uipc_socket2.c revision 1.138 1 /* $NetBSD: uipc_socket2.c,v 1.138 2020/08/26 22:54:30 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*
30 * Copyright (c) 1982, 1986, 1988, 1990, 1993
31 * The Regents of the University of California. All rights reserved.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 * 3. Neither the name of the University nor the names of its contributors
42 * may be used to endorse or promote products derived from this software
43 * without specific prior written permission.
44 *
45 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 * SUCH DAMAGE.
56 *
57 * @(#)uipc_socket2.c 8.2 (Berkeley) 2/14/95
58 */
59
60 #include <sys/cdefs.h>
61 __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.138 2020/08/26 22:54:30 christos Exp $");
62
63 #ifdef _KERNEL_OPT
64 #include "opt_ddb.h"
65 #include "opt_mbuftrace.h"
66 #include "opt_sb_max.h"
67 #endif
68
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/proc.h>
72 #include <sys/file.h>
73 #include <sys/buf.h>
74 #include <sys/mbuf.h>
75 #include <sys/protosw.h>
76 #include <sys/domain.h>
77 #include <sys/poll.h>
78 #include <sys/socket.h>
79 #include <sys/socketvar.h>
80 #include <sys/signalvar.h>
81 #include <sys/kauth.h>
82 #include <sys/pool.h>
83 #include <sys/uidinfo.h>
84
85 #ifdef DDB
86 #include <sys/filedesc.h>
87 #endif
88
89 /*
90 * Primitive routines for operating on sockets and socket buffers.
91 *
92 * Connection life-cycle:
93 *
94 * Normal sequence from the active (originating) side:
95 *
96 * - soisconnecting() is called during processing of connect() call,
97 * - resulting in an eventual call to soisconnected() if/when the
98 * connection is established.
99 *
100 * When the connection is torn down during processing of disconnect():
101 *
102 * - soisdisconnecting() is called and,
103 * - soisdisconnected() is called when the connection to the peer
104 * is totally severed.
105 *
106 * The semantics of these routines are such that connectionless protocols
107 * can call soisconnected() and soisdisconnected() only, bypassing the
108 * in-progress calls when setting up a ``connection'' takes no time.
109 *
110 * From the passive side, a socket is created with two queues of sockets:
111 *
112 * - so_q0 (0) for partial connections (i.e. connections in progress)
113 * - so_q (1) for connections already made and awaiting user acceptance.
114 *
115 * As a protocol is preparing incoming connections, it creates a socket
116 * structure queued on so_q0 by calling sonewconn(). When the connection
117 * is established, soisconnected() is called, and transfers the
118 * socket structure to so_q, making it available to accept().
119 *
120 * If a socket is closed with sockets on either so_q0 or so_q, these
121 * sockets are dropped.
122 *
123 * Locking rules and assumptions:
124 *
125 * o socket::so_lock can change on the fly. The low level routines used
126 * to lock sockets are aware of this. When so_lock is acquired, the
127 * routine locking must check to see if so_lock still points to the
128 * lock that was acquired. If so_lock has changed in the meantime, the
129 * now irrelevant lock that was acquired must be dropped and the lock
130 * operation retried. Although not proven here, this is completely safe
131 * on a multiprocessor system, even with relaxed memory ordering, given
132 * the next two rules:
133 *
134 * o In order to mutate so_lock, the lock pointed to by the current value
135 * of so_lock must be held: i.e., the socket must be held locked by the
136 * changing thread. The thread must issue membar_exit() to prevent
137 * memory accesses being reordered, and can set so_lock to the desired
138 * value. If the lock pointed to by the new value of so_lock is not
139 * held by the changing thread, the socket must then be considered
140 * unlocked.
141 *
142 * o If so_lock is mutated, and the previous lock referred to by so_lock
143 * could still be visible to other threads in the system (e.g. via file
144 * descriptor or protocol-internal reference), then the old lock must
145 * remain valid until the socket and/or protocol control block has been
146 * torn down.
147 *
148 * o If a socket has a non-NULL so_head value (i.e. is in the process of
149 * connecting), then locking the socket must also lock the socket pointed
150 * to by so_head: their lock pointers must match.
151 *
152 * o If a socket has connections in progress (so_q, so_q0 not empty) then
153 * locking the socket must also lock the sockets attached to both queues.
154 * Again, their lock pointers must match.
155 *
156 * o Beyond the initial lock assignment in socreate(), assigning locks to
157 * sockets is the responsibility of the individual protocols / protocol
158 * domains.
159 */
160
161 static pool_cache_t socket_cache;
162 u_long sb_max = SB_MAX;/* maximum socket buffer size */
163 static u_long sb_max_adj; /* adjusted sb_max */
164
165 void
166 soisconnecting(struct socket *so)
167 {
168
169 KASSERT(solocked(so));
170
171 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
172 so->so_state |= SS_ISCONNECTING;
173 }
174
175 void
176 soisconnected(struct socket *so)
177 {
178 struct socket *head;
179
180 head = so->so_head;
181
182 KASSERT(solocked(so));
183 KASSERT(head == NULL || solocked2(so, head));
184
185 so->so_state &= ~(SS_ISCONNECTING | SS_ISDISCONNECTING);
186 so->so_state |= SS_ISCONNECTED;
187 if (head && so->so_onq == &head->so_q0) {
188 if ((so->so_options & SO_ACCEPTFILTER) == 0) {
189 /*
190 * Re-enqueue and wake up any waiters, e.g.
191 * processes blocking on accept().
192 */
193 soqremque(so, 0);
194 soqinsque(head, so, 1);
195 sorwakeup(head);
196 cv_broadcast(&head->so_cv);
197 } else {
198 so->so_upcall =
199 head->so_accf->so_accept_filter->accf_callback;
200 so->so_upcallarg = head->so_accf->so_accept_filter_arg;
201 so->so_rcv.sb_flags |= SB_UPCALL;
202 so->so_options &= ~SO_ACCEPTFILTER;
203 (*so->so_upcall)(so, so->so_upcallarg,
204 POLLIN|POLLRDNORM, M_DONTWAIT);
205 }
206 } else {
207 cv_broadcast(&so->so_cv);
208 sorwakeup(so);
209 sowwakeup(so);
210 }
211 }
212
213 void
214 soisdisconnecting(struct socket *so)
215 {
216
217 KASSERT(solocked(so));
218
219 so->so_state &= ~SS_ISCONNECTING;
220 so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
221 cv_broadcast(&so->so_cv);
222 sowwakeup(so);
223 sorwakeup(so);
224 }
225
226 void
227 soisdisconnected(struct socket *so)
228 {
229
230 KASSERT(solocked(so));
231
232 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
233 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
234 cv_broadcast(&so->so_cv);
235 sowwakeup(so);
236 sorwakeup(so);
237 }
238
239 void
240 soinit2(void)
241 {
242
243 socket_cache = pool_cache_init(sizeof(struct socket), 0, 0, 0,
244 "socket", NULL, IPL_SOFTNET, NULL, NULL, NULL);
245 }
246
247 /*
248 * sonewconn: accept a new connection.
