Home | History | Annotate | Line # | Download | only in kern
uipc_socket2.c revision 1.142
      1 /*	$NetBSD: uipc_socket2.c,v 1.142 2022/10/26 23:38:09 riastradh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26  * POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 /*
     30  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     31  *	The Regents of the University of California.  All rights reserved.
     32  *
     33  * Redistribution and use in source and binary forms, with or without
     34  * modification, are permitted provided that the following conditions
     35  * are met:
     36  * 1. Redistributions of source code must retain the above copyright
     37  *    notice, this list of conditions and the following disclaimer.
     38  * 2. Redistributions in binary form must reproduce the above copyright
     39  *    notice, this list of conditions and the following disclaimer in the
     40  *    documentation and/or other materials provided with the distribution.
     41  * 3. Neither the name of the University nor the names of its contributors
     42  *    may be used to endorse or promote products derived from this software
     43  *    without specific prior written permission.
     44  *
     45  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     46  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     47  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     48  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     49  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     50  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     51  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     52  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     53  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     54  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     55  * SUCH DAMAGE.
     56  *
     57  *	@(#)uipc_socket2.c	8.2 (Berkeley) 2/14/95
     58  */
     59 
     60 #include <sys/cdefs.h>
     61 __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.142 2022/10/26 23:38:09 riastradh Exp $");
     62 
     63 #ifdef _KERNEL_OPT
     64 #include "opt_ddb.h"
     65 #include "opt_inet.h"
     66 #include "opt_mbuftrace.h"
     67 #include "opt_sb_max.h"
     68 #endif
     69 
     70 #include <sys/param.h>
     71 #include <sys/systm.h>
     72 #include <sys/proc.h>
     73 #include <sys/file.h>
     74 #include <sys/buf.h>
     75 #include <sys/mbuf.h>
     76 #include <sys/protosw.h>
     77 #include <sys/domain.h>
     78 #include <sys/poll.h>
     79 #include <sys/socket.h>
     80 #include <sys/socketvar.h>
     81 #include <sys/signalvar.h>
     82 #include <sys/kauth.h>
     83 #include <sys/pool.h>
     84 #include <sys/uidinfo.h>
     85 
     86 #ifdef DDB
     87 #include <sys/filedesc.h>
     88 #include <ddb/db_active.h>
     89 #endif
     90 
     91 /*
     92  * Primitive routines for operating on sockets and socket buffers.
     93  *
     94  * Connection life-cycle:
     95  *
     96  *	Normal sequence from the active (originating) side:
     97  *
     98  *	- soisconnecting() is called during processing of connect() call,
     99  *	- resulting in an eventual call to soisconnected() if/when the
    100  *	  connection is established.
    101  *
    102  *	When the connection is torn down during processing of disconnect():
    103  *
    104  *	- soisdisconnecting() is called and,
    105  *	- soisdisconnected() is called when the connection to the peer
    106  *	  is totally severed.
    107  *
    108  *	The semantics of these routines are such that connectionless protocols
    109  *	can call soisconnected() and soisdisconnected() only, bypassing the
    110  *	in-progress calls when setting up a ``connection'' takes no time.
    111  *
    112  *	From the passive side, a socket is created with two queues of sockets:
    113  *
    114  *	- so_q0 (0) for partial connections (i.e. connections in progress)
    115  *	- so_q (1) for connections already made and awaiting user acceptance.
    116  *
    117  *	As a protocol is preparing incoming connections, it creates a socket
    118  *	structure queued on so_q0 by calling sonewconn().  When the connection
    119  *	is established, soisconnected() is called, and transfers the
    120  *	socket structure to so_q, making it available to accept().
    121  *
    122  *	If a socket is closed with sockets on either so_q0 or so_q, these
    123  *	sockets are dropped.
    124  *
    125  * Locking rules and assumptions:
    126  *
    127  * o socket::so_lock can change on the fly.  The low level routines used
    128  *   to lock sockets are aware of this.  When so_lock is acquired, the
    129  *   routine locking must check to see if so_lock still points to the
    130  *   lock that was acquired.  If so_lock has changed in the meantime, the
    131  *   now irrelevant lock that was acquired must be dropped and the lock
    132  *   operation retried.  Although not proven here, this is completely safe
    133  *   on a multiprocessor system, even with relaxed memory ordering, given
    134  *   the next two rules:
    135  *
    136  * o In order to mutate so_lock, the lock pointed to by the current value
    137  *   of so_lock must be held: i.e., the socket must be held locked by the
    138  *   changing thread.  The thread must issue membar_release() to prevent
    139  *   memory accesses being reordered, and can set so_lock to the desired
    140  *   value.  If the lock pointed to by the new value of so_lock is not
    141  *   held by the changing thread, the socket must then be considered
    142  *   unlocked.
    143  *
    144  * o If so_lock is mutated, and the previous lock referred to by so_lock
    145  *   could still be visible to other threads in the system (e.g. via file
    146  *   descriptor or protocol-internal reference), then the old lock must
    147  *   remain valid until the socket and/or protocol control block has been
    148  *   torn down.
    149  *
    150  * o If a socket has a non-NULL so_head value (i.e. is in the process of
    151  *   connecting), then locking the socket must also lock the socket pointed
    152  *   to by so_head: their lock pointers must match.
    153  *
    154  * o If a socket has connections in progress (so_q, so_q0 not empty) then
    155  *   locking the socket must also lock the sockets attached to both queues.
    156  *   Again, their lock pointers must match.
