uipc_socket2.c revision 1.135 1 /* $NetBSD: uipc_socket2.c,v 1.135 2020/02/01 02:23:04 riastradh Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*
30 * Copyright (c) 1982, 1986, 1988, 1990, 1993
31 * The Regents of the University of California. All rights reserved.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 * 3. Neither the name of the University nor the names of its contributors
42 * may be used to endorse or promote products derived from this software
43 * without specific prior written permission.
44 *
45 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 * SUCH DAMAGE.
56 *
57 * @(#)uipc_socket2.c 8.2 (Berkeley) 2/14/95
58 */
59
60 #include <sys/cdefs.h>
61 __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.135 2020/02/01 02:23:04 riastradh Exp $");
62
63 #ifdef _KERNEL_OPT
64 #include "opt_ddb.h"
65 #include "opt_mbuftrace.h"
66 #include "opt_sb_max.h"
67 #endif
68
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/proc.h>
72 #include <sys/file.h>
73 #include <sys/buf.h>
74 #include <sys/mbuf.h>
75 #include <sys/protosw.h>
76 #include <sys/domain.h>
77 #include <sys/poll.h>
78 #include <sys/socket.h>
79 #include <sys/socketvar.h>
80 #include <sys/signalvar.h>
81 #include <sys/kauth.h>
82 #include <sys/pool.h>
83 #include <sys/uidinfo.h>
84
85 #ifdef DDB
86 #include <sys/filedesc.h>
87 #endif
88
89 /*
90 * Primitive routines for operating on sockets and socket buffers.
91 *
92 * Connection life-cycle:
93 *
94 * Normal sequence from the active (originating) side:
95 *
96 * - soisconnecting() is called during processing of connect() call,
97 * - resulting in an eventual call to soisconnected() if/when the
98 * connection is established.
99 *
100 * When the connection is torn down during processing of disconnect():
101 *
102 * - soisdisconnecting() is called and,
103 * - soisdisconnected() is called when the connection to the peer
104 * is totally severed.
105 *
106 * The semantics of these routines are such that connectionless protocols
107 * can call soisconnected() and soisdisconnected() only, bypassing the
108 * in-progress calls when setting up a ``connection'' takes no time.
109 *
110 * From the passive side, a socket is created with two queues of sockets:
111 *
112 * - so_q0 (0) for partial connections (i.e. connections in progress)
113 * - so_q (1) for connections already made and awaiting user acceptance.
114 *
115 * As a protocol is preparing incoming connections, it creates a socket
116 * structure queued on so_q0 by calling sonewconn(). When the connection
117 * is established, soisconnected() is called, and transfers the
118 * socket structure to so_q, making it available to accept().
119 *
120 * If a socket is closed with sockets on either so_q0 or so_q, these
121 * sockets are dropped.
122 *
123 * Locking rules and assumptions:
124 *
125 * o socket::so_lock can change on the fly. The low level routines used
126 * to lock sockets are aware of this. When so_lock is acquired, the
127 * routine locking must check to see if so_lock still points to the
128 * lock that was acquired. If so_lock has changed in the meantime, the
129 * now irrelevant lock that was acquired must be dropped and the lock
130 * operation retried. Although not proven here, this is completely safe
131 * on a multiprocessor system, even with relaxed memory ordering, given
132 * the next two rules:
133 *
134 * o In order to mutate so_lock, the lock pointed to by the current value
135 * of so_lock must be held: i.e., the socket must be held locked by the
136 * changing thread. The thread must issue membar_exit() to prevent
137 * memory accesses being reordered, and can set so_lock to the desired
138 * value. If the lock pointed to by the new value of so_lock is not
139 * held by the changing thread, the socket must then be considered
140 * unlocked.
141 *
142 * o If so_lock is mutated, and the previous lock referred to by so_lock
143 * could still be visible to other threads in the system (e.g. via file
144 * descriptor or protocol-internal reference), then the old lock must
145 * remain valid until the socket and/or protocol control block has been
146 * torn down.
147 *
148 * o If a socket has a non-NULL so_head value (i.e. is in the process of
149 * connecting), then locking the socket must also lock the socket pointed
150 * to by so_head: their lock pointers must match.
151 *
152 * o If a socket has connections in progress (so_q, so_q0 not empty) then
153 * locking the socket must also lock the sockets attached to both queues.
154 * Again, their lock pointers must match.
155 *
156 * o Beyond the initial lock assignment in socreate(), assigning locks to
157 * sockets is the responsibility of the individual protocols / protocol
158 * domains.
159 */
160
161 static pool_cache_t socket_cache;
162 u_long sb_max = SB_MAX;/* maximum socket buffer size */
163 static u_long sb_max_adj; /* adjusted sb_max */
164
165 void
166 soisconnecting(struct socket *so)
167 {
168
169 KASSERT(solocked(so));
170
171 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
172 so->so_state |= SS_ISCONNECTING;
173 }
174
175 void
176 soisconnected(struct socket *so)
177 {
178 struct socket *head;
179
180 head = so->so_head;
181
182 KASSERT(solocked(so));
183 KASSERT(head == NULL || solocked2(so, head));
184
185 so->so_state &= ~(SS_ISCONNECTING | SS_ISDISCONNECTING);
186 so->so_state |= SS_ISCONNECTED;
187 if (head && so->so_onq == &head->so_q0) {
188 if ((so->so_options & SO_ACCEPTFILTER) == 0) {
189 /*
190 * Re-enqueue and wake up any waiters, e.g.
191 * processes blocking on accept().
192 */
193 soqremque(so, 0);
194 soqinsque(head, so, 1);
195 sorwakeup(head);
196 cv_broadcast(&head->so_cv);
197 } else {
198 so->so_upcall =
199 head->so_accf->so_accept_filter->accf_callback;
200 so->so_upcallarg = head->so_accf->so_accept_filter_arg;
201 so->so_rcv.sb_flags |= SB_UPCALL;
202 so->so_options &= ~SO_ACCEPTFILTER;
203 (*so->so_upcall)(so, so->so_upcallarg,
204 POLLIN|POLLRDNORM, M_DONTWAIT);
205 }
206 } else {
207 cv_broadcast(&so->so_cv);
208 sorwakeup(so);
209 sowwakeup(so);
210 }
211 }
212
213 void
214 soisdisconnecting(struct socket *so)
215 {
216
217 KASSERT(solocked(so));
218
219 so->so_state &= ~SS_ISCONNECTING;
220 so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
221 cv_broadcast(&so->so_cv);
222 sowwakeup(so);
223 sorwakeup(so);
224 }
225
226 void
227 soisdisconnected(struct socket *so)
228 {
229
230 KASSERT(solocked(so));
231
232 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
233 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
234 cv_broadcast(&so->so_cv);
235 sowwakeup(so);
236 sorwakeup(so);
237 }
238
239 void
240 soinit2(void)
241 {
242
243 socket_cache = pool_cache_init(sizeof(struct socket), 0, 0, 0,
244 "socket", NULL, IPL_SOFTNET, NULL, NULL, NULL);
245 }
246
247 /*
248 * sonewconn: accept a new connection.