249 *
250 * When an attempt at a new connection is noted on a socket which accepts
251 * connections, sonewconn(9) is called. If the connection is possible
252 * (subject to space constraints, etc) then we allocate a new structure,
253 * properly linked into the data structure of the original socket.
254 *
255 * => If 'soready' is true, then socket will become ready for accept() i.e.
256 * inserted into the so_q queue, SS_ISCONNECTED set and waiters awoken.
257 * => May be called from soft-interrupt context.
258 * => Listening socket should be locked.
259 * => Returns the new socket locked.
260 */
261 struct socket *
262 sonewconn(struct socket *head, bool soready)
263 {
264 struct socket *so;
265 int soqueue, error;
266
267 KASSERT(solocked(head));
268
269 if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2) {
270 /*
271 * Listen queue overflow. If there is an accept filter
272 * active, pass through the oldest cxn it's handling.
273 */
274 if (head->so_accf == NULL) {
275 return NULL;
276 } else {
277 struct socket *so2, *next;
278
279 /* Pass the oldest connection waiting in the
280 accept filter */
281 for (so2 = TAILQ_FIRST(&head->so_q0);
282 so2 != NULL; so2 = next) {
283 next = TAILQ_NEXT(so2, so_qe);
284 if (so2->so_upcall == NULL) {
285 continue;
286 }
287 so2->so_upcall = NULL;
288 so2->so_upcallarg = NULL;
289 so2->so_options &= ~SO_ACCEPTFILTER;
290 so2->so_rcv.sb_flags &= ~SB_UPCALL;
291 soisconnected(so2);
292 break;
293 }
294
295 /* If nothing was nudged out of the acept filter, bail
296 * out; otherwise proceed allocating the socket. */
297 if (so2 == NULL) {
298 return NULL;
299 }
300 }
301 }
302 if ((head->so_options & SO_ACCEPTFILTER) != 0) {
303 soready = false;
304 }
305 soqueue = soready ? 1 : 0;
306
307 if ((so = soget(false)) == NULL) {
308 return NULL;
309 }
310 so->so_type = head->so_type;
311 so->so_options = head->so_options & ~SO_ACCEPTCONN;
312 so->so_linger = head->so_linger;
313 so->so_state = head->so_state | SS_NOFDREF;
314 so->so_proto = head->so_proto;
315 so->so_timeo = head->so_timeo;
316 so->so_pgid = head->so_pgid;
317 so->so_send = head->so_send;
318 so->so_receive = head->so_receive;
319 so->so_uidinfo = head->so_uidinfo;
320 so->so_egid = head->so_egid;
321 so->so_cpid = head->so_cpid;
322
323 /*
324 * Share the lock with the listening-socket, it may get unshared
325 * once the connection is complete.
326 */
327 mutex_obj_hold(head->so_lock);
328 so->so_lock = head->so_lock;
329
330 /*
331 * Reserve the space for socket buffers.
332 */
333 #ifdef MBUFTRACE
334 so->so_mowner = head->so_mowner;
335 so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
336 so->so_snd.sb_mowner = head->so_snd.sb_mowner;
337 #endif
338 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) {
339 goto out;
340 }
341 so->so_snd.sb_lowat = head->so_snd.sb_lowat;
342 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
343 so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
344 so->so_snd.sb_timeo = head->so_snd.sb_timeo;
345 so->so_rcv.sb_flags |= head->so_rcv.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
346 so->so_snd.sb_flags |= head->so_snd.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
347
348 /*
349 * Finally, perform the protocol attach. Note: a new socket
350 * lock may be assigned at this point (if so, it will be held).
351 */
352 error = (*so->so_proto->pr_usrreqs->pr_attach)(so, 0);
353 if (error) {
354 out:
355 KASSERT(solocked(so));
356 KASSERT(so->so_accf == NULL);
357 soput(so);
358
359 /* Note: the listening socket shall stay locked. */
360 KASSERT(solocked(head));
361 return NULL;
362 }
363 KASSERT(solocked2(head, so));
364
365 /*
366 * Insert into the queue. If ready, update the connection status
367 * and wake up any waiters, e.g. processes blocking on accept().
368 */
369 soqinsque(head, so, soqueue);
370 if (soready) {
371 so->so_state |= SS_ISCONNECTED;
372 sorwakeup(head);
373 cv_broadcast(&head->so_cv);
374 }
375 return so;
376 }
377
378 struct socket *
379 soget(bool waitok)
380 {
381 struct socket *so;
382
383 so = pool_cache_get(socket_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
384 if (__predict_false(so == NULL))
385 return (NULL);
386 memset(so, 0, sizeof(*so));
387 TAILQ_INIT(&so->so_q0);
388 TAILQ_INIT(&so->so_q);
389 cv_init(&so->so_cv, "socket");
390 cv_init(&so->so_rcv.sb_cv, "netio");
391 cv_init(&so->so_snd.sb_cv, "netio");
392 selinit(&so->so_rcv.sb_sel);
393 selinit(&so->so_snd.sb_sel);
394 so->so_rcv.sb_so = so;
395 so->so_snd.sb_so = so;
396 return so;
397 }
398
399 void
400 soput(struct socket *so)
401 {
402
403 KASSERT(!cv_has_waiters(&so->so_cv));
404 KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
405 KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
406 seldestroy(&so->so_rcv.sb_sel);
407 seldestroy(&so->so_snd.sb_sel);
408 mutex_obj_free(so->so_lock);
409 cv_destroy(&so->so_cv);
410 cv_destroy(&so->so_rcv.sb_cv);
411 cv_destroy(&so->so_snd.sb_cv);
412 pool_cache_put(socket_cache, so);
413 }
414
415 /*
416 * soqinsque: insert socket of a new connection into the specified
417 * accept queue of the listening socket (head).
418 *
419 * q = 0: queue of partial connections
420 * q = 1: queue of incoming connections
421 */
422 void
423 soqinsque(struct socket *head, struct socket *so, int q)
424 {
425 KASSERT(q == 0 || q == 1);
426 KASSERT(solocked2(head, so));
427 KASSERT(so->so_onq == NULL);
428 KASSERT(so->so_head == NULL);
429
430 so->so_head = head;
431 if (q == 0) {
432 head->so_q0len++;
433 so->so_onq = &head->so_q0;
434 } else {
435 head->so_qlen++;
436 so->so_onq = &head->so_q;
437 }
438 TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
439 }
440
441 /*
442 * soqremque: remove socket from the specified queue.
443 *
444 * => Returns true if socket was removed from the specified queue.
445 * => False if socket was not removed (because it was in other queue).