    157  *
    158  * o Beyond the initial lock assignment in socreate(), assigning locks to
    159  *   sockets is the responsibility of the individual protocols / protocol
    160  *   domains.
    161  */
    162 
    163 static pool_cache_t	socket_cache;
    164 u_long			sb_max = SB_MAX;/* maximum socket buffer size */
    165 static u_long		sb_max_adj;	/* adjusted sb_max */
    166 
    167 void
    168 soisconnecting(struct socket *so)
    169 {
    170 
    171 	KASSERT(solocked(so));
    172 
    173 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
    174 	so->so_state |= SS_ISCONNECTING;
    175 }
    176 
    177 void
    178 soisconnected(struct socket *so)
    179 {
    180 	struct socket	*head;
    181 
    182 	head = so->so_head;
    183 
    184 	KASSERT(solocked(so));
    185 	KASSERT(head == NULL || solocked2(so, head));
    186 
    187 	so->so_state &= ~(SS_ISCONNECTING | SS_ISDISCONNECTING);
    188 	so->so_state |= SS_ISCONNECTED;
    189 	if (head && so->so_onq == &head->so_q0) {
    190 		if ((so->so_options & SO_ACCEPTFILTER) == 0) {
    191 			/*
    192 			 * Re-enqueue and wake up any waiters, e.g.
    193 			 * processes blocking on accept().
    194 			 */
    195 			soqremque(so, 0);
    196 			soqinsque(head, so, 1);
    197 			sorwakeup(head);
    198 			cv_broadcast(&head->so_cv);
    199 		} else {
    200 			so->so_upcall =
    201 			    head->so_accf->so_accept_filter->accf_callback;
    202 			so->so_upcallarg = head->so_accf->so_accept_filter_arg;
    203 			so->so_rcv.sb_flags |= SB_UPCALL;
    204 			so->so_options &= ~SO_ACCEPTFILTER;
    205 			(*so->so_upcall)(so, so->so_upcallarg,
    206 					 POLLIN|POLLRDNORM, M_DONTWAIT);
    207 		}
    208 	} else {
    209 		cv_broadcast(&so->so_cv);
    210 		sorwakeup(so);
    211 		sowwakeup(so);
    212 	}
    213 }
    214 
    215 void
    216 soisdisconnecting(struct socket *so)
    217 {
    218 
    219 	KASSERT(solocked(so));
    220 
    221 	so->so_state &= ~SS_ISCONNECTING;
    222 	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
    223 	cv_broadcast(&so->so_cv);
    224 	sowwakeup(so);
    225 	sorwakeup(so);
    226 }
    227 
    228 void
    229 soisdisconnected(struct socket *so)
    230 {
    231 
    232 	KASSERT(solocked(so));
    233 
    234 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
    235 	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
    236 	cv_broadcast(&so->so_cv);
    237 	sowwakeup(so);
    238 	sorwakeup(so);
    239 }
    240 
    241 void
    242 soinit2(void)
    243 {
    244 
    245 	socket_cache = pool_cache_init(sizeof(struct socket), 0, 0, 0,
    246 	    "socket", NULL, IPL_SOFTNET, NULL, NULL, NULL);
    247 }
    248 
    249 /*
    250  * sonewconn: accept a new connection.
    251  *
    252  * When an attempt at a new connection is noted on a socket which accepts
    253  * connections, sonewconn(9) is called.  If the connection is possible
    254  * (subject to space constraints, etc) then we allocate a new structure,
    255  * properly linked into the data structure of the original socket.
    256  *
    257  * => If 'soready' is true, then socket will become ready for accept() i.e.
    258  *    inserted into the so_q queue, SS_ISCONNECTED set and waiters awoken.
    259  * => May be called from soft-interrupt context.
    260  * => Listening socket should be locked.
    261  * => Returns the new socket locked.
    262  */
    263 struct socket *
    264 sonewconn(struct socket *head, bool soready)
    265 {
    266 	struct socket *so;
    267 	int soqueue, error;
    268 
    269 	KASSERT(solocked(head));
    270 
    271 	if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2) {
    272 		/*
    273 		 * Listen queue overflow.  If there is an accept filter
    274 		 * active, pass through the oldest cxn it's handling.
    275 		 */
    276 		if (head->so_accf == NULL) {
    277 			return NULL;
    278 		} else {
    279 			struct socket *so2, *next;
    280 
    281 			/* Pass the oldest connection waiting in the
    282 			   accept filter */
    283 			for (so2 = TAILQ_FIRST(&head->so_q0);
    284 			     so2 != NULL; so2 = next) {
    285 				next = TAILQ_NEXT(so2, so_qe);
    286 				if (so2->so_upcall == NULL) {
    287 					continue;
    288 				}
    289 				so2->so_upcall = NULL;
    290 				so2->so_upcallarg = NULL;
    291 				so2->so_options &= ~SO_ACCEPTFILTER;
    292 				so2->so_rcv.sb_flags &= ~SB_UPCALL;
    293 				soisconnected(so2);
    294 				break;
    295 			}
    296 
    297 			/* If nothing was nudged out of the acept filter, bail
    298 			 * out; otherwise proceed allocating the socket. */
    299 			if (so2 == NULL) {
    300 				return NULL;
    301 			}
    302 		}
    303 	}
    304 	if ((head->so_options & SO_ACCEPTFILTER) != 0) {
    305 		soready = false;
    306 	}
    307 	soqueue = soready ? 1 : 0;
    308 
    309 	if ((so = soget(false)) == NULL) {
    310 		return NULL;
    311 	}
    312 	so->so_type = head->so_type;
    313 	so->so_options = head->so_options & ~SO_ACCEPTCONN;
    314 	so->so_linger = head->so_linger;
    315 	so->so_state = head->so_state | SS_NOFDREF;
    316 	so->so_proto = head->so_proto;
    317 	so->so_timeo = head->so_timeo;
    318 	so->so_pgid = head->so_pgid;
    319 	so->so_send = head->so_send;
    320 	so->so_receive = head->so_receive;
    321 	so->so_uidinfo = head->so_uidinfo;
    322 	so->so_egid = head->so_egid;
    323 	so->so_cpid = head->so_cpid;
    324 
    325 	/*
    326 	 * Share the lock with the listening-socket, it may get unshared
    327 	 * once the connection is complete.