249 *
250 * When an attempt at a new connection is noted on a socket which accepts
251 * connections, sonewconn(9) is called. If the connection is possible
252 * (subject to space constraints, etc) then we allocate a new structure,
253 * properly linked into the data structure of the original socket.
254 *
255 * => If 'soready' is true, then socket will become ready for accept() i.e.
256 * inserted into the so_q queue, SS_ISCONNECTED set and waiters awoken.
257 * => May be called from soft-interrupt context.
258 * => Listening socket should be locked.
259 * => Returns the new socket locked.
260 */
261 struct socket *
262 sonewconn(struct socket *head, bool soready)
263 {
264 struct socket *so;
265 int soqueue, error;
266
267 KASSERT(solocked(head));
268
269 if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2) {
270 /*
271 * Listen queue overflow. If there is an accept filter
272 * active, pass through the oldest cxn it's handling.
273 */
274 if (head->so_accf == NULL) {
275 return NULL;
276 } else {
277 struct socket *so2, *next;
278
279 /* Pass the oldest connection waiting in the
280 accept filter */
281 for (so2 = TAILQ_FIRST(&head->so_q0);
282 so2 != NULL; so2 = next) {
283 next = TAILQ_NEXT(so2, so_qe);
284 if (so2->so_upcall == NULL) {
285 continue;
286 }
287 so2->so_upcall = NULL;
288 so2->so_upcallarg = NULL;
289 so2->so_options &= ~SO_ACCEPTFILTER;
290 so2->so_rcv.sb_flags &= ~SB_UPCALL;
291 soisconnected(so2);
292 break;
293 }
294
295 /* If nothing was nudged out of the acept filter, bail
296 * out; otherwise proceed allocating the socket. */
297 if (so2 == NULL) {
298 return NULL;
299 }
300 }
301 }
302 if ((head->so_options & SO_ACCEPTFILTER) != 0) {
303 soready = false;
304 }
305 soqueue = soready ? 1 : 0;
306
307 if ((so = soget(false)) == NULL) {
308 return NULL;
309 }
310 so->so_type = head->so_type;
311 so->so_options = head->so_options & ~SO_ACCEPTCONN;
312 so->so_linger = head->so_linger;
313 so->so_state = head->so_state | SS_NOFDREF;
314 so->so_proto = head->so_proto;
315 so->so_timeo = head->so_timeo;
316 so->so_pgid = head->so_pgid;
317 so->so_send = head->so_send;
318 so->so_receive = head->so_receive;
319 so->so_uidinfo = head->so_uidinfo;
320 so->so_cpid = head->so_cpid;
321
322 /*
323 * Share the lock with the listening-socket, it may get unshared
324 * once the connection is complete.
325 */
326 mutex_obj_hold(head->so_lock);
327 so->so_lock = head->so_lock;
328
329 /*
330 * Reserve the space for socket buffers.
331 */
332 #ifdef MBUFTRACE
333 so->so_mowner = head->so_mowner;
334 so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
335 so->so_snd.sb_mowner = head->so_snd.sb_mowner;
336 #endif
337 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) {
338 goto out;
339 }
340 so->so_snd.sb_lowat = head->so_snd.sb_lowat;
341 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
342 so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
343 so->so_snd.sb_timeo = head->so_snd.sb_timeo;
344 so->so_rcv.sb_flags |= head->so_rcv.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
345 so->so_snd.sb_flags |= head->so_snd.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
346
347 /*
348 * Finally, perform the protocol attach. Note: a new socket
349 * lock may be assigned at this point (if so, it will be held).
350 */
351 error = (*so->so_proto->pr_usrreqs->pr_attach)(so, 0);
352 if (error) {
353 out:
354 KASSERT(solocked(so));
355 KASSERT(so->so_accf == NULL);
356 soput(so);
357
358 /* Note: the listening socket shall stay locked. */
359 KASSERT(solocked(head));
360 return NULL;
361 }
362 KASSERT(solocked2(head, so));
363
364 /*
365 * Insert into the queue. If ready, update the connection status
366 * and wake up any waiters, e.g. processes blocking on accept().
367 */
368 soqinsque(head, so, soqueue);
369 if (soready) {
370 so->so_state |= SS_ISCONNECTED;
371 sorwakeup(head);
372 cv_broadcast(&head->so_cv);
373 }
374 return so;
375 }
376
377 struct socket *
378 soget(bool waitok)
379 {
380 struct socket *so;
381
382 so = pool_cache_get(socket_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
383 if (__predict_false(so == NULL))
384 return (NULL);
385 memset(so, 0, sizeof(*so));
386 TAILQ_INIT(&so->so_q0);
387 TAILQ_INIT(&so->so_q);
388 cv_init(&so->so_cv, "socket");
389 cv_init(&so->so_rcv.sb_cv, "netio");
390 cv_init(&so->so_snd.sb_cv, "netio");
391 selinit(&so->so_rcv.sb_sel);
392 selinit(&so->so_snd.sb_sel);
393 so->so_rcv.sb_so = so;
394 so->so_snd.sb_so = so;
395 return so;
396 }
397
398 void
399 soput(struct socket *so)
400 {
401
402 KASSERT(!cv_has_waiters(&so->so_cv));
403 KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
404 KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
405 seldestroy(&so->so_rcv.sb_sel);
406 seldestroy(&so->so_snd.sb_sel);
407 mutex_obj_free(so->so_lock);
408 cv_destroy(&so->so_cv);
409 cv_destroy(&so->so_rcv.sb_cv);
410 cv_destroy(&so->so_snd.sb_cv);
411 pool_cache_put(socket_cache, so);
412 }
413
414 /*
415 * soqinsque: insert socket of a new connection into the specified
416 * accept queue of the listening socket (head).
417 *
418 * q = 0: queue of partial connections
419 * q = 1: queue of incoming connections
420 */
421 void
422 soqinsque(struct socket *head, struct socket *so, int q)
423 {
424 KASSERT(q == 0 || q == 1);
425 KASSERT(solocked2(head, so));
426 KASSERT(so->so_onq == NULL);
427 KASSERT(so->so_head == NULL);
428
429 so->so_head = head;
430 if (q == 0) {
431 head->so_q0len++;
432 so->so_onq = &head->so_q0;
433 } else {
434 head->so_qlen++;
435 so->so_onq = &head->so_q;
436 }
437 TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
438 }
439
440 /*
441 * soqremque: remove socket from the specified queue.
442 *
443 * => Returns true if socket was removed from the specified queue.
444 * => False if socket was not removed (because it was in other queue).
