv_wait(&so->so_cv, lock);
1532 error = 0;
1533 } else
1534 error = cv_wait_sig(&so->so_cv, lock);
1535 if (__predict_false(lock != so->so_lock))
1536 solockretry(so, lock);
1537 if (error != 0)
1538 return error;
1539 }
1540 }
1541
1542 void
1543 sbunlock(struct sockbuf *sb)
1544 {
1545 struct socket *so;
1546
1547 so = sb->sb_so;
1548
1549 KASSERT(solocked(so));
1550 KASSERT((sb->sb_flags & SB_LOCK) != 0);
1551
1552 sb->sb_flags &= ~SB_LOCK;
1553 cv_broadcast(&so->so_cv);
1554 }
1555
1556 int
1557 sowait(struct socket *so, bool catch_p, int timo)
1558 {
1559 kmutex_t *lock;
1560 int error;
1561
1562 KASSERT(solocked(so));
1563 KASSERT(catch_p || timo != 0);
1564
1565 lock = so->so_lock;
1566 if (catch_p)
1567 error = cv_timedwait_sig(&so->so_cv, lock, timo);
1568 else
1569 error = cv_timedwait(&so->so_cv, lock, timo);
1570 if (__predict_false(lock != so->so_lock))
1571 solockretry(so, lock);
1572 return error;
1573 }
1574
1575 #ifdef DDB
1576
1577 /*
1578 * Currently, sofindproc() is used only from DDB. It could be used from others
1579 * by using db_mutex_enter()
1580 */
1581
1582 static inline int
1583 db_mutex_enter(kmutex_t *mtx)
1584 {
1585 extern int db_active;
1586 int rv;
1587
1588 if (!db_active) {
1589 mutex_enter(mtx);
1590 rv = 1;
1591 } else
1592 rv = mutex_tryenter(mtx);
1593
1594 return rv;
1595 }
1596
1597 int
1598 sofindproc(struct socket *so, int all, void (*pr)(const char *, ...))
1599 {
1600 proc_t *p;
1601 filedesc_t *fdp;
1602 fdtab_t *dt;
1603 fdfile_t *ff;
1604 file_t *fp = NULL;
1605 int found = 0;
1606 int i, t;
1607
1608 if (so == NULL)
1609 return 0;
1610
1611 t = db_mutex_enter(proc_lock);
1612 if (!t) {
1613 pr("could not acquire proc_lock mutex\n");
1614 return 0;
1615 }
1616 PROCLIST_FOREACH(p, &allproc) {
1617 if (p->p_stat == SIDL)
1618 continue;
1619 fdp = p->p_fd;
1620 t = db_mutex_enter(&fdp->fd_lock);
1621 if (!t) {
1622 pr("could not acquire fd_lock mutex\n");
1623 continue;
1624 }
1625 dt = atomic_load_consume(&fdp->fd_dt);
1626 for (i = 0; i < dt->dt_nfiles; i++) {
1627 ff = dt->dt_ff[i];
1628 if (ff == NULL)
1629 continue;
1630
1631 fp = atomic_load_consume(&ff->ff_file);
1632 if (fp == NULL)
1633 continue;
1634
1635 t = db_mutex_enter(&fp->f_lock);
1636 if (!t) {
1637 pr("could not acquire f_lock mutex\n");
1638 continue;
1639 }
1640 if ((struct socket *)fp->f_data != so) {
1641 mutex_exit(&fp->f_lock);
1642 continue;
1643 }
1644 found++;
1645 if (pr)
1646 pr("socket %p: owner %s(pid=%d)\n",
1647 so, p->p_comm, p->p_pid);
1648 mutex_exit(&fp->f_lock);
1649 if (all == 0)
1650 break;
1651 }
1652 mutex_exit(&fdp->fd_lock);
1653 if (all == 0 && found != 0)
1654 break;
1655 }
1656 mutex_exit(proc_lock);
1657
1658 return found;
1659 }
1660
1661 void
1662 socket_print(const char *modif, void (*pr)(const char *, ...))
1663 {
1664 file_t *fp;
1665 struct socket *so;
1666 struct sockbuf *sb_snd, *sb_rcv;
1667 struct mbuf *m_rec, *m;
1668 bool opt_v = false;
1669 bool opt_m = false;
1670 bool opt_a = false;
1671 bool opt_p = false;
1672 int nrecs, nmbufs;
1673 char ch;
1674 const char *family;
1675
1676 while ( (ch = *(modif++)) != '\0') {
1677 switch (ch) {
1678 case 'v':
1679 opt_v = true;
1680 break;
1681 case 'm':
1682 opt_m = true;
1683 break;
1684 case 'a':
1685 opt_a = true;
1686 break;
1687 case 'p':
1688 opt_p = true;
1689 break;
1690 }
1691 }
1692 if (opt_v == false && pr)
1693 (pr)("Ignore empty sockets. use /v to print all.\n");
1694 if (opt_p == true && pr)
1695 (pr)("Don't search owner process.\n");
1696
1697 LIST_FOREACH(fp, &filehead, f_list) {
1698 if (fp->f_type != DTYPE_SOCKET)
1699 continue;
1700 so = (struct socket *)fp->f_data;
1701 if (so == NULL)
1702 continue;
1703
1704 if (so->so_proto->pr_domain->dom_family == AF_INET)
1705 family = "INET";
1706 #ifdef INET6
1707 else if (so->so_proto->pr_domain->dom_family == AF_INET6)
1708 family = "INET6";
1709 #endif
1710 else if (so->so_proto->pr_domain->dom_family == pseudo_AF_KEY)
1711 family = "KEY";
1712 else if (so->so_proto->pr_domain->dom_family == AF_ROUTE)
1713 family = "ROUTE";
1714 else
1715 continue;
1716
1717 sb_snd = &so->so_snd;
1718 sb_rcv = &so->so_rcv;
1719
1720 if (opt_v != true &&
1721 sb_snd->sb_cc == 0 && sb_rcv->sb_cc == 0)
1722 continue;
1723
1724 pr("---SOCKET %p: type %s\n", so, family);
1725 if (opt_p != true)
1726 sofindproc(so, opt_a == true ? 1 : 0, pr);
1727 pr("Send Buffer Bytes: %d [bytes]\n", sb_snd->sb_cc);
1728 pr("Send Buffer mbufs:\n");
1729 m_rec = m = sb_snd->sb_mb;
1730 nrecs = 0;
1731 nmbufs = 0;
1732 while (m_rec) {
1733 nrecs++;
1734 if (opt_m == true)
1735 pr(" mbuf chain %p\n", m_rec);
1736 while (m) {
1737 nmbufs++;
1738 m = m->m_next;
1739 }
1740 m_rec = m = m_rec->m_nextpkt;
1741 }
1742 pr(" Total %d records, %d mbufs.\n", nrecs, nmbufs);
1743
1744 pr("Recv Buffer Usage: %d [bytes]\n", sb_rcv->sb_cc);
1745 pr("Recv Buffer mbufs:\n");
1746 m_rec = m = sb_rcv->sb_mb;
1747 nrecs = 0;
1748 nmbufs = 0;
1749 while (m_rec) {
1750 nrecs++;
1751 if (opt_m == true)
1752 pr(" mbuf chain %p\n", m_rec);
1753 while (m) {
1754 nmbufs++;
1755 m = m->m_next;
1756 }
1757 m_rec = m = m_rec->m_nextpkt;
1758 }
1759 pr(" Total %d records, %d mbufs.\n", nrecs, nmbufs);
1760 }
1761 }
1762 #endif /* DDB */
1763