    328 	 *
    329 	 * so_lock is stable while we hold the socket locked, so no
    330 	 * need for atomic_load_* here.
    331 	 */
    332 	mutex_obj_hold(head->so_lock);
    333 	so->so_lock = head->so_lock;
    334 
    335 	/*
    336 	 * Reserve the space for socket buffers.
    337 	 */
    338 #ifdef MBUFTRACE
    339 	so->so_mowner = head->so_mowner;
    340 	so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
    341 	so->so_snd.sb_mowner = head->so_snd.sb_mowner;
    342 #endif
    343 	if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) {
    344 		goto out;
    345 	}
    346 	so->so_snd.sb_lowat = head->so_snd.sb_lowat;
    347 	so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
    348 	so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
    349 	so->so_snd.sb_timeo = head->so_snd.sb_timeo;
    350 	so->so_rcv.sb_flags |= head->so_rcv.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
    351 	so->so_snd.sb_flags |= head->so_snd.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
    352 
    353 	/*
    354 	 * Finally, perform the protocol attach.  Note: a new socket
    355 	 * lock may be assigned at this point (if so, it will be held).
    356 	 */
    357 	error = (*so->so_proto->pr_usrreqs->pr_attach)(so, 0);
    358 	if (error) {
    359 out:
    360 		KASSERT(solocked(so));
    361 		KASSERT(so->so_accf == NULL);
    362 		soput(so);
    363 
    364 		/* Note: the listening socket shall stay locked. */
    365 		KASSERT(solocked(head));
    366 		return NULL;
    367 	}
    368 	KASSERT(solocked2(head, so));
    369 
    370 	/*
    371 	 * Insert into the queue.  If ready, update the connection status
    372 	 * and wake up any waiters, e.g. processes blocking on accept().
    373 	 */
    374 	soqinsque(head, so, soqueue);
    375 	if (soready) {
    376 		so->so_state |= SS_ISCONNECTED;
    377 		sorwakeup(head);
    378 		cv_broadcast(&head->so_cv);
    379 	}
    380 	return so;
    381 }
    382 
    383 struct socket *
    384 soget(bool waitok)
    385 {
    386 	struct socket *so;
    387 
    388 	so = pool_cache_get(socket_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
    389 	if (__predict_false(so == NULL))
    390 		return (NULL);
    391 	memset(so, 0, sizeof(*so));
    392 	TAILQ_INIT(&so->so_q0);
    393 	TAILQ_INIT(&so->so_q);
    394 	cv_init(&so->so_cv, "socket");
    395 	cv_init(&so->so_rcv.sb_cv, "netio");
    396 	cv_init(&so->so_snd.sb_cv, "netio");
    397 	selinit(&so->so_rcv.sb_sel);
    398 	selinit(&so->so_snd.sb_sel);
    399 	so->so_rcv.sb_so = so;
    400 	so->so_snd.sb_so = so;
    401 	return so;
    402 }
    403 
    404 void
    405 soput(struct socket *so)
    406 {
    407 
    408 	KASSERT(!cv_has_waiters(&so->so_cv));
    409 	KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
    410 	KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
    411 	seldestroy(&so->so_rcv.sb_sel);
    412 	seldestroy(&so->so_snd.sb_sel);
    413 	mutex_obj_free(so->so_lock);
    414 	cv_destroy(&so->so_cv);
    415 	cv_destroy(&so->so_rcv.sb_cv);
    416 	cv_destroy(&so->so_snd.sb_cv);
    417 	pool_cache_put(socket_cache, so);
    418 }
    419 
    420 /*
    421  * soqinsque: insert socket of a new connection into the specified
    422  * accept queue of the listening socket (head).
    423  *
    424  *	q = 0: queue of partial connections
    425  *	q = 1: queue of incoming connections
    426  */
    427 void
    428 soqinsque(struct socket *head, struct socket *so, int q)
    429 {
    430 	KASSERT(q == 0 || q == 1);
    431 	KASSERT(solocked2(head, so));
    432 	KASSERT(so->so_onq == NULL);
    433 	KASSERT(so->so_head == NULL);
    434 
    435 	so->so_head = head;
    436 	if (q == 0) {
    437 		head->so_q0len++;
    438 		so->so_onq = &head->so_q0;
    439 	} else {
    440 		head->so_qlen++;
    441 		so->so_onq = &head->so_q;
    442 	}
    443 	TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
    444 }
    445 
    446 /*
    447  * soqremque: remove socket from the specified queue.
    448  *
    449  * => Returns true if socket was removed from the specified queue.
    450  * => False if socket was not removed (because it was in other queue).