445 */
446 bool
447 soqremque(struct socket *so, int q)
448 {
449 struct socket *head = so->so_head;
450
451 KASSERT(q == 0 || q == 1);
452 KASSERT(solocked(so));
453 KASSERT(so->so_onq != NULL);
454 KASSERT(head != NULL);
455
456 if (q == 0) {
457 if (so->so_onq != &head->so_q0)
458 return false;
459 head->so_q0len--;
460 } else {
461 if (so->so_onq != &head->so_q)
462 return false;
463 head->so_qlen--;
464 }
465 KASSERT(solocked2(so, head));
466 TAILQ_REMOVE(so->so_onq, so, so_qe);
467 so->so_onq = NULL;
468 so->so_head = NULL;
469 return true;
470 }
471
472 /*
473 * socantsendmore: indicates that no more data will be sent on the
474 * socket; it would normally be applied to a socket when the user
475 * informs the system that no more data is to be sent, by the protocol
476 * code (in case pr_shutdown()).
477 */
478 void
479 socantsendmore(struct socket *so)
480 {
481 KASSERT(solocked(so));
482
483 so->so_state |= SS_CANTSENDMORE;
484 sowwakeup(so);
485 }
486
487 /*
488 * socantrcvmore(): indicates that no more data will be received and
489 * will normally be applied to the socket by a protocol when it detects
490 * that the peer will send no more data. Data queued for reading in
491 * the socket may yet be read.
492 */
493 void
494 socantrcvmore(struct socket *so)
495 {
496 KASSERT(solocked(so));
497
498 so->so_state |= SS_CANTRCVMORE;
499 sorwakeup(so);
500 }
501
502 /*
503 * soroverflow(): indicates that data was attempted to be sent
504 * but the receiving buffer overflowed.
505 */
506 void
507 soroverflow(struct socket *so)
508 {
509 KASSERT(solocked(so));
510
511 so->so_rcv.sb_overflowed++;
512 if (so->so_options & SO_RERROR) {
513 so->so_rerror = ENOBUFS;
514 sorwakeup(so);
515 }
516 }
517
518 /*
519 * Wait for data to arrive at/drain from a socket buffer.
520 */
521 int
522 sbwait(struct sockbuf *sb)
523 {
524 struct socket *so;
525 kmutex_t *lock;
526 int error;
527
528 so = sb->sb_so;
529
530 KASSERT(solocked(so));
531
532 sb->sb_flags |= SB_NOTIFY;
533 lock = so->so_lock;
534 if ((sb->sb_flags & SB_NOINTR) != 0)
535 error = cv_timedwait(&sb->sb_cv, lock, sb->sb_timeo);
536 else
537 error = cv_timedwait_sig(&sb->sb_cv, lock, sb->sb_timeo);
538 if (__predict_false(lock != so->so_lock))
539 solockretry(so, lock);
540 return error;
541 }
542
543 /*
544 * Wakeup processes waiting on a socket buffer.
545 * Do asynchronous notification via SIGIO
546 * if the socket buffer has the SB_ASYNC flag set.
547 */
548 void
549 sowakeup(struct socket *so, struct sockbuf *sb, int code)
550 {
551 int band;
552
553 KASSERT(solocked(so));
554 KASSERT(sb->sb_so == so);
555
556 if (code == POLL_IN)
557 band = POLLIN|POLLRDNORM;
558 else
559 band = POLLOUT|POLLWRNORM;
560 sb->sb_flags &= ~SB_NOTIFY;
561 selnotify(&sb->sb_sel, band, NOTE_SUBMIT);
562 cv_broadcast(&sb->sb_cv);
563 if (sb->sb_flags & SB_ASYNC)
564 fownsignal(so->so_pgid, SIGIO, code, band, so);
565 if (sb->sb_flags & SB_UPCALL)
566 (*so->so_upcall)(so, so->so_upcallarg, band, M_DONTWAIT);
567 }
568
569 /*
570 * Reset a socket's lock pointer. Wake all threads waiting on the
571 * socket's condition variables so that they can restart their waits
572 * using the new lock. The existing lock must be held.
573 */
574 void
575 solockreset(struct socket *so, kmutex_t *lock)
576 {
577
578 KASSERT(solocked(so));
579
580 so->so_lock = lock;
581 cv_broadcast(&so->so_snd.sb_cv);
582 cv_broadcast(&so->so_rcv.sb_cv);
583 cv_broadcast(&so->so_cv);
584 }
585
586 /*
587 * Socket buffer (struct sockbuf) utility routines.
588 *
589 * Each socket contains two socket buffers: one for sending data and
590 * one for receiving data. Each buffer contains a queue of mbufs,
591 * information about the number of mbufs and amount of data in the
592 * queue, and other fields allowing poll() statements and notification
593 * on data availability to be implemented.
594 *
595 * Data stored in a socket buffer is maintained as a list of records.
596 * Each record is a list of mbufs chained together with the m_next
597 * field. Records are chained together with the m_nextpkt field. The upper
598 * level routine soreceive() expects the following conventions to be
599 * observed when placing information in the receive buffer:
600 *
601 * 1. If the protocol requires each message be preceded by the sender's
602 * name, then a record containing that name must be present before
603 * any associated data (mbuf's must be of type MT_SONAME).
604 * 2. If the protocol supports the exchange of ``access rights'' (really
605 * just additional data associated with the message), and there are
606 * ``rights'' to be received, then a record containing this data
607 * should be present (mbuf's must be of type MT_CONTROL).
608 * 3. If a name or rights record exists, then it must be followed by
609 * a data record, perhaps of zero length.
610 *
611 * Before using a new socket structure it is first necessary to reserve
612 * buffer space to the socket, by calling sbreserve(). This should commit
613 * some of the available buffer space in the system buffer pool for the
614 * socket (currently, it does nothing but enforce limits). The space
615 * should be released by calling sbrelease() when the socket is destroyed.
616 */
617
618 int
619 sb_max_set(u_long new_sbmax)
620 {
621 int s;
622
623 if (new_sbmax < (16 * 1024))
624 return (EINVAL);
625
626 s = splsoftnet();
627 sb_max = new_sbmax;
628 sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
629 splx(s);
630
631 return (0);
632 }
633
634 int
635 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
636 {
637 KASSERT(so->so_pcb == NULL || solocked(so));
638
639 /*
640 * there's at least one application (a configure script of screen)
641 * which expects a fifo is writable even if it has "some" bytes
642 * in its buffer.
643 * so we want to make sure (hiwat - lowat) >= (some bytes).
644 *
645 * PIPE_BUF here is an arbitrary value chosen as (some bytes) above.
646 * we expect it's large enough for such applications.
647 */
648 u_long lowat = MAX(sock_loan_thresh, MCLBYTES);
649 u_long hiwat = lowat + PIPE_BUF;
650
651 if (sndcc < hiwat)
652 sndcc = hiwat;
653 if (sbreserve(&so->so_snd, sndcc, so) == 0)
654 goto bad;
655 if (sbreserve(&so->so_rcv, rcvcc, so) == 0)
656 goto bad2;
657 if (so->so_rcv.sb_lowat == 0)
658 so->so_rcv.sb_lowat = 1;
659 if (so->so_snd.sb_lowat == 0)
660 so->so_snd.sb_lowat = lowat;
661 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
662 so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
663 return (0);
664 bad2:
665 sbrelease(&so->so_snd, so);
666 bad:
667 return (ENOBUFS);
668 }
669
670 /*
671 * Allot mbufs to a sockbuf.