446 */
447 bool
448 soqremque(struct socket *so, int q)
449 {
450 struct socket *head = so->so_head;
451
452 KASSERT(q == 0 || q == 1);
453 KASSERT(solocked(so));
454 KASSERT(so->so_onq != NULL);
455 KASSERT(head != NULL);
456
457 if (q == 0) {
458 if (so->so_onq != &head->so_q0)
459 return false;
460 head->so_q0len--;
461 } else {
462 if (so->so_onq != &head->so_q)
463 return false;
464 head->so_qlen--;
465 }
466 KASSERT(solocked2(so, head));
467 TAILQ_REMOVE(so->so_onq, so, so_qe);
468 so->so_onq = NULL;
469 so->so_head = NULL;
470 return true;
471 }
472
473 /*
474 * socantsendmore: indicates that no more data will be sent on the
475 * socket; it would normally be applied to a socket when the user
476 * informs the system that no more data is to be sent, by the protocol
477 * code (in case pr_shutdown()).
478 */
479 void
480 socantsendmore(struct socket *so)
481 {
482 KASSERT(solocked(so));
483
484 so->so_state |= SS_CANTSENDMORE;
485 sowwakeup(so);
486 }
487
488 /*
489 * socantrcvmore(): indicates that no more data will be received and
490 * will normally be applied to the socket by a protocol when it detects
491 * that the peer will send no more data. Data queued for reading in
492 * the socket may yet be read.
493 */
494 void
495 socantrcvmore(struct socket *so)
496 {
497 KASSERT(solocked(so));
498
499 so->so_state |= SS_CANTRCVMORE;
500 sorwakeup(so);
501 }
502
503 /*
504 * soroverflow(): indicates that data was attempted to be sent
505 * but the receiving buffer overflowed.
506 */
507 void
508 soroverflow(struct socket *so)
509 {
510 KASSERT(solocked(so));
511
512 so->so_rcv.sb_overflowed++;
513 if (so->so_options & SO_RERROR) {
514 so->so_rerror = ENOBUFS;
515 sorwakeup(so);
516 }
517 }
518
519 /*
520 * Wait for data to arrive at/drain from a socket buffer.
521 */
522 int
523 sbwait(struct sockbuf *sb)
524 {
525 struct socket *so;
526 kmutex_t *lock;
527 int error;
528
529 so = sb->sb_so;
530
531 KASSERT(solocked(so));
532
533 sb->sb_flags |= SB_NOTIFY;
534 lock = so->so_lock;
535 if ((sb->sb_flags & SB_NOINTR) != 0)
536 error = cv_timedwait(&sb->sb_cv, lock, sb->sb_timeo);
537 else
538 error = cv_timedwait_sig(&sb->sb_cv, lock, sb->sb_timeo);
539 if (__predict_false(lock != so->so_lock))
540 solockretry(so, lock);
541 return error;
542 }
543
544 /*
545 * Wakeup processes waiting on a socket buffer.
546 * Do asynchronous notification via SIGIO
547 * if the socket buffer has the SB_ASYNC flag set.
548 */
549 void
550 sowakeup(struct socket *so, struct sockbuf *sb, int code)
551 {
552 int band;
553
554 KASSERT(solocked(so));
555 KASSERT(sb->sb_so == so);
556
557 if (code == POLL_IN)
558 band = POLLIN|POLLRDNORM;
559 else
560 band = POLLOUT|POLLWRNORM;
561 sb->sb_flags &= ~SB_NOTIFY;
562 selnotify(&sb->sb_sel, band, NOTE_SUBMIT);
563 cv_broadcast(&sb->sb_cv);
564 if (sb->sb_flags & SB_ASYNC)
565 fownsignal(so->so_pgid, SIGIO, code, band, so);
566 if (sb->sb_flags & SB_UPCALL)
567 (*so->so_upcall)(so, so->so_upcallarg, band, M_DONTWAIT);
568 }
569
570 /*
571 * Reset a socket's lock pointer. Wake all threads waiting on the
572 * socket's condition variables so that they can restart their waits
573 * using the new lock. The existing lock must be held.
574 */
575 void
576 solockreset(struct socket *so, kmutex_t *lock)
577 {
578
579 KASSERT(solocked(so));
580
581 so->so_lock = lock;
582 cv_broadcast(&so->so_snd.sb_cv);
583 cv_broadcast(&so->so_rcv.sb_cv);
584 cv_broadcast(&so->so_cv);
585 }
586
587 /*
588 * Socket buffer (struct sockbuf) utility routines.
589 *
590 * Each socket contains two socket buffers: one for sending data and
591 * one for receiving data. Each buffer contains a queue of mbufs,
592 * information about the number of mbufs and amount of data in the
593 * queue, and other fields allowing poll() statements and notification
594 * on data availability to be implemented.
595 *
596 * Data stored in a socket buffer is maintained as a list of records.
597 * Each record is a list of mbufs chained together with the m_next
598 * field. Records are chained together with the m_nextpkt field. The upper
599 * level routine soreceive() expects the following conventions to be
600 * observed when placing information in the receive buffer:
601 *
602 * 1. If the protocol requires each message be preceded by the sender's
603 * name, then a record containing that name must be present before
604 * any associated data (mbuf's must be of type MT_SONAME).
605 * 2. If the protocol supports the exchange of ``access rights'' (really
606 * just additional data associated with the message), and there are
607 * ``rights'' to be received, then a record containing this data
608 * should be present (mbuf's must be of type MT_CONTROL).
609 * 3. If a name or rights record exists, then it must be followed by
610 * a data record, perhaps of zero length.
611 *
612 * Before using a new socket structure it is first necessary to reserve
613 * buffer space to the socket, by calling sbreserve(). This should commit
614 * some of the available buffer space in the system buffer pool for the
615 * socket (currently, it does nothing but enforce limits). The space
616 * should be released by calling sbrelease() when the socket is destroyed.
617 */
618
619 int
620 sb_max_set(u_long new_sbmax)
621 {
622 int s;
623
624 if (new_sbmax < (16 * 1024))
625 return (EINVAL);
626
627 s = splsoftnet();
628 sb_max = new_sbmax;
629 sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
630 splx(s);
631
632 return (0);
633 }
634
635 int
636 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
637 {
638 KASSERT(so->so_pcb == NULL || solocked(so));
639
640 /*
641 * there's at least one application (a configure script of screen)
642 * which expects a fifo is writable even if it has "some" bytes
643 * in its buffer.
644 * so we want to make sure (hiwat - lowat) >= (some bytes).
645 *
646 * PIPE_BUF here is an arbitrary value chosen as (some bytes) above.
647 * we expect it's large enough for such applications.
648 */
649 u_long lowat = MAX(sock_loan_thresh, MCLBYTES);
650 u_long hiwat = lowat + PIPE_BUF;
651
652 if (sndcc < hiwat)
653 sndcc = hiwat;
654 if (sbreserve(&so->so_snd, sndcc, so) == 0)
655 goto bad;
656 if (sbreserve(&so->so_rcv, rcvcc, so) == 0)
657 goto bad2;
658 if (so->so_rcv.sb_lowat == 0)
659 so->so_rcv.sb_lowat = 1;
660 if (so->so_snd.sb_lowat == 0)
661 so->so_snd.sb_lowat = lowat;
662 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
663 so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
664 return (0);
665 bad2:
666 sbrelease(&so->so_snd, so);
667 bad:
668 return (ENOBUFS);
669 }
670
671 /*
672 * Allot mbufs to a sockbuf.