    451  */
    452 bool
    453 soqremque(struct socket *so, int q)
    454 {
    455 	struct socket *head = so->so_head;
    456 
    457 	KASSERT(q == 0 || q == 1);
    458 	KASSERT(solocked(so));
    459 	KASSERT(so->so_onq != NULL);
    460 	KASSERT(head != NULL);
    461 
    462 	if (q == 0) {
    463 		if (so->so_onq != &head->so_q0)
    464 			return false;
    465 		head->so_q0len--;
    466 	} else {
    467 		if (so->so_onq != &head->so_q)
    468 			return false;
    469 		head->so_qlen--;
    470 	}
    471 	KASSERT(solocked2(so, head));
    472 	TAILQ_REMOVE(so->so_onq, so, so_qe);
    473 	so->so_onq = NULL;
    474 	so->so_head = NULL;
    475 	return true;
    476 }
    477 
    478 /*
    479  * socantsendmore: indicates that no more data will be sent on the
    480  * socket; it would normally be applied to a socket when the user
    481  * informs the system that no more data is to be sent, by the protocol
    482  * code (in case pr_shutdown()).
    483  */
    484 void
    485 socantsendmore(struct socket *so)
    486 {
    487 	KASSERT(solocked(so));
    488 
    489 	so->so_state |= SS_CANTSENDMORE;
    490 	sowwakeup(so);
    491 }
    492 
    493 /*
    494  * socantrcvmore(): indicates that no more data will be received and
    495  * will normally be applied to the socket by a protocol when it detects
    496  * that the peer will send no more data.  Data queued for reading in
    497  * the socket may yet be read.
    498  */
    499 void
    500 socantrcvmore(struct socket *so)
    501 {
    502 	KASSERT(solocked(so));
    503 
    504 	so->so_state |= SS_CANTRCVMORE;
    505 	sorwakeup(so);
    506 }
    507 
    508 /*
    509  * soroverflow(): indicates that data was attempted to be sent
    510  * but the receiving buffer overflowed.
    511  */
    512 void
    513 soroverflow(struct socket *so)
    514 {
    515 	KASSERT(solocked(so));
    516 
    517 	so->so_rcv.sb_overflowed++;
    518 	if (so->so_options & SO_RERROR)  {
    519 		so->so_rerror = ENOBUFS;
    520 		sorwakeup(so);
    521 	}
    522 }
    523 
    524 /*
    525  * Wait for data to arrive at/drain from a socket buffer.
    526  */
    527 int
    528 sbwait(struct sockbuf *sb)
    529 {
    530 	struct socket *so;
    531 	kmutex_t *lock;
    532 	int error;
    533 
    534 	so = sb->sb_so;
    535 
    536 	KASSERT(solocked(so));
    537 
    538 	sb->sb_flags |= SB_NOTIFY;
    539 	lock = so->so_lock;
    540 	if ((sb->sb_flags & SB_NOINTR) != 0)
    541 		error = cv_timedwait(&sb->sb_cv, lock, sb->sb_timeo);
    542 	else
    543 		error = cv_timedwait_sig(&sb->sb_cv, lock, sb->sb_timeo);
    544 	if (__predict_false(lock != atomic_load_relaxed(&so->so_lock)))
    545 		solockretry(so, lock);
    546 	return error;
    547 }
    548 
    549 /*
    550  * Wakeup processes waiting on a socket buffer.
    551  * Do asynchronous notification via SIGIO
    552  * if the socket buffer has the SB_ASYNC flag set.
    553  */
    554 void
    555 sowakeup(struct socket *so, struct sockbuf *sb, int code)
    556 {
    557 	int band;
    558 
    559 	KASSERT(solocked(so));
    560 	KASSERT(sb->sb_so == so);
    561 
    562 	switch (code) {
    563 	case POLL_IN:
    564 		band = POLLIN|POLLRDNORM;
    565 		break;
    566 
    567 	case POLL_OUT:
    568 		band = POLLOUT|POLLWRNORM;
    569 		break;
    570 
    571 	case POLL_HUP:
    572 		band = POLLHUP;
    573 		break;
    574 
    575 	default:
    576 		band = 0;
    577 #ifdef DIAGNOSTIC
    578 		printf("bad siginfo code %d in socket notification.\n", code);
    579 #endif
    580 		break;
    581 	}
    582 
    583 	sb->sb_flags &= ~SB_NOTIFY;
    584 	selnotify(&sb->sb_sel, band, NOTE_SUBMIT);
    585 	cv_broadcast(&sb->sb_cv);
    586 	if (sb->sb_flags & SB_ASYNC)
    587 		fownsignal(so->so_pgid, SIGIO, code, band, so);
    588 	if (sb->sb_flags & SB_UPCALL)
    589 		(*so->so_upcall)(so, so->so_upcallarg, band, M_DONTWAIT);
    590 }
    591 
    592 /*
    593  * Reset a socket's lock pointer.  Wake all threads waiting on the
    594  * socket's condition variables so that they can restart their waits
    595  * using the new lock.  The existing lock must be held.
    596  *
    597  * Caller must have issued membar_release before this.
    598  */
    599 void
    600 solockreset(struct socket *so, kmutex_t *lock)
    601 {
    602 
    603 	KASSERT(solocked(so));
    604 
    605 	so->so_lock = lock;
    606 	cv_broadcast(&so->so_snd.sb_cv);
    607 	cv_broadcast(&so->so_rcv.sb_cv);
    608 	cv_broadcast(&so->so_cv);
    609 }
    610 
    611 /*
    612  * Socket buffer (struct sockbuf) utility routines.