672 * Attempt to scale mbmax so that mbcnt doesn't become limiting
673 * if buffering efficiency is near the normal case.
674 */
675 int
676 sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
677 {
678 struct lwp *l = curlwp; /* XXX */
679 rlim_t maxcc;
680 struct uidinfo *uidinfo;
681
682 KASSERT(so->so_pcb == NULL || solocked(so));
683 KASSERT(sb->sb_so == so);
684 KASSERT(sb_max_adj != 0);
685
686 if (cc == 0 || cc > sb_max_adj)
687 return (0);
688
689 maxcc = l->l_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur;
690
691 uidinfo = so->so_uidinfo;
692 if (!chgsbsize(uidinfo, &sb->sb_hiwat, cc, maxcc))
693 return 0;
694 sb->sb_mbmax = uimin(cc * 2, sb_max);
695 if (sb->sb_lowat > sb->sb_hiwat)
696 sb->sb_lowat = sb->sb_hiwat;
697
698 return (1);
699 }
700
701 /*
702 * Free mbufs held by a socket, and reserved mbuf space. We do not assert
703 * that the socket is held locked here: see sorflush().
704 */
705 void
706 sbrelease(struct sockbuf *sb, struct socket *so)
707 {
708
709 KASSERT(sb->sb_so == so);
710
711 sbflush(sb);
712 (void)chgsbsize(so->so_uidinfo, &sb->sb_hiwat, 0, RLIM_INFINITY);
713 sb->sb_mbmax = 0;
714 }
715
716 /*
717 * Routines to add and remove
718 * data from an mbuf queue.
719 *
720 * The routines sbappend() or sbappendrecord() are normally called to
721 * append new mbufs to a socket buffer, after checking that adequate
722 * space is available, comparing the function sbspace() with the amount
723 * of data to be added. sbappendrecord() differs from sbappend() in
724 * that data supplied is treated as the beginning of a new record.
725 * To place a sender's address, optional access rights, and data in a
726 * socket receive buffer, sbappendaddr() should be used. To place
727 * access rights and data in a socket receive buffer, sbappendrights()
728 * should be used. In either case, the new data begins a new record.
729 * Note that unlike sbappend() and sbappendrecord(), these routines check
730 * for the caller that there will be enough space to store the data.
731 * Each fails if there is not enough space, or if it cannot find mbufs
732 * to store additional information in.
733 *
734 * Reliable protocols may use the socket send buffer to hold data
735 * awaiting acknowledgement. Data is normally copied from a socket
736 * send buffer in a protocol with m_copym for output to a peer,
737 * and then removing the data from the socket buffer with sbdrop()
738 * or sbdroprecord() when the data is acknowledged by the peer.
739 */
740
741 #ifdef SOCKBUF_DEBUG
742 void
743 sblastrecordchk(struct sockbuf *sb, const char *where)
744 {
745 struct mbuf *m = sb->sb_mb;
746
747 KASSERT(solocked(sb->sb_so));
748
749 while (m && m->m_nextpkt)
750 m = m->m_nextpkt;
751
752 if (m != sb->sb_lastrecord) {
753 printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
754 sb->sb_mb, sb->sb_lastrecord, m);
755 printf("packet chain:\n");
756 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
757 printf("\t%p\n", m);
758 panic("sblastrecordchk from %s", where);
759 }
760 }
761
762 void
763 sblastmbufchk(struct sockbuf *sb, const char *where)
764 {
765 struct mbuf *m = sb->sb_mb;
766 struct mbuf *n;
767
768 KASSERT(solocked(sb->sb_so));
769
770 while (m && m->m_nextpkt)
771 m = m->m_nextpkt;
772
773 while (m && m->m_next)
774 m = m->m_next;
775
776 if (m != sb->sb_mbtail) {
777 printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
778 sb->sb_mb, sb->sb_mbtail, m);
779 printf("packet tree:\n");
780 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
781 printf("\t");
782 for (n = m; n != NULL; n = n->m_next)
783 printf("%p ", n);
784 printf("\n");
785 }
786 panic("sblastmbufchk from %s", where);
787 }
788 }
789 #endif /* SOCKBUF_DEBUG */
790
791 /*
792 * Link a chain of records onto a socket buffer
793 */
794 #define SBLINKRECORDCHAIN(sb, m0, mlast) \
795 do { \
796 if ((sb)->sb_lastrecord != NULL) \
797 (sb)->sb_lastrecord->m_nextpkt = (m0); \
798 else \
799 (sb)->sb_mb = (m0); \
800 (sb)->sb_lastrecord = (mlast); \
801 } while (/*CONSTCOND*/0)
802
803
804 #define SBLINKRECORD(sb, m0) \
805 SBLINKRECORDCHAIN(sb, m0, m0)
806
807 /*
808 * Append mbuf chain m to the last record in the
809 * socket buffer sb. The additional space associated
810 * the mbuf chain is recorded in sb. Empty mbufs are
811 * discarded and mbufs are compacted where possible.
812 */
813 void
814 sbappend(struct sockbuf *sb, struct mbuf *m)
815 {
816 struct mbuf *n;
817
818 KASSERT(solocked(sb->sb_so));
819
820 if (m == NULL)
821 return;
822
823 #ifdef MBUFTRACE
824 m_claimm(m, sb->sb_mowner);
825 #endif
826
827 SBLASTRECORDCHK(sb, "sbappend 1");
828
829 if ((n = sb->sb_lastrecord) != NULL) {
830 /*
831 * XXX Would like to simply use sb_mbtail here, but
832 * XXX I need to verify that I won't miss an EOR that
833 * XXX way.
834 */
835 do {
836 if (n->m_flags & M_EOR) {
837 sbappendrecord(sb, m); /* XXXXXX!!!! */
838 return;
839 }
840 } while (n->m_next && (n = n->m_next));
841 } else {
842 /*
843 * If this is the first record in the socket buffer, it's
844 * also the last record.
845 */
846 sb->sb_lastrecord = m;
847 }
848 sbcompress(sb, m, n);
849 SBLASTRECORDCHK(sb, "sbappend 2");
850 }
851
852 /*
853 * This version of sbappend() should only be used when the caller
854 * absolutely knows that there will never be more than one record
855 * in the socket buffer, that is, a stream protocol (such as TCP).