673 * Attempt to scale mbmax so that mbcnt doesn't become limiting
674 * if buffering efficiency is near the normal case.
675 */
676 int
677 sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
678 {
679 struct lwp *l = curlwp; /* XXX */
680 rlim_t maxcc;
681 struct uidinfo *uidinfo;
682
683 KASSERT(so->so_pcb == NULL || solocked(so));
684 KASSERT(sb->sb_so == so);
685 KASSERT(sb_max_adj != 0);
686
687 if (cc == 0 || cc > sb_max_adj)
688 return (0);
689
690 maxcc = l->l_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur;
691
692 uidinfo = so->so_uidinfo;
693 if (!chgsbsize(uidinfo, &sb->sb_hiwat, cc, maxcc))
694 return 0;
695 sb->sb_mbmax = uimin(cc * 2, sb_max);
696 if (sb->sb_lowat > sb->sb_hiwat)
697 sb->sb_lowat = sb->sb_hiwat;
698
699 return (1);
700 }
701
702 /*
703 * Free mbufs held by a socket, and reserved mbuf space. We do not assert
704 * that the socket is held locked here: see sorflush().
705 */
706 void
707 sbrelease(struct sockbuf *sb, struct socket *so)
708 {
709
710 KASSERT(sb->sb_so == so);
711
712 sbflush(sb);
713 (void)chgsbsize(so->so_uidinfo, &sb->sb_hiwat, 0, RLIM_INFINITY);
714 sb->sb_mbmax = 0;
715 }
716
717 /*
718 * Routines to add and remove
719 * data from an mbuf queue.
720 *
721 * The routines sbappend() or sbappendrecord() are normally called to
722 * append new mbufs to a socket buffer, after checking that adequate
723 * space is available, comparing the function sbspace() with the amount
724 * of data to be added. sbappendrecord() differs from sbappend() in
725 * that data supplied is treated as the beginning of a new record.
726 * To place a sender's address, optional access rights, and data in a
727 * socket receive buffer, sbappendaddr() should be used. To place
728 * access rights and data in a socket receive buffer, sbappendrights()
729 * should be used. In either case, the new data begins a new record.
730 * Note that unlike sbappend() and sbappendrecord(), these routines check
731 * for the caller that there will be enough space to store the data.
732 * Each fails if there is not enough space, or if it cannot find mbufs
733 * to store additional information in.
734 *
735 * Reliable protocols may use the socket send buffer to hold data
736 * awaiting acknowledgement. Data is normally copied from a socket
737 * send buffer in a protocol with m_copym for output to a peer,
738 * and then removing the data from the socket buffer with sbdrop()
739 * or sbdroprecord() when the data is acknowledged by the peer.
740 */
741
742 #ifdef SOCKBUF_DEBUG
743 void
744 sblastrecordchk(struct sockbuf *sb, const char *where)
745 {
746 struct mbuf *m = sb->sb_mb;
747
748 KASSERT(solocked(sb->sb_so));
749
750 while (m && m->m_nextpkt)
751 m = m->m_nextpkt;
752
753 if (m != sb->sb_lastrecord) {
754 printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
755 sb->sb_mb, sb->sb_lastrecord, m);
756 printf("packet chain:\n");
757 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
758 printf("\t%p\n", m);
759 panic("sblastrecordchk from %s", where);
760 }
761 }
762
763 void
764 sblastmbufchk(struct sockbuf *sb, const char *where)
765 {
766 struct mbuf *m = sb->sb_mb;
767 struct mbuf *n;
768
769 KASSERT(solocked(sb->sb_so));
770
771 while (m && m->m_nextpkt)
772 m = m->m_nextpkt;
773
774 while (m && m->m_next)
775 m = m->m_next;
776
777 if (m != sb->sb_mbtail) {
778 printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
779 sb->sb_mb, sb->sb_mbtail, m);
780 printf("packet tree:\n");
781 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
782 printf("\t");
783 for (n = m; n != NULL; n = n->m_next)
784 printf("%p ", n);
785 printf("\n");
786 }
787 panic("sblastmbufchk from %s", where);
788 }
789 }
790 #endif /* SOCKBUF_DEBUG */
791
792 /*
793 * Link a chain of records onto a socket buffer
794 */
795 #define SBLINKRECORDCHAIN(sb, m0, mlast) \
796 do { \
797 if ((sb)->sb_lastrecord != NULL) \
798 (sb)->sb_lastrecord->m_nextpkt = (m0); \
799 else \
800 (sb)->sb_mb = (m0); \
801 (sb)->sb_lastrecord = (mlast); \
802 } while (/*CONSTCOND*/0)
803
804
805 #define SBLINKRECORD(sb, m0) \
806 SBLINKRECORDCHAIN(sb, m0, m0)
807
808 /*
809 * Append mbuf chain m to the last record in the
810 * socket buffer sb. The additional space associated
811 * the mbuf chain is recorded in sb. Empty mbufs are
812 * discarded and mbufs are compacted where possible.
813 */
814 void
815 sbappend(struct sockbuf *sb, struct mbuf *m)
816 {
817 struct mbuf *n;
818
819 KASSERT(solocked(sb->sb_so));
820
821 if (m == NULL)
822 return;
823
824 #ifdef MBUFTRACE
825 m_claimm(m, sb->sb_mowner);
826 #endif
827
828 SBLASTRECORDCHK(sb, "sbappend 1");
829
830 if ((n = sb->sb_lastrecord) != NULL) {
831 /*
832 * XXX Would like to simply use sb_mbtail here, but
833 * XXX I need to verify that I won't miss an EOR that
834 * XXX way.
835 */
836 do {
837 if (n->m_flags & M_EOR) {
838 sbappendrecord(sb, m); /* XXXXXX!!!! */
839 return;
840 }
841 } while (n->m_next && (n = n->m_next));
842 } else {
843 /*
844 * If this is the first record in the socket buffer, it's
845 * also the last record.
846 */
847 sb->sb_lastrecord = m;
848 }
849 sbcompress(sb, m, n);
850 SBLASTRECORDCHK(sb, "sbappend 2");
851 }
852
853 /*
854 * This version of sbappend() should only be used when the caller
855 * absolutely knows that there will never be more than one record
856 * in the socket buffer, that is, a stream protocol (such as TCP).