    613  *
    614  * Each socket contains two socket buffers: one for sending data and
    615  * one for receiving data.  Each buffer contains a queue of mbufs,
    616  * information about the number of mbufs and amount of data in the
    617  * queue, and other fields allowing poll() statements and notification
    618  * on data availability to be implemented.
    619  *
    620  * Data stored in a socket buffer is maintained as a list of records.
    621  * Each record is a list of mbufs chained together with the m_next
    622  * field.  Records are chained together with the m_nextpkt field. The upper
    623  * level routine soreceive() expects the following conventions to be
    624  * observed when placing information in the receive buffer:
    625  *
    626  * 1. If the protocol requires each message be preceded by the sender's
    627  *    name, then a record containing that name must be present before
    628  *    any associated data (mbuf's must be of type MT_SONAME).
    629  * 2. If the protocol supports the exchange of ``access rights'' (really
    630  *    just additional data associated with the message), and there are
    631  *    ``rights'' to be received, then a record containing this data
    632  *    should be present (mbuf's must be of type MT_CONTROL).
    633  * 3. If a name or rights record exists, then it must be followed by
    634  *    a data record, perhaps of zero length.
    635  *
    636  * Before using a new socket structure it is first necessary to reserve
    637  * buffer space to the socket, by calling sbreserve().  This should commit
    638  * some of the available buffer space in the system buffer pool for the
    639  * socket (currently, it does nothing but enforce limits).  The space
    640  * should be released by calling sbrelease() when the socket is destroyed.
    641  */
    642 
    643 int
    644 sb_max_set(u_long new_sbmax)
    645 {
    646 	int s;
    647 
    648 	if (new_sbmax < (16 * 1024))
    649 		return (EINVAL);
    650 
    651 	s = splsoftnet();
    652 	sb_max = new_sbmax;
    653 	sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
    654 	splx(s);
    655 
    656 	return (0);
    657 }
    658 
    659 int
    660 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
    661 {
    662 	KASSERT(so->so_pcb == NULL || solocked(so));
    663 
    664 	/*
    665 	 * there's at least one application (a configure script of screen)
    666 	 * which expects a fifo is writable even if it has "some" bytes
    667 	 * in its buffer.
    668 	 * so we want to make sure (hiwat - lowat) >= (some bytes).
    669 	 *
    670 	 * PIPE_BUF here is an arbitrary value chosen as (some bytes) above.
    671 	 * we expect it's large enough for such applications.
    672 	 */
    673 	u_long  lowat = MAX(sock_loan_thresh, MCLBYTES);
    674 	u_long  hiwat = lowat + PIPE_BUF;
    675 
    676 	if (sndcc < hiwat)
    677 		sndcc = hiwat;
    678 	if (sbreserve(&so->so_snd, sndcc, so) == 0)
    679 		goto bad;
    680 	if (sbreserve(&so->so_rcv, rcvcc, so) == 0)
    681 		goto bad2;
    682 	if (so->so_rcv.sb_lowat == 0)
    683 		so->so_rcv.sb_lowat = 1;
    684 	if (so->so_snd.sb_lowat == 0)
    685 		so->so_snd.sb_lowat = lowat;
    686 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
    687 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
    688 	return (0);
    689  bad2:
    690 	sbrelease(&so->so_snd, so);
    691  bad:
    692 	return (ENOBUFS);
    693 }
    694 
    695 /*
    696  * Allot mbufs to a sockbuf.
    697  * Attempt to scale mbmax so that mbcnt doesn't become limiting
    698  * if buffering efficiency is near the normal case.
    699  */
    700 int
    701 sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
    702 {
    703 	struct lwp *l = curlwp; /* XXX */
    704 	rlim_t maxcc;
    705 	struct uidinfo *uidinfo;
    706 
    707 	KASSERT(so->so_pcb == NULL || solocked(so));
    708 	KASSERT(sb->sb_so == so);
    709 	KASSERT(sb_max_adj != 0);
    710 
    711 	if (cc == 0 || cc > sb_max_adj)
    712 		return (0);
    713 
    714 	maxcc = l->l_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur;
    715 
    716 	uidinfo = so->so_uidinfo;
    717 	if (!chgsbsize(uidinfo, &sb->sb_hiwat, cc, maxcc))
    718 		return 0;
    719 	sb->sb_mbmax = uimin(cc * 2, sb_max);
    720 	if (sb->sb_lowat > sb->sb_hiwat)
    721 		sb->sb_lowat = sb->sb_hiwat;
    722 
    723 	return (1);
    724 }
    725 
    726 /*
    727  * Free mbufs held by a socket, and reserved mbuf space.  We do not assert
    728  * that the socket is held locked here: see sorflush().
    729  */
    730 void
    731 sbrelease(struct sockbuf *sb, struct socket *so)
    732 {
    733 
    734 	KASSERT(sb->sb_so == so);
    735 
    736 	sbflush(sb);
    737 	(void)chgsbsize(so->so_uidinfo, &sb->sb_hiwat, 0, RLIM_INFINITY);
    738 	sb->sb_mbmax = 0;
    739 }
    740 
    741 /*
    742  * Routines to add and remove
    743  * data from an mbuf queue.
    744  *
    745  * The routines sbappend() or sbappendrecord() are normally called to
    746  * append new mbufs to a socket buffer, after checking that adequate
    747  * space is available, comparing the function sbspace() with the amount
    748  * of data to be added.  sbappendrecord() differs from sbappend() in
    749  * that data supplied is treated as the beginning of a new record.