856 */
857 void
858 sbappendstream(struct sockbuf *sb, struct mbuf *m)
859 {
860
861 KASSERT(solocked(sb->sb_so));
862 KDASSERT(m->m_nextpkt == NULL);
863 KASSERT(sb->sb_mb == sb->sb_lastrecord);
864
865 SBLASTMBUFCHK(sb, __func__);
866
867 #ifdef MBUFTRACE
868 m_claimm(m, sb->sb_mowner);
869 #endif
870
871 sbcompress(sb, m, sb->sb_mbtail);
872
873 sb->sb_lastrecord = sb->sb_mb;
874 SBLASTRECORDCHK(sb, __func__);
875 }
876
877 #ifdef SOCKBUF_DEBUG
878 void
879 sbcheck(struct sockbuf *sb)
880 {
881 struct mbuf *m, *m2;
882 u_long len, mbcnt;
883
884 KASSERT(solocked(sb->sb_so));
885
886 len = 0;
887 mbcnt = 0;
888 for (m = sb->sb_mb; m; m = m->m_nextpkt) {
889 for (m2 = m; m2 != NULL; m2 = m2->m_next) {
890 len += m2->m_len;
891 mbcnt += MSIZE;
892 if (m2->m_flags & M_EXT)
893 mbcnt += m2->m_ext.ext_size;
894 if (m2->m_nextpkt != NULL)
895 panic("sbcheck nextpkt");
896 }
897 }
898 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
899 printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
900 mbcnt, sb->sb_mbcnt);
901 panic("sbcheck");
902 }
903 }
904 #endif
905
906 /*
907 * As above, except the mbuf chain
908 * begins a new record.
909 */
910 void
911 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
912 {
913 struct mbuf *m;
914
915 KASSERT(solocked(sb->sb_so));
916
917 if (m0 == NULL)
918 return;
919
920 #ifdef MBUFTRACE
921 m_claimm(m0, sb->sb_mowner);
922 #endif
923 /*
924 * Put the first mbuf on the queue.
925 * Note this permits zero length records.
926 */
927 sballoc(sb, m0);
928 SBLASTRECORDCHK(sb, "sbappendrecord 1");
929 SBLINKRECORD(sb, m0);
930 m = m0->m_next;
931 m0->m_next = 0;
932 if (m && (m0->m_flags & M_EOR)) {
933 m0->m_flags &= ~M_EOR;
934 m->m_flags |= M_EOR;
935 }
936 sbcompress(sb, m, m0);
937 SBLASTRECORDCHK(sb, "sbappendrecord 2");
938 }
939
940 /*
941 * As above except that OOB data
942 * is inserted at the beginning of the sockbuf,
943 * but after any other OOB data.
944 */
945 void
946 sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
947 {
948 struct mbuf *m, **mp;
949
950 KASSERT(solocked(sb->sb_so));
951
952 if (m0 == NULL)
953 return;
954
955 SBLASTRECORDCHK(sb, "sbinsertoob 1");
956
957 for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
958 again:
959 switch (m->m_type) {
960
961 case MT_OOBDATA:
962 continue; /* WANT next train */
963
964 case MT_CONTROL:
965 if ((m = m->m_next) != NULL)
966 goto again; /* inspect THIS train further */
967 }
968 break;
969 }
970 /*
971 * Put the first mbuf on the queue.
972 * Note this permits zero length records.
973 */
974 sballoc(sb, m0);
975 m0->m_nextpkt = *mp;
976 if (*mp == NULL) {
977 /* m0 is actually the new tail */
978 sb->sb_lastrecord = m0;
979 }
980 *mp = m0;
981 m = m0->m_next;
982 m0->m_next = 0;
983 if (m && (m0->m_flags & M_EOR)) {
984 m0->m_flags &= ~M_EOR;
985 m->m_flags |= M_EOR;
986 }
987 sbcompress(sb, m, m0);
988 SBLASTRECORDCHK(sb, "sbinsertoob 2");
989 }
990
991 /*
992 * Append address and data, and optionally, control (ancillary) data
993 * to the receive queue of a socket. If present,
994 * m0 must include a packet header with total length.
995 * Returns 0 if no space in sockbuf or insufficient mbufs.
996 */
997 int
998 sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0,
999 struct mbuf *control)
1000 {
1001 struct mbuf *m, *n, *nlast;
1002 int space, len;
1003
1004 KASSERT(solocked(sb->sb_so));
1005
1006 space = asa->sa_len;
1007
1008 if (m0 != NULL) {
1009 if ((m0->m_flags & M_PKTHDR) == 0)
1010 panic("sbappendaddr");
1011 space += m0->m_pkthdr.len;
1012 #ifdef MBUFTRACE
1013 m_claimm(m0, sb->sb_mowner);
1014 #endif
1015 }
1016 for (n = control; n; n = n->m_next) {
1017 space += n->m_len;
1018 MCLAIM(n, sb->sb_mowner);
1019 if (n->m_next == NULL) /* keep pointer to last control buf */
1020 break;
1021 }
1022 if (space > sbspace(sb))
1023 return (0);
1024 m = m_get(M_DONTWAIT, MT_SONAME);
1025 if (m == NULL)
1026 return (0);
1027 MCLAIM(m, sb->sb_mowner);
1028 /*
1029 * XXX avoid 'comparison always true' warning which isn't easily
1030 * avoided.
1031 */
1032 len = asa->sa_len;
1033 if (len > MLEN) {
1034 MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
1035 if ((m->m_flags & M_EXT) == 0) {
1036 m_free(m);
1037 return (0);
1038 }
1039 }
1040 m->m_len = asa->sa_len;
1041 memcpy(mtod(m, void *), asa, asa->sa_len);
1042 if (n)
1043 n->m_next = m0; /* concatenate data to control */
1044 else
1045 control = m0;
1046 m->m_next = control;
1047
1048 SBLASTRECORDCHK(sb, "sbappendaddr 1");
1049
1050 for (n = m; n->m_next != NULL; n = n->m_next)
1051 sballoc(sb, n);
1052 sballoc(sb, n);
1053 nlast = n;
1054 SBLINKRECORD(sb, m);
1055
1056 sb->sb_mbtail = nlast;
1057 SBLASTMBUFCHK(sb, "sbappendaddr");
1058 SBLASTRECORDCHK(sb, "sbappendaddr 2");
1059
1060 return (1);
1061 }
1062
1063 /*
1064 * Helper for sbappendchainaddr: prepend a struct sockaddr* to
1065 * an mbuf chain.
1066 */
1067 static inline struct mbuf *
1068 m_prepend_sockaddr(struct sockbuf *sb, struct mbuf *m0,
1069 const struct sockaddr *asa)
1070 {
1071 struct mbuf *m;
1072 const int salen = asa->sa_len;
1073
1074 KASSERT(solocked(sb->sb_so));
1075
1076 /* only the first in each chain need be a pkthdr */
1077 m = m_gethdr(M_DONTWAIT, MT_SONAME);
1078 if (m == NULL)
1079 return NULL;
1080 MCLAIM(m, sb->sb_mowner);
1081 #ifdef notyet
1082 if (salen > MHLEN) {
1083 MEXTMALLOC(m, salen, M_NOWAIT);
1084 if ((m->m_flags & M_EXT) == 0) {
1085 m_free(m);
1086 return NULL;
1087 }
1088 }
1089 #else
1090 KASSERT(salen <= MHLEN);
1091 #endif
1092 m->m_len = salen;
1093 memcpy(mtod(m, void *), asa, salen);
1094 m->m_next = m0;
1095 m->m_pkthdr.len = salen + m0->m_pkthdr.len;
1096
1097 return m;
1098 }
1099
1100 int
1101 sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa,
1102 struct mbuf *m0, int sbprio)
1103 {
1104 struct mbuf *m, *n, *n0, *nlast;
1105 int error;
1106
1107 KASSERT(solocked(sb->sb_so));
1108
1109 /*
1110 * XXX sbprio reserved for encoding priority of this* request:
1111 * SB_PRIO_NONE --> honour normal sb limits
1112 * SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space,
1113 * take whole chain. Intended for large requests
1114 * that should be delivered atomically (all, or none).