857 */
858 void
859 sbappendstream(struct sockbuf *sb, struct mbuf *m)
860 {
861
862 KASSERT(solocked(sb->sb_so));
863 KDASSERT(m->m_nextpkt == NULL);
864 KASSERT(sb->sb_mb == sb->sb_lastrecord);
865
866 SBLASTMBUFCHK(sb, __func__);
867
868 #ifdef MBUFTRACE
869 m_claimm(m, sb->sb_mowner);
870 #endif
871
872 sbcompress(sb, m, sb->sb_mbtail);
873
874 sb->sb_lastrecord = sb->sb_mb;
875 SBLASTRECORDCHK(sb, __func__);
876 }
877
878 #ifdef SOCKBUF_DEBUG
879 void
880 sbcheck(struct sockbuf *sb)
881 {
882 struct mbuf *m, *m2;
883 u_long len, mbcnt;
884
885 KASSERT(solocked(sb->sb_so));
886
887 len = 0;
888 mbcnt = 0;
889 for (m = sb->sb_mb; m; m = m->m_nextpkt) {
890 for (m2 = m; m2 != NULL; m2 = m2->m_next) {
891 len += m2->m_len;
892 mbcnt += MSIZE;
893 if (m2->m_flags & M_EXT)
894 mbcnt += m2->m_ext.ext_size;
895 if (m2->m_nextpkt != NULL)
896 panic("sbcheck nextpkt");
897 }
898 }
899 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
900 printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
901 mbcnt, sb->sb_mbcnt);
902 panic("sbcheck");
903 }
904 }
905 #endif
906
907 /*
908 * As above, except the mbuf chain
909 * begins a new record.
910 */
911 void
912 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
913 {
914 struct mbuf *m;
915
916 KASSERT(solocked(sb->sb_so));
917
918 if (m0 == NULL)
919 return;
920
921 #ifdef MBUFTRACE
922 m_claimm(m0, sb->sb_mowner);
923 #endif
924 /*
925 * Put the first mbuf on the queue.
926 * Note this permits zero length records.
927 */
928 sballoc(sb, m0);
929 SBLASTRECORDCHK(sb, "sbappendrecord 1");
930 SBLINKRECORD(sb, m0);
931 m = m0->m_next;
932 m0->m_next = 0;
933 if (m && (m0->m_flags & M_EOR)) {
934 m0->m_flags &= ~M_EOR;
935 m->m_flags |= M_EOR;
936 }
937 sbcompress(sb, m, m0);
938 SBLASTRECORDCHK(sb, "sbappendrecord 2");
939 }
940
941 /*
942 * As above except that OOB data
943 * is inserted at the beginning of the sockbuf,
944 * but after any other OOB data.
945 */
946 void
947 sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
948 {
949 struct mbuf *m, **mp;
950
951 KASSERT(solocked(sb->sb_so));
952
953 if (m0 == NULL)
954 return;
955
956 SBLASTRECORDCHK(sb, "sbinsertoob 1");
957
958 for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
959 again:
960 switch (m->m_type) {
961
962 case MT_OOBDATA:
963 continue; /* WANT next train */
964
965 case MT_CONTROL:
966 if ((m = m->m_next) != NULL)
967 goto again; /* inspect THIS train further */
968 }
969 break;
970 }
971 /*
972 * Put the first mbuf on the queue.
973 * Note this permits zero length records.
974 */
975 sballoc(sb, m0);
976 m0->m_nextpkt = *mp;
977 if (*mp == NULL) {
978 /* m0 is actually the new tail */
979 sb->sb_lastrecord = m0;
980 }
981 *mp = m0;
982 m = m0->m_next;
983 m0->m_next = 0;
984 if (m && (m0->m_flags & M_EOR)) {
985 m0->m_flags &= ~M_EOR;
986 m->m_flags |= M_EOR;
987 }
988 sbcompress(sb, m, m0);
989 SBLASTRECORDCHK(sb, "sbinsertoob 2");
990 }
991
992 /*
993 * Append address and data, and optionally, control (ancillary) data
994 * to the receive queue of a socket. If present,
995 * m0 must include a packet header with total length.
996 * Returns 0 if no space in sockbuf or insufficient mbufs.
997 */
998 int
999 sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0,
1000 struct mbuf *control)
1001 {
1002 struct mbuf *m, *n, *nlast;
1003 int space, len;
1004
1005 KASSERT(solocked(sb->sb_so));
1006
1007 space = asa->sa_len;
1008
1009 if (m0 != NULL) {
1010 if ((m0->m_flags & M_PKTHDR) == 0)
1011 panic("sbappendaddr");
1012 space += m0->m_pkthdr.len;
1013 #ifdef MBUFTRACE
1014 m_claimm(m0, sb->sb_mowner);
1015 #endif
1016 }
1017 for (n = control; n; n = n->m_next) {
1018 space += n->m_len;
1019 MCLAIM(n, sb->sb_mowner);
1020 if (n->m_next == NULL) /* keep pointer to last control buf */
1021 break;
1022 }
1023 if (space > sbspace(sb))
1024 return (0);
1025 m = m_get(M_DONTWAIT, MT_SONAME);
1026 if (m == NULL)
1027 return (0);
1028 MCLAIM(m, sb->sb_mowner);
1029 /*
1030 * XXX avoid 'comparison always true' warning which isn't easily
1031 * avoided.
1032 */
1033 len = asa->sa_len;
1034 if (len > MLEN) {
1035 MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
1036 if ((m->m_flags & M_EXT) == 0) {
1037 m_free(m);
1038 return (0);
1039 }
1040 }
1041 m->m_len = asa->sa_len;
1042 memcpy(mtod(m, void *), asa, asa->sa_len);
1043 if (n)
1044 n->m_next = m0; /* concatenate data to control */
1045 else
1046 control = m0;
1047 m->m_next = control;
1048
1049 SBLASTRECORDCHK(sb, "sbappendaddr 1");
1050
1051 for (n = m; n->m_next != NULL; n = n->m_next)
1052 sballoc(sb, n);
1053 sballoc(sb, n);
1054 nlast = n;
1055 SBLINKRECORD(sb, m);
1056
1057 sb->sb_mbtail = nlast;
1058 SBLASTMBUFCHK(sb, "sbappendaddr");
1059 SBLASTRECORDCHK(sb, "sbappendaddr 2");
1060
1061 return (1);
1062 }
1063
1064 /*
1065 * Helper for sbappendchainaddr: prepend a struct sockaddr* to
1066 * an mbuf chain.
1067 */
1068 static inline struct mbuf *
1069 m_prepend_sockaddr(struct sockbuf *sb, struct mbuf *m0,
1070 const struct sockaddr *asa)
1071 {
1072 struct mbuf *m;
1073 const int salen = asa->sa_len;
1074
1075 KASSERT(solocked(sb->sb_so));
1076
1077 /* only the first in each chain need be a pkthdr */
1078 m = m_gethdr(M_DONTWAIT, MT_SONAME);
1079 if (m == NULL)
1080 return NULL;
1081 MCLAIM(m, sb->sb_mowner);
1082 #ifdef notyet
1083 if (salen > MHLEN) {
1084 MEXTMALLOC(m, salen, M_NOWAIT);
1085 if ((m->m_flags & M_EXT) == 0) {
1086 m_free(m);
1087 return NULL;
1088 }
1089 }
1090 #else
1091 KASSERT(salen <= MHLEN);
1092 #endif
1093 m->m_len = salen;
1094 memcpy(mtod(m, void *), asa, salen);
1095 m->m_next = m0;
1096 m->m_pkthdr.len = salen + m0->m_pkthdr.len;
1097
1098 return m;
1099 }
1100
1101 int
1102 sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa,
1103 struct mbuf *m0, int sbprio)
1104 {
1105 struct mbuf *m, *n, *n0, *nlast;
1106 int error;
1107
1108 KASSERT(solocked(sb->sb_so));
1109
1110 /*
1111 * XXX sbprio reserved for encoding priority of this* request:
1112 * SB_PRIO_NONE --> honour normal sb limits
1113 * SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space,
1114 * take whole chain. Intended for large requests
1115 * that should be delivered atomically (all, or none).