    750  * To place a sender's address, optional access rights, and data in a
    751  * socket receive buffer, sbappendaddr() should be used.  To place
    752  * access rights and data in a socket receive buffer, sbappendrights()
    753  * should be used.  In either case, the new data begins a new record.
    754  * Note that unlike sbappend() and sbappendrecord(), these routines check
    755  * for the caller that there will be enough space to store the data.
    756  * Each fails if there is not enough space, or if it cannot find mbufs
    757  * to store additional information in.
    758  *
    759  * Reliable protocols may use the socket send buffer to hold data
    760  * awaiting acknowledgement.  Data is normally copied from a socket
    761  * send buffer in a protocol with m_copym for output to a peer,
    762  * and then removing the data from the socket buffer with sbdrop()
    763  * or sbdroprecord() when the data is acknowledged by the peer.
    764  */
    765 
    766 #ifdef SOCKBUF_DEBUG
    767 void
    768 sblastrecordchk(struct sockbuf *sb, const char *where)
    769 {
    770 	struct mbuf *m = sb->sb_mb;
    771 
    772 	KASSERT(solocked(sb->sb_so));
    773 
    774 	while (m && m->m_nextpkt)
    775 		m = m->m_nextpkt;
    776 
    777 	if (m != sb->sb_lastrecord) {
    778 		printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
    779 		    sb->sb_mb, sb->sb_lastrecord, m);
    780 		printf("packet chain:\n");
    781 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
    782 			printf("\t%p\n", m);
    783 		panic("sblastrecordchk from %s", where);
    784 	}
    785 }
    786 
    787 void
    788 sblastmbufchk(struct sockbuf *sb, const char *where)
    789 {
    790 	struct mbuf *m = sb->sb_mb;
    791 	struct mbuf *n;
    792 
    793 	KASSERT(solocked(sb->sb_so));
    794 
    795 	while (m && m->m_nextpkt)
    796 		m = m->m_nextpkt;
    797 
    798 	while (m && m->m_next)
    799 		m = m->m_next;
    800 
    801 	if (m != sb->sb_mbtail) {
    802 		printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
    803 		    sb->sb_mb, sb->sb_mbtail, m);
    804 		printf("packet tree:\n");
    805 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
    806 			printf("\t");
    807 			for (n = m; n != NULL; n = n->m_next)
    808 				printf("%p ", n);
    809 			printf("\n");
    810 		}
    811 		panic("sblastmbufchk from %s", where);
    812 	}
    813 }
    814 #endif /* SOCKBUF_DEBUG */
    815 
    816 /*
    817  * Link a chain of records onto a socket buffer
    818  */
    819 #define	SBLINKRECORDCHAIN(sb, m0, mlast)				\
    820 do {									\
    821 	if ((sb)->sb_lastrecord != NULL)				\
    822 		(sb)->sb_lastrecord->m_nextpkt = (m0);			\
    823 	else								\
    824 		(sb)->sb_mb = (m0);					\
    825 	(sb)->sb_lastrecord = (mlast);					\
    826 } while (/*CONSTCOND*/0)
    827 
    828 
    829 #define	SBLINKRECORD(sb, m0)						\
    830     SBLINKRECORDCHAIN(sb, m0, m0)
    831 
    832 /*
    833  * Append mbuf chain m to the last record in the
    834  * socket buffer sb.  The additional space associated
    835  * the mbuf chain is recorded in sb.  Empty mbufs are
    836  * discarded and mbufs are compacted where possible.
    837  */
    838 void
    839 sbappend(struct sockbuf *sb, struct mbuf *m)
    840 {
    841 	struct mbuf	*n;
    842 
    843 	KASSERT(solocked(sb->sb_so));
    844 
    845 	if (m == NULL)
    846 		return;
    847 
    848 #ifdef MBUFTRACE
    849 	m_claimm(m, sb->sb_mowner);
    850 #endif
    851 
    852 	SBLASTRECORDCHK(sb, "sbappend 1");
    853 
    854 	if ((n = sb->sb_lastrecord) != NULL) {
    855 		/*
    856 		 * XXX Would like to simply use sb_mbtail here, but
    857 		 * XXX I need to verify that I won't miss an EOR that
    858 		 * XXX way.
    859 		 */
    860 		do {
    861 			if (n->m_flags & M_EOR) {
    862 				sbappendrecord(sb, m); /* XXXXXX!!!! */
    863 				return;
    864 			}
    865 		} while (n->m_next && (n = n->m_next));
    866 	} else {
    867 		/*
    868 		 * If this is the first record in the socket buffer, it's
    869 		 * also the last record.
    870 		 */
    871 		sb->sb_lastrecord = m;
    872 	}
    873 	sbcompress(sb, m, n);
    874 	SBLASTRECORDCHK(sb, "sbappend 2");
    875 }
    876 
    877 /*
    878  * This version of sbappend() should only be used when the caller
    879  * absolutely knows that there will never be more than one record
    880  * in the socket buffer, that is, a stream protocol (such as TCP).