1115 * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow
1116 * over normal socket limits, for messages indicating
1117 * buffer overflow in earlier normal/lower-priority messages
1118 * SB_PRIO_BESTEFFORT --> ignore limits entirely.
1119 * Intended for kernel-generated messages only.
1120 * Up to generator to avoid total mbuf resource exhaustion.
1121 */
1122 (void)sbprio;
1123
1124 if (m0 && (m0->m_flags & M_PKTHDR) == 0)
1125 panic("sbappendaddrchain");
1126
1127 #ifdef notyet
1128 space = sbspace(sb);
1129
1130 /*
1131 * Enforce SB_PRIO_* limits as described above.
1132 */
1133 #endif
1134
1135 n0 = NULL;
1136 nlast = NULL;
1137 for (m = m0; m; m = m->m_nextpkt) {
1138 struct mbuf *np;
1139
1140 #ifdef MBUFTRACE
1141 m_claimm(m, sb->sb_mowner);
1142 #endif
1143
1144 /* Prepend sockaddr to this record (m) of input chain m0 */
1145 n = m_prepend_sockaddr(sb, m, asa);
1146 if (n == NULL) {
1147 error = ENOBUFS;
1148 goto bad;
1149 }
1150
1151 /* Append record (asa+m) to end of new chain n0 */
1152 if (n0 == NULL) {
1153 n0 = n;
1154 } else {
1155 nlast->m_nextpkt = n;
1156 }
1157 /* Keep track of last record on new chain */
1158 nlast = n;
1159
1160 for (np = n; np; np = np->m_next)
1161 sballoc(sb, np);
1162 }
1163
1164 SBLASTRECORDCHK(sb, "sbappendaddrchain 1");
1165
1166 /* Drop the entire chain of (asa+m) records onto the socket */
1167 SBLINKRECORDCHAIN(sb, n0, nlast);
1168
1169 SBLASTRECORDCHK(sb, "sbappendaddrchain 2");
1170
1171 for (m = nlast; m->m_next; m = m->m_next)
1172 ;
1173 sb->sb_mbtail = m;
1174 SBLASTMBUFCHK(sb, "sbappendaddrchain");
1175
1176 return (1);
1177
1178 bad:
1179 /*
1180 * On error, free the prepended addreseses. For consistency
1181 * with sbappendaddr(), leave it to our caller to free
1182 * the input record chain passed to us as m0.
1183 */
1184 while ((n = n0) != NULL) {
1185 struct mbuf *np;
1186
1187 /* Undo the sballoc() of this record */
1188 for (np = n; np; np = np->m_next)
1189 sbfree(sb, np);
1190
1191 n0 = n->m_nextpkt; /* iterate at next prepended address */
1192 np = m_free(n); /* free prepended address (not data) */
1193 }
1194 return error;
1195 }
1196
1197
1198 int
1199 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
1200 {
1201 struct mbuf *m, *mlast, *n;
1202 int space;
1203
1204 KASSERT(solocked(sb->sb_so));
1205
1206 space = 0;
1207 if (control == NULL)
1208 panic("sbappendcontrol");
1209 for (m = control; ; m = m->m_next) {
1210 space += m->m_len;
1211 MCLAIM(m, sb->sb_mowner);
1212 if (m->m_next == NULL)
1213 break;
1214 }
1215 n = m; /* save pointer to last control buffer */
1216 for (m = m0; m; m = m->m_next) {
1217 MCLAIM(m, sb->sb_mowner);
1218 space += m->m_len;
1219 }
1220 if (space > sbspace(sb))
1221 return (0);
1222 n->m_next = m0; /* concatenate data to control */
1223
1224 SBLASTRECORDCHK(sb, "sbappendcontrol 1");
1225
1226 for (m = control; m->m_next != NULL; m = m->m_next)
1227 sballoc(sb, m);
1228 sballoc(sb, m);
1229 mlast = m;
1230 SBLINKRECORD(sb, control);
1231
1232 sb->sb_mbtail = mlast;
1233 SBLASTMBUFCHK(sb, "sbappendcontrol");
1234 SBLASTRECORDCHK(sb, "sbappendcontrol 2");
1235
1236 return (1);
1237 }
1238
1239 /*
1240 * Compress mbuf chain m into the socket
1241 * buffer sb following mbuf n. If n
1242 * is null, the buffer is presumed empty.
1243 */
1244 void
1245 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
1246 {
1247 int eor;
1248 struct mbuf *o;
1249
1250 KASSERT(solocked(sb->sb_so));
1251
1252 eor = 0;
1253 while (m) {
1254 eor |= m->m_flags & M_EOR;
1255 if (m->m_len == 0 &&
1256 (eor == 0 ||
1257 (((o = m->m_next) || (o = n)) &&
1258 o->m_type == m->m_type))) {
1259 if (sb->sb_lastrecord == m)
1260 sb->sb_lastrecord = m->m_next;
1261 m = m_free(m);
1262 continue;
1263 }
1264 if (n && (n->m_flags & M_EOR) == 0 &&
1265 /* M_TRAILINGSPACE() checks buffer writeability */
1266 m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
1267 m->m_len <= M_TRAILINGSPACE(n) &&
1268 n->m_type == m->m_type) {
1269 memcpy(mtod(n, char *) + n->m_len, mtod(m, void *),
1270 (unsigned)m->m_len);
1271 n->m_len += m->m_len;
1272 sb->sb_cc += m->m_len;
1273 m = m_free(m);
1274 continue;
1275 }
1276 if (n)
1277 n->m_next = m;
1278 else
1279 sb->sb_mb = m;
1280 sb->sb_mbtail = m;
1281 sballoc(sb, m);
1282 n = m;
1283 m->m_flags &= ~M_EOR;
1284 m = m->m_next;
1285 n->m_next = 0;
1286 }
1287 if (eor) {
1288 if (n)
1289 n->m_flags |= eor;
1290 else
1291 printf("semi-panic: sbcompress\n");
1292 }
1293 SBLASTMBUFCHK(sb, __func__);
1294 }
1295
1296 /*
1297 * Free all mbufs in a sockbuf.
1298 * Check that all resources are reclaimed.