1116 * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow
1117 * over normal socket limits, for messages indicating
1118 * buffer overflow in earlier normal/lower-priority messages
1119 * SB_PRIO_BESTEFFORT --> ignore limits entirely.
1120 * Intended for kernel-generated messages only.
1121 * Up to generator to avoid total mbuf resource exhaustion.
1122 */
1123 (void)sbprio;
1124
1125 if (m0 && (m0->m_flags & M_PKTHDR) == 0)
1126 panic("sbappendaddrchain");
1127
1128 #ifdef notyet
1129 space = sbspace(sb);
1130
1131 /*
1132 * Enforce SB_PRIO_* limits as described above.
1133 */
1134 #endif
1135
1136 n0 = NULL;
1137 nlast = NULL;
1138 for (m = m0; m; m = m->m_nextpkt) {
1139 struct mbuf *np;
1140
1141 #ifdef MBUFTRACE
1142 m_claimm(m, sb->sb_mowner);
1143 #endif
1144
1145 /* Prepend sockaddr to this record (m) of input chain m0 */
1146 n = m_prepend_sockaddr(sb, m, asa);
1147 if (n == NULL) {
1148 error = ENOBUFS;
1149 goto bad;
1150 }
1151
1152 /* Append record (asa+m) to end of new chain n0 */
1153 if (n0 == NULL) {
1154 n0 = n;
1155 } else {
1156 nlast->m_nextpkt = n;
1157 }
1158 /* Keep track of last record on new chain */
1159 nlast = n;
1160
1161 for (np = n; np; np = np->m_next)
1162 sballoc(sb, np);
1163 }
1164
1165 SBLASTRECORDCHK(sb, "sbappendaddrchain 1");
1166
1167 /* Drop the entire chain of (asa+m) records onto the socket */
1168 SBLINKRECORDCHAIN(sb, n0, nlast);
1169
1170 SBLASTRECORDCHK(sb, "sbappendaddrchain 2");
1171
1172 for (m = nlast; m->m_next; m = m->m_next)
1173 ;
1174 sb->sb_mbtail = m;
1175 SBLASTMBUFCHK(sb, "sbappendaddrchain");
1176
1177 return (1);
1178
1179 bad:
1180 /*
1181 * On error, free the prepended addreseses. For consistency
1182 * with sbappendaddr(), leave it to our caller to free
1183 * the input record chain passed to us as m0.
1184 */
1185 while ((n = n0) != NULL) {
1186 struct mbuf *np;
1187
1188 /* Undo the sballoc() of this record */
1189 for (np = n; np; np = np->m_next)
1190 sbfree(sb, np);
1191
1192 n0 = n->m_nextpkt; /* iterate at next prepended address */
1193 np = m_free(n); /* free prepended address (not data) */
1194 }
1195 return error;
1196 }
1197
1198
1199 int
1200 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
1201 {
1202 struct mbuf *m, *mlast, *n;
1203 int space;
1204
1205 KASSERT(solocked(sb->sb_so));
1206
1207 space = 0;
1208 if (control == NULL)
1209 panic("sbappendcontrol");
1210 for (m = control; ; m = m->m_next) {
1211 space += m->m_len;
1212 MCLAIM(m, sb->sb_mowner);
1213 if (m->m_next == NULL)
1214 break;
1215 }
1216 n = m; /* save pointer to last control buffer */
1217 for (m = m0; m; m = m->m_next) {
1218 MCLAIM(m, sb->sb_mowner);
1219 space += m->m_len;
1220 }
1221 if (space > sbspace(sb))
1222 return (0);
1223 n->m_next = m0; /* concatenate data to control */
1224
1225 SBLASTRECORDCHK(sb, "sbappendcontrol 1");
1226
1227 for (m = control; m->m_next != NULL; m = m->m_next)
1228 sballoc(sb, m);
1229 sballoc(sb, m);
1230 mlast = m;
1231 SBLINKRECORD(sb, control);
1232
1233 sb->sb_mbtail = mlast;
1234 SBLASTMBUFCHK(sb, "sbappendcontrol");
1235 SBLASTRECORDCHK(sb, "sbappendcontrol 2");
1236
1237 return (1);
1238 }
1239
1240 /*
1241 * Compress mbuf chain m into the socket
1242 * buffer sb following mbuf n. If n
1243 * is null, the buffer is presumed empty.
1244 */
1245 void
1246 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
1247 {
1248 int eor;
1249 struct mbuf *o;
1250
1251 KASSERT(solocked(sb->sb_so));
1252
1253 eor = 0;
1254 while (m) {
1255 eor |= m->m_flags & M_EOR;
1256 if (m->m_len == 0 &&
1257 (eor == 0 ||
1258 (((o = m->m_next) || (o = n)) &&
1259 o->m_type == m->m_type))) {
1260 if (sb->sb_lastrecord == m)
1261 sb->sb_lastrecord = m->m_next;
1262 m = m_free(m);
1263 continue;
1264 }
1265 if (n && (n->m_flags & M_EOR) == 0 &&
1266 /* M_TRAILINGSPACE() checks buffer writeability */
1267 m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
1268 m->m_len <= M_TRAILINGSPACE(n) &&
1269 n->m_type == m->m_type) {
1270 memcpy(mtod(n, char *) + n->m_len, mtod(m, void *),
1271 (unsigned)m->m_len);
1272 n->m_len += m->m_len;
1273 sb->sb_cc += m->m_len;
1274 m = m_free(m);
1275 continue;
1276 }
1277 if (n)
1278 n->m_next = m;
1279 else
1280 sb->sb_mb = m;
1281 sb->sb_mbtail = m;
1282 sballoc(sb, m);
1283 n = m;
1284 m->m_flags &= ~M_EOR;
1285 m = m->m_next;
1286 n->m_next = 0;
1287 }
1288 if (eor) {
1289 if (n)
1290 n->m_flags |= eor;
1291 else
1292 printf("semi-panic: sbcompress\n");
1293 }
1294 SBLASTMBUFCHK(sb, __func__);
1295 }
1296
1297 /*
1298 * Free all mbufs in a sockbuf.
1299 * Check that all resources are reclaimed.
1300 */
1301 void
1302 sbflush(struct sockbuf *sb)
1303 {
1304
1305 KASSERT(solocked(sb->sb_so));
1306 KASSERT((sb->sb_flags & SB_LOCK) == 0);
1307
1308 while (sb->sb_mbcnt)
1309 sbdrop(sb, (int)sb->sb_cc);
1310
1311 KASSERT(sb->sb_cc == 0);
1312 KASSERT(sb->sb_mb == NULL);
1313 KASSERT(sb->sb_mbtail == NULL);
1314 KASSERT(sb->sb_lastrecord == NULL);
1315 }
1316
1317 /*
1318 * Drop data from (the front of) a sockbuf.