    881  */
    882 void
    883 sbappendstream(struct sockbuf *sb, struct mbuf *m)
    884 {
    885 
    886 	KASSERT(solocked(sb->sb_so));
    887 	KDASSERT(m->m_nextpkt == NULL);
    888 	KASSERT(sb->sb_mb == sb->sb_lastrecord);
    889 
    890 	SBLASTMBUFCHK(sb, __func__);
    891 
    892 #ifdef MBUFTRACE
    893 	m_claimm(m, sb->sb_mowner);
    894 #endif
    895 
    896 	sbcompress(sb, m, sb->sb_mbtail);
    897 
    898 	sb->sb_lastrecord = sb->sb_mb;
    899 	SBLASTRECORDCHK(sb, __func__);
    900 }
    901 
    902 #ifdef SOCKBUF_DEBUG
    903 void
    904 sbcheck(struct sockbuf *sb)
    905 {
    906 	struct mbuf	*m, *m2;
    907 	u_long		len, mbcnt;
    908 
    909 	KASSERT(solocked(sb->sb_so));
    910 
    911 	len = 0;
    912 	mbcnt = 0;
    913 	for (m = sb->sb_mb; m; m = m->m_nextpkt) {
    914 		for (m2 = m; m2 != NULL; m2 = m2->m_next) {
    915 			len += m2->m_len;
    916 			mbcnt += MSIZE;
    917 			if (m2->m_flags & M_EXT)
    918 				mbcnt += m2->m_ext.ext_size;
    919 			if (m2->m_nextpkt != NULL)
    920 				panic("sbcheck nextpkt");
    921 		}
    922 	}
    923 	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
    924 		printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
    925 		    mbcnt, sb->sb_mbcnt);
    926 		panic("sbcheck");
    927 	}
    928 }
    929 #endif
    930 
    931 /*
    932  * As above, except the mbuf chain
    933  * begins a new record.
    934  */
    935 void
    936 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
    937 {
    938 	struct mbuf	*m;
    939 
    940 	KASSERT(solocked(sb->sb_so));
    941 
    942 	if (m0 == NULL)
    943 		return;
    944 
    945 #ifdef MBUFTRACE
    946 	m_claimm(m0, sb->sb_mowner);
    947 #endif
    948 	/*
    949 	 * Put the first mbuf on the queue.
    950 	 * Note this permits zero length records.
    951 	 */
    952 	sballoc(sb, m0);
    953 	SBLASTRECORDCHK(sb, "sbappendrecord 1");
    954 	SBLINKRECORD(sb, m0);
    955 	m = m0->m_next;
    956 	m0->m_next = 0;
    957 	if (m && (m0->m_flags & M_EOR)) {
    958 		m0->m_flags &= ~M_EOR;
    959 		m->m_flags |= M_EOR;
    960 	}
    961 	sbcompress(sb, m, m0);
    962 	SBLASTRECORDCHK(sb, "sbappendrecord 2");
    963 }
    964 
    965 /*
    966  * As above except that OOB data
    967  * is inserted at the beginning of the sockbuf,
    968  * but after any other OOB data.
    969  */
    970 void
    971 sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
    972 {
    973 	struct mbuf	*m, **mp;
    974 
    975 	KASSERT(solocked(sb->sb_so));
    976 
    977 	if (m0 == NULL)
    978 		return;
    979 
    980 	SBLASTRECORDCHK(sb, "sbinsertoob 1");
    981 
    982 	for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
    983 	    again:
    984 		switch (m->m_type) {
    985 
    986 		case MT_OOBDATA:
    987 			continue;		/* WANT next train */
    988 
    989 		case MT_CONTROL:
    990 			if ((m = m->m_next) != NULL)
    991 				goto again;	/* inspect THIS train further */
    992 		}
    993 		break;
    994 	}
    995 	/*
    996 	 * Put the first mbuf on the queue.
    997 	 * Note this permits zero length records.
    998 	 */
    999 	sballoc(sb, m0);
   1000 	m0->m_nextpkt = *mp;
   1001 	if (*mp == NULL) {
   1002 		/* m0 is actually the new tail */
   1003 		sb->sb_lastrecord = m0;
   1004 	}
   1005 	*mp = m0;
   1006 	m = m0->m_next;
   1007 	m0->m_next = 0;
   1008 	if (m && (m0->m_flags & M_EOR)) {
   1009 		m0->m_flags &= ~M_EOR;
   1010 		m->m_flags |= M_EOR;
   1011 	}
   1012 	sbcompress(sb, m, m0);
   1013 	SBLASTRECORDCHK(sb, "sbinsertoob 2");
   1014 }
   1015 
   1016 /*
   1017  * Append address and data, and optionally, control (ancillary) data
   1018  * to the receive queue of a socket.  If present,
   1019  * m0 must include a packet header with total length.
   1020  * Returns 0 if no space in sockbuf or insufficient mbufs.
   1021  */
   1022 int
   1023 sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0,
   1024 	struct mbuf *control)
   1025 {
   1026 	struct mbuf	*m, *n, *nlast;
   1027 	int		space, len;
   1028 
   1029 	KASSERT(solocked(sb->sb_so));
   1030 
   1031 	space = asa->sa_len;
   1032 
   1033 	if (m0 != NULL) {
   1034 		if ((m0->m_flags & M_PKTHDR) == 0)
   1035 			panic("sbappendaddr");
   1036 		space += m0->m_pkthdr.len;
   1037 #ifdef MBUFTRACE
   1038 		m_claimm(m0, sb->sb_mowner);
   1039 #endif
   1040 	}
   1041 	for (n = control; n; n = n->m_next) {
   1042 		space += n->m_len;
   1043 		MCLAIM(n, sb->sb_mowner);
   1044 		if (n->m_next == NULL)	/* keep pointer to last control buf */
   1045 			break;
   1046 	}
   1047 	if (space > sbspace(sb))
   1048 		return (0);
   1049 	m = m_get(M_DONTWAIT, MT_SONAME);
   1050 	if (m == NULL)
   1051 		return (0);
   1052 	MCLAIM(m, sb->sb_mowner);
   1053 	/*
   1054 	 * XXX avoid 'comparison always true' warning which isn't easily
   1055 	 * avoided.