1299 */
1300 void
1301 sbflush(struct sockbuf *sb)
1302 {
1303
1304 KASSERT(solocked(sb->sb_so));
1305 KASSERT((sb->sb_flags & SB_LOCK) == 0);
1306
1307 while (sb->sb_mbcnt)
1308 sbdrop(sb, (int)sb->sb_cc);
1309
1310 KASSERT(sb->sb_cc == 0);
1311 KASSERT(sb->sb_mb == NULL);
1312 KASSERT(sb->sb_mbtail == NULL);
1313 KASSERT(sb->sb_lastrecord == NULL);
1314 }
1315
1316 /*
1317 * Drop data from (the front of) a sockbuf.
1318 */
1319 void
1320 sbdrop(struct sockbuf *sb, int len)
1321 {
1322 struct mbuf *m, *next;
1323
1324 KASSERT(solocked(sb->sb_so));
1325
1326 next = (m = sb->sb_mb) ? m->m_nextpkt : NULL;
1327 while (len > 0) {
1328 if (m == NULL) {
1329 if (next == NULL)
1330 panic("sbdrop(%p,%d): cc=%lu",
1331 sb, len, sb->sb_cc);
1332 m = next;
1333 next = m->m_nextpkt;
1334 continue;
1335 }
1336 if (m->m_len > len) {
1337 m->m_len -= len;
1338 m->m_data += len;
1339 sb->sb_cc -= len;
1340 break;
1341 }
1342 len -= m->m_len;
1343 sbfree(sb, m);
1344 m = m_free(m);
1345 }
1346 while (m && m->m_len == 0) {
1347 sbfree(sb, m);
1348 m = m_free(m);
1349 }
1350 if (m) {
1351 sb->sb_mb = m;
1352 m->m_nextpkt = next;
1353 } else
1354 sb->sb_mb = next;
1355 /*
1356 * First part is an inline SB_EMPTY_FIXUP(). Second part
1357 * makes sure sb_lastrecord is up-to-date if we dropped
1358 * part of the last record.
1359 */
1360 m = sb->sb_mb;
1361 if (m == NULL) {
1362 sb->sb_mbtail = NULL;
1363 sb->sb_lastrecord = NULL;
1364 } else if (m->m_nextpkt == NULL)
1365 sb->sb_lastrecord = m;
1366 }
1367
1368 /*
1369 * Drop a record off the front of a sockbuf
1370 * and move the next record to the front.
1371 */
1372 void
1373 sbdroprecord(struct sockbuf *sb)
1374 {
1375 struct mbuf *m, *mn;
1376
1377 KASSERT(solocked(sb->sb_so));
1378
1379 m = sb->sb_mb;
1380 if (m) {
1381 sb->sb_mb = m->m_nextpkt;
1382 do {
1383 sbfree(sb, m);
1384 mn = m_free(m);
1385 } while ((m = mn) != NULL);
1386 }
1387 SB_EMPTY_FIXUP(sb);
1388 }
1389
1390 /*
1391 * Create a "control" mbuf containing the specified data
1392 * with the specified type for presentation on a socket buffer.
1393 */
1394 struct mbuf *
1395 sbcreatecontrol1(void **p, int size, int type, int level, int flags)
1396 {
1397 struct cmsghdr *cp;
1398 struct mbuf *m;
1399 int space = CMSG_SPACE(size);
1400
1401 if ((flags & M_DONTWAIT) && space > MCLBYTES) {
1402 printf("%s: message too large %d\n", __func__, space);
1403 return NULL;
1404 }
1405
1406 if ((m = m_get(flags, MT_CONTROL)) == NULL)
1407 return NULL;
1408 if (space > MLEN) {
1409 if (space > MCLBYTES)
1410 MEXTMALLOC(m, space, M_WAITOK);
1411 else
1412 MCLGET(m, flags);
1413 if ((m->m_flags & M_EXT) == 0) {
1414 m_free(m);
1415 return NULL;
1416 }
1417 }
1418 cp = mtod(m, struct cmsghdr *);
1419 *p = CMSG_DATA(cp);
1420 m->m_len = space;
1421 cp->cmsg_len = CMSG_LEN(size);
1422 cp->cmsg_level = level;
1423 cp->cmsg_type = type;
1424
1425 memset(cp + 1, 0, CMSG_LEN(0) - sizeof(*cp));
1426 memset((uint8_t *)*p + size, 0, CMSG_ALIGN(size) - size);
1427
1428 return m;
1429 }
1430
1431 struct mbuf *
1432 sbcreatecontrol(void *p, int size, int type, int level)
1433 {
1434 struct mbuf *m;
1435 void *v;
1436
1437 m = sbcreatecontrol1(&v, size, type, level, M_DONTWAIT);
1438 if (m == NULL)
1439 return NULL;
1440 memcpy(v, p, size);
1441 return m;
1442 }
1443
1444 void
1445 solockretry(struct socket *so, kmutex_t *lock)
1446 {
1447
1448 while (lock != so->so_lock) {
1449 mutex_exit(lock);
1450 lock = so->so_lock;
1451 mutex_enter(lock);
1452 }
1453 }
1454
1455 bool
1456 solocked(const struct socket *so)
1457 {
1458
1459 return mutex_owned(so->so_lock);
1460 }
1461
1462 bool
1463 solocked2(const struct socket *so1, const struct socket *so2)
1464 {
1465 const kmutex_t *lock;
1466
1467 lock = so1->so_lock;
1468 if (lock != so2->so_lock)
1469 return false;
1470 return mutex_owned(lock);
1471 }
1472
1473 /*
1474 * sosetlock: assign a default lock to a new socket.
1475 */
1476 void
1477 sosetlock(struct socket *so)
1478 {
1479 if (so->so_lock == NULL) {
1480 kmutex_t *lock = softnet_lock;
1481
1482 so->so_lock = lock;
1483 mutex_obj_hold(lock);
1484 mutex_enter(lock);
1485 }
1486 KASSERT(solocked(so));
1487 }
1488
1489 /*
1490 * Set lock on sockbuf sb; sleep if lock is already held.
1491 * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
1492 * Returns error without lock if sleep is interrupted.