1319 */
1320 void
1321 sbdrop(struct sockbuf *sb, int len)
1322 {
1323 struct mbuf *m, *next;
1324
1325 KASSERT(solocked(sb->sb_so));
1326
1327 next = (m = sb->sb_mb) ? m->m_nextpkt : NULL;
1328 while (len > 0) {
1329 if (m == NULL) {
1330 if (next == NULL)
1331 panic("sbdrop(%p,%d): cc=%lu",
1332 sb, len, sb->sb_cc);
1333 m = next;
1334 next = m->m_nextpkt;
1335 continue;
1336 }
1337 if (m->m_len > len) {
1338 m->m_len -= len;
1339 m->m_data += len;
1340 sb->sb_cc -= len;
1341 break;
1342 }
1343 len -= m->m_len;
1344 sbfree(sb, m);
1345 m = m_free(m);
1346 }
1347 while (m && m->m_len == 0) {
1348 sbfree(sb, m);
1349 m = m_free(m);
1350 }
1351 if (m) {
1352 sb->sb_mb = m;
1353 m->m_nextpkt = next;
1354 } else
1355 sb->sb_mb = next;
1356 /*
1357 * First part is an inline SB_EMPTY_FIXUP(). Second part
1358 * makes sure sb_lastrecord is up-to-date if we dropped
1359 * part of the last record.
1360 */
1361 m = sb->sb_mb;
1362 if (m == NULL) {
1363 sb->sb_mbtail = NULL;
1364 sb->sb_lastrecord = NULL;
1365 } else if (m->m_nextpkt == NULL)
1366 sb->sb_lastrecord = m;
1367 }
1368
1369 /*
1370 * Drop a record off the front of a sockbuf
1371 * and move the next record to the front.
1372 */
1373 void
1374 sbdroprecord(struct sockbuf *sb)
1375 {
1376 struct mbuf *m, *mn;
1377
1378 KASSERT(solocked(sb->sb_so));
1379
1380 m = sb->sb_mb;
1381 if (m) {
1382 sb->sb_mb = m->m_nextpkt;
1383 do {
1384 sbfree(sb, m);
1385 mn = m_free(m);
1386 } while ((m = mn) != NULL);
1387 }
1388 SB_EMPTY_FIXUP(sb);
1389 }
1390
1391 /*
1392 * Create a "control" mbuf containing the specified data
1393 * with the specified type for presentation on a socket buffer.
1394 */
1395 struct mbuf *
1396 sbcreatecontrol1(void **p, int size, int type, int level, int flags)
1397 {
1398 struct cmsghdr *cp;
1399 struct mbuf *m;
1400 int space = CMSG_SPACE(size);
1401
1402 if ((flags & M_DONTWAIT) && space > MCLBYTES) {
1403 printf("%s: message too large %d\n", __func__, space);
1404 return NULL;
1405 }
1406
1407 if ((m = m_get(flags, MT_CONTROL)) == NULL)
1408 return NULL;
1409 if (space > MLEN) {
1410 if (space > MCLBYTES)
1411 MEXTMALLOC(m, space, M_WAITOK);
1412 else
1413 MCLGET(m, flags);
1414 if ((m->m_flags & M_EXT) == 0) {
1415 m_free(m);
1416 return NULL;
1417 }
1418 }
1419 cp = mtod(m, struct cmsghdr *);
1420 *p = CMSG_DATA(cp);
1421 m->m_len = space;
1422 cp->cmsg_len = CMSG_LEN(size);
1423 cp->cmsg_level = level;
1424 cp->cmsg_type = type;
1425
1426 memset(cp + 1, 0, CMSG_LEN(0) - sizeof(*cp));
1427 memset((uint8_t *)*p + size, 0, CMSG_ALIGN(size) - size);
1428
1429 return m;
1430 }
1431
1432 struct mbuf *
1433 sbcreatecontrol(void *p, int size, int type, int level)
1434 {
1435 struct mbuf *m;
1436 void *v;
1437
1438 m = sbcreatecontrol1(&v, size, type, level, M_DONTWAIT);
1439 if (m == NULL)
1440 return NULL;
1441 memcpy(v, p, size);
1442 return m;
1443 }
1444
1445 void
1446 solockretry(struct socket *so, kmutex_t *lock)
1447 {
1448
1449 while (lock != so->so_lock) {
1450 mutex_exit(lock);
1451 lock = so->so_lock;
1452 mutex_enter(lock);
1453 }
1454 }
1455
1456 bool
1457 solocked(const struct socket *so)
1458 {
1459
1460 return mutex_owned(so->so_lock);
1461 }
1462
1463 bool
1464 solocked2(const struct socket *so1, const struct socket *so2)
1465 {
1466 const kmutex_t *lock;
1467
1468 lock = so1->so_lock;
1469 if (lock != so2->so_lock)
1470 return false;
1471 return mutex_owned(lock);
1472 }
1473
1474 /*
1475 * sosetlock: assign a default lock to a new socket.
1476 */
1477 void
1478 sosetlock(struct socket *so)
1479 {
1480 if (so->so_lock == NULL) {
1481 kmutex_t *lock = softnet_lock;
1482
1483 so->so_lock = lock;
1484 mutex_obj_hold(lock);
1485 mutex_enter(lock);
1486 }
1487 KASSERT(solocked(so));
1488 }
1489
1490 /*
1491 * Set lock on sockbuf sb; sleep if lock is already held.
1492 * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
1493 * Returns error without lock if sleep is interrupted.
1494 */
1495 int
1496 sblock(struct sockbuf *sb, int wf)
1497 {
1498 struct socket *so;
1499 kmutex_t *lock;
1500 int error;
1501
1502 KASSERT(solocked(sb->sb_so));
1503
1504 for (;;) {
1505 if (__predict_true((sb->sb_flags & SB_LOCK) == 0)) {
1506 sb->sb_flags |= SB_LOCK;
1507 return 0;
1508 }
1509 if (wf != M_WAITOK)
1510 return EWOULDBLOCK;
1511 so = sb->sb_so;
1512 lock = so->so_lock;
1513 if ((sb->sb_flags & SB_NOINTR) != 0) {
1514 cv_wait(&so->so_cv, lock);
1515 error = 0;
1516 } else
1517 error = cv_wait_sig(&so->so_cv, lock);
1518 if (__predict_false(lock != so->so_lock))
1519 solockretry(so, lock);
1520 if (error != 0)
1521 return error;
1522 }
1523 }
1524
1525 void
1526 sbunlock(struct sockbuf *sb)
1527 {
1528 struct socket *so;
1529
1530 so = sb->sb_so;
1531
1532 KASSERT(solocked(so));
1533 KASSERT((sb->sb_flags & SB_LOCK) != 0);
1534
1535 sb->sb_flags &= ~SB_LOCK;
1536 cv_broadcast(&so->so_cv);
1537 }
1538
1539 int
1540 sowait(struct socket *so, bool catch_p, int timo)
1541 {
1542 kmutex_t *lock;
1543 int error;
1544
1545 KASSERT(solocked(so));
1546 KASSERT(catch_p || timo != 0);
1547
1548 lock = so->so_lock;
1549 if (catch_p)
1550 error = cv_timedwait_sig(&so->so_cv, lock, timo);
1551 else
1552 error = cv_timedwait(&so->so_cv, lock, timo);
1553 if (__predict_false(lock != so->so_lock))
1554 solockretry(so, lock);
1555 return error;
1556 }
1557
1558 #ifdef DDB
1559
1560 /*
1561 * Currently, sofindproc() is used only from DDB. It could be used from others
1562 * by using db_mutex_enter()
1563 */
1564
1565 static inline int
1566 db_mutex_enter(kmutex_t *mtx)
1567 {
1568 extern int db_active;
1569 int rv;
1570
1571 if (!db_active) {
1572 mutex_enter(mtx);
1573 rv = 1;
1574 } else
1575 rv = mutex_tryenter(mtx);
1576
1577 return rv;
1578 }
1579
1580 int
1581 sofindproc(struct socket *so, int all, void (*pr)(const char *, ...))
1582 {
1583 proc_t *p;
1584 filedesc_t *fdp;
1585 fdtab_t *dt;
1586 fdfile_t *ff;
1587 file_t *fp = NULL;
1588 int found = 0;
1589 int i, t;
1590
1591 if (so == NULL)
1592 return 0;
1593
1594 t = db_mutex_enter(&proc_lock);
1595 if (!t) {
1596 pr("could not acquire proc_lock mutex\n");
1597 return 0;
1598 }
1599 PROCLIST_FOREACH(p, &allproc) {
1600 if (p->p_stat == SIDL)
1601 continue;
1602 fdp = p->p_fd;
1603 t = db_mutex_enter(&fdp->fd_lock);
1604 if (!t) {
1605 pr("could not acquire fd_lock mutex\n");
1606 continue;
1607 }
1608 dt = atomic_load_consume(&fdp->fd_dt);
1609 for (i = 0; i < dt->dt_nfiles; i++) {
1610 ff = dt->dt_ff[i];
1611 if (ff == NULL)
1612 continue;
1613
1614 fp = atomic_load_consume(&ff->ff_file);
1615 if (fp == NULL)
1616 continue;
1617
1618 t = db_mutex_enter(&fp->f_lock);
1619 if (!t) {
1620 pr("could not acquire f_lock mutex\n");
1621 continue;
1622 }
1623 if ((struct socket *)fp->f_data != so) {
1624 mutex_exit(&fp->f_lock);
1625 continue;
1626 }
1627 found++;
1628 if (pr)
1629 pr("socket %p: owner %s(pid=%d)\n",
1630 so, p->p_comm, p->p_pid);
1631 mutex_exit(&fp->f_lock);
1632 if (all == 0)
1633 break;
1634 }
1635 mutex_exit(&fdp->fd_lock);
1636 if (all == 0 && found != 0)
1637 break;
1638 }
1639 mutex_exit(&proc_lock);
1640
1641 return found;
1642 }
1643
1644 void
1645 socket_print(const char *modif, void (*pr)(const char *, ...))
1646 {
1647 file_t *fp;
1648 struct socket *so;
1649 struct sockbuf *sb_snd, *sb_rcv;
1650 struct mbuf *m_rec, *m;
1651 bool opt_v = false;
1652 bool opt_m = false;
1653 bool opt_a = false;
1654 bool opt_p = false;
1655 int nrecs, nmbufs;
1656 char ch;
1657 const char *family;
1658
1659 while ( (ch = *(modif++)) != '\0') {
1660 switch (ch) {
1661 case 'v':
1662 opt_v = true;
1663 break;
1664 case 'm':
1665 opt_m = true;
1666 break;
1667 case 'a':
1668 opt_a = true;
1669 break;
1670 case 'p':
1671 opt_p = true;
1672 break;
1673 }
1674 }
1675 if (opt_v == false && pr)
1676 (pr)("Ignore empty sockets. use /v to print all.\n");
1677 if (opt_p == true && pr)
1678 (pr)("Don't search owner process.\n");
1679
1680 LIST_FOREACH(fp, &filehead, f_list) {
1681 if (fp->f_type != DTYPE_SOCKET)
1682 continue;
1683 so = (struct socket *)fp->f_data;
1684 if (so == NULL)
1685 continue;
1686
1687 if (so->so_proto->pr_domain->dom_family == AF_INET)
1688 family = "INET";
1689 #ifdef INET6
1690 else if (so->so_proto->pr_domain->dom_family == AF_INET6)
1691 family = "INET6";
1692 #endif
1693 else if (so->so_proto->pr_domain->dom_family == pseudo_AF_KEY)
1694 family = "KEY";
1695 else if (so->so_proto->pr_domain->dom_family == AF_ROUTE)
1696 family = "ROUTE";
1697 else
1698 continue;
1699
1700 sb_snd = &so->so_snd;
1701 sb_rcv = &so->so_rcv;
1702
1703 if (opt_v != true &&
1704 sb_snd->sb_cc == 0 && sb_rcv->sb_cc == 0)
1705 continue;
1706
1707 pr("---SOCKET %p: type %s\n", so, family);
1708 if (opt_p != true)
1709 sofindproc(so, opt_a == true ? 1 : 0, pr);
1710 pr("Send Buffer Bytes: %d [bytes]\n", sb_snd->sb_cc);
1711 pr("Send Buffer mbufs:\n");
1712 m_rec = m = sb_snd->sb_mb;
1713 nrecs = 0;
1714 nmbufs = 0;
1715 while (m_rec) {
1716 nrecs++;
1717 if (opt_m == true)
1718 pr(" mbuf chain %p\n", m_rec);
1719 while (m) {
1720 nmbufs++;
1721 m = m->m_next;
1722 }
1723 m_rec = m = m_rec->m_nextpkt;
1724 }
1725 pr(" Total %d records, %d mbufs.\n", nrecs, nmbufs);
1726
1727 pr("Recv Buffer Usage: %d [bytes]\n", sb_rcv->sb_cc);
1728 pr("Recv Buffer mbufs:\n");
1729 m_rec = m = sb_rcv->sb_mb;
1730 nrecs = 0;
1731 nmbufs = 0;
1732 while (m_rec) {
1733 nrecs++;
1734 if (opt_m == true)
1735 pr(" mbuf chain %p\n", m_rec);
1736 while (m) {
1737 nmbufs++;
1738 m = m->m_next;
1739 }
1740 m_rec = m = m_rec->m_nextpkt;
1741 }
1742 pr(" Total %d records, %d mbufs.\n", nrecs, nmbufs);
1743 }
1744 }
1745 #endif /* DDB */
1746