1493 */
1494 int
1495 sblock(struct sockbuf *sb, int wf)
1496 {
1497 struct socket *so;
1498 kmutex_t *lock;
1499 int error;
1500
1501 KASSERT(solocked(sb->sb_so));
1502
1503 for (;;) {
1504 if (__predict_true((sb->sb_flags & SB_LOCK) == 0)) {
1505 sb->sb_flags |= SB_LOCK;
1506 return 0;
1507 }
1508 if (wf != M_WAITOK)
1509 return EWOULDBLOCK;
1510 so = sb->sb_so;
1511 lock = so->so_lock;
1512 if ((sb->sb_flags & SB_NOINTR) != 0) {
1513 cv_wait(&so->so_cv, lock);
1514 error = 0;
1515 } else
1516 error = cv_wait_sig(&so->so_cv, lock);
1517 if (__predict_false(lock != so->so_lock))
1518 solockretry(so, lock);
1519 if (error != 0)
1520 return error;
1521 }
1522 }
1523
1524 void
1525 sbunlock(struct sockbuf *sb)
1526 {
1527 struct socket *so;
1528
1529 so = sb->sb_so;
1530
1531 KASSERT(solocked(so));
1532 KASSERT((sb->sb_flags & SB_LOCK) != 0);
1533
1534 sb->sb_flags &= ~SB_LOCK;
1535 cv_broadcast(&so->so_cv);
1536 }
1537
1538 int
1539 sowait(struct socket *so, bool catch_p, int timo)
1540 {
1541 kmutex_t *lock;
1542 int error;
1543
1544 KASSERT(solocked(so));
1545 KASSERT(catch_p || timo != 0);
1546
1547 lock = so->so_lock;
1548 if (catch_p)
1549 error = cv_timedwait_sig(&so->so_cv, lock, timo);
1550 else
1551 error = cv_timedwait(&so->so_cv, lock, timo);
1552 if (__predict_false(lock != so->so_lock))
1553 solockretry(so, lock);
1554 return error;
1555 }
1556
1557 #ifdef DDB
1558
1559 /*
1560 * Currently, sofindproc() is used only from DDB. It could be used from others
1561 * by using db_mutex_enter()
1562 */
1563
1564 static inline int
1565 db_mutex_enter(kmutex_t *mtx)
1566 {
1567 extern int db_active;
1568 int rv;
1569
1570 if (!db_active) {
1571 mutex_enter(mtx);
1572 rv = 1;
1573 } else
1574 rv = mutex_tryenter(mtx);
1575
1576 return rv;
1577 }
1578
1579 int
1580 sofindproc(struct socket *so, int all, void (*pr)(const char *, ...))
1581 {
1582 proc_t *p;
1583 filedesc_t *fdp;
1584 fdtab_t *dt;
1585 fdfile_t *ff;
1586 file_t *fp = NULL;
1587 int found = 0;
1588 int i, t;
1589
1590 if (so == NULL)
1591 return 0;
1592
1593 t = db_mutex_enter(proc_lock);
1594 if (!t) {
1595 pr("could not acquire proc_lock mutex\n");
1596 return 0;
1597 }
1598 PROCLIST_FOREACH(p, &allproc) {
1599 if (p->p_stat == SIDL)
1600 continue;
1601 fdp = p->p_fd;
1602 t = db_mutex_enter(&fdp->fd_lock);
1603 if (!t) {
1604 pr("could not acquire fd_lock mutex\n");
1605 continue;
1606 }
1607 dt = atomic_load_consume(&fdp->fd_dt);
1608 for (i = 0; i < dt->dt_nfiles; i++) {
1609 ff = dt->dt_ff[i];
1610 if (ff == NULL)
1611 continue;
1612
1613 fp = ff->ff_file;
1614 if (fp == NULL)
1615 continue;
1616
1617 t = db_mutex_enter(&fp->f_lock);
1618 if (!t) {
1619 pr("could not acquire f_lock mutex\n");
1620 continue;
1621 }
1622 if ((struct socket *)fp->f_data != so) {
1623 mutex_exit(&fp->f_lock);
1624 continue;
1625 }
1626 found++;
1627 if (pr)
1628 pr("socket %p: owner %s(pid=%d)\n",
1629 so, p->p_comm, p->p_pid);
1630 mutex_exit(&fp->f_lock);
1631 if (all == 0)
1632 break;
1633 }
1634 mutex_exit(&fdp->fd_lock);
1635 if (all == 0 && found != 0)
1636 break;
1637 }
1638 mutex_exit(proc_lock);
1639
1640 return found;
1641 }
1642
1643 void
1644 socket_print(const char *modif, void (*pr)(const char *, ...))
1645 {
1646 file_t *fp;
1647 struct socket *so;
1648 struct sockbuf *sb_snd, *sb_rcv;
1649 struct mbuf *m_rec, *m;
1650 bool opt_v = false;
1651 bool opt_m = false;
1652 bool opt_a = false;
1653 bool opt_p = false;
1654 int nrecs, nmbufs;
1655 char ch;
1656 const char *family;
1657
1658 while ( (ch = *(modif++)) != '\0') {
1659 switch (ch) {
1660 case 'v':
1661 opt_v = true;
1662 break;
1663 case 'm':
1664 opt_m = true;
1665 break;
1666 case 'a':
1667 opt_a = true;
1668 break;
1669 case 'p':
1670 opt_p = true;
1671 break;
1672 }
1673 }
1674 if (opt_v == false && pr)
1675 (pr)("Ignore empty sockets. use /v to print all.\n");
1676 if (opt_p == true && pr)
1677 (pr)("Don't search owner process.\n");
1678
1679 LIST_FOREACH(fp, &filehead, f_list) {
1680 if (fp->f_type != DTYPE_SOCKET)
1681 continue;
1682 so = (struct socket *)fp->f_data;
1683 if (so == NULL)
1684 continue;
1685
1686 if (so->so_proto->pr_domain->dom_family == AF_INET)
1687 family = "INET";
1688 #ifdef INET6
1689 else if (so->so_proto->pr_domain->dom_family == AF_INET6)
1690 family = "INET6";
1691 #endif
1692 else if (so->so_proto->pr_domain->dom_family == pseudo_AF_KEY)
1693 family = "KEY";
1694 else if (so->so_proto->pr_domain->dom_family == AF_ROUTE)
1695 family = "ROUTE";
1696 else
1697 continue;
1698
1699 sb_snd = &so->so_snd;
1700 sb_rcv = &so->so_rcv;
1701
1702 if (opt_v != true &&
1703 sb_snd->sb_cc == 0 && sb_rcv->sb_cc == 0)
1704 continue;
1705
1706 pr("---SOCKET %p: type %s\n", so, family);
1707 if (opt_p != true)
1708 sofindproc(so, opt_a == true ? 1 : 0, pr);
1709 pr("Send Buffer Bytes: %d [bytes]\n", sb_snd->sb_cc);
1710 pr("Send Buffer mbufs:\n");
1711 m_rec = m = sb_snd->sb_mb;
1712 nrecs = 0;
1713 nmbufs = 0;
1714 while (m_rec) {
1715 nrecs++;
1716 if (opt_m == true)
1717 pr(" mbuf chain %p\n", m_rec);
1718 while (m) {
1719 nmbufs++;
1720 m = m->m_next;
1721 }
1722 m_rec = m = m_rec->m_nextpkt;
1723 }
1724 pr(" Total %d records, %d mbufs.\n", nrecs, nmbufs);
1725
1726 pr("Recv Buffer Usage: %d [bytes]\n", sb_rcv->sb_cc);
1727 pr("Recv Buffer mbufs:\n");
1728 m_rec = m = sb_rcv->sb_mb;
1729 nrecs = 0;
1730 nmbufs = 0;
1731 while (m_rec) {
1732 nrecs++;
1733 if (opt_m == true)
1734 pr(" mbuf chain %p\n", m_rec);
1735 while (m) {
1736 nmbufs++;
1737 m = m->m_next;
1738 }
1739 m_rec = m = m_rec->m_nextpkt;
1740 }
1741 pr(" Total %d records, %d mbufs.\n", nrecs, nmbufs);
1742 }
1743 }
1744 #endif /* DDB */
1745