   1056 	 */
   1057 	len = asa->sa_len;
   1058 	if (len > MLEN) {
   1059 		MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
   1060 		if ((m->m_flags & M_EXT) == 0) {
   1061 			m_free(m);
   1062 			return (0);
   1063 		}
   1064 	}
   1065 	m->m_len = asa->sa_len;
   1066 	memcpy(mtod(m, void *), asa, asa->sa_len);
   1067 	if (n)
   1068 		n->m_next = m0;		/* concatenate data to control */
   1069 	else
   1070 		control = m0;
   1071 	m->m_next = control;
   1072 
   1073 	SBLASTRECORDCHK(sb, "sbappendaddr 1");
   1074 
   1075 	for (n = m; n->m_next != NULL; n = n->m_next)
   1076 		sballoc(sb, n);
   1077 	sballoc(sb, n);
   1078 	nlast = n;
   1079 	SBLINKRECORD(sb, m);
   1080 
   1081 	sb->sb_mbtail = nlast;
   1082 	SBLASTMBUFCHK(sb, "sbappendaddr");
   1083 	SBLASTRECORDCHK(sb, "sbappendaddr 2");
   1084 
   1085 	return (1);
   1086 }
   1087 
   1088 /*
   1089  * Helper for sbappendchainaddr: prepend a struct sockaddr* to
   1090  * an mbuf chain.
   1091  */
   1092 static inline struct mbuf *
   1093 m_prepend_sockaddr(struct sockbuf *sb, struct mbuf *m0,
   1094 		   const struct sockaddr *asa)
   1095 {
   1096 	struct mbuf *m;
   1097 	const int salen = asa->sa_len;
   1098 
   1099 	KASSERT(solocked(sb->sb_so));
   1100 
   1101 	/* only the first in each chain need be a pkthdr */
   1102 	m = m_gethdr(M_DONTWAIT, MT_SONAME);
   1103 	if (m == NULL)
   1104 		return NULL;
   1105 	MCLAIM(m, sb->sb_mowner);
   1106 #ifdef notyet
   1107 	if (salen > MHLEN) {
   1108 		MEXTMALLOC(m, salen, M_NOWAIT);
   1109 		if ((m->m_flags & M_EXT) == 0) {
   1110 			m_free(m);
   1111 			return NULL;
   1112 		}
   1113 	}
   1114 #else
   1115 	KASSERT(salen <= MHLEN);
   1116 #endif
   1117 	m->m_len = salen;
   1118 	memcpy(mtod(m, void *), asa, salen);
   1119 	m->m_next = m0;
   1120 	m->m_pkthdr.len = salen + m0->m_pkthdr.len;
   1121 
   1122 	return m;
   1123 }
   1124 
   1125 int
   1126 sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa,
   1127 		  struct mbuf *m0, int sbprio)
   1128 {
   1129 	struct mbuf *m, *n, *n0, *nlast;
   1130 	int error;
   1131 
   1132 	KASSERT(solocked(sb->sb_so));
   1133 
   1134 	/*
   1135 	 * XXX sbprio reserved for encoding priority of this* request:
   1136 	 *  SB_PRIO_NONE --> honour normal sb limits
   1137 	 *  SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space,
   1138 	 *	take whole chain. Intended for large requests
   1139 	 *      that should be delivered atomically (all, or none).
   1140 	 * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow
   1141 	 *       over normal socket limits, for messages indicating
   1142 	 *       buffer overflow in earlier normal/lower-priority messages
   1143 	 * SB_PRIO_BESTEFFORT -->  ignore limits entirely.
   1144 	 *       Intended for  kernel-generated messages only.
   1145 	 *        Up to generator to avoid total mbuf resource exhaustion.
   1146 	 */
   1147 	(void)sbprio;
   1148 
   1149 	if (m0 && (m0->m_flags & M_PKTHDR) == 0)
   1150 		panic("sbappendaddrchain");
   1151 
   1152 #ifdef notyet
   1153 	space = sbspace(sb);
   1154 
   1155 	/*
   1156 	 * Enforce SB_PRIO_* limits as described above.
   1157 	 */
   1158 #endif
   1159 
   1160 	n0 = NULL;
   1161 	nlast = NULL;
   1162 	for (m = m0; m; m = m->m_nextpkt) {
   1163 		struct mbuf *np;
   1164 
   1165 #ifdef MBUFTRACE
   1166 		m_claimm(m, sb->sb_mowner);
   1167 #endif
   1168 
   1169 		/* Prepend sockaddr to this record (m) of input chain m0 */
   1170 	  	n = m_prepend_sockaddr(sb, m, asa);
   1171 		if (n == NULL) {
   1172 			error = ENOBUFS;
   1173 			goto bad;
   1174 		}
   1175 
   1176 		/* Append record (asa+m) to end of new chain n0 */
   1177 		if (n0 == NULL) {
   1178 			n0 = n;
   1179 		} else {
   1180 			nlast->m_nextpkt = n;
   1181 		}
   1182 		/* Keep track of last record on new chain */
   1183 		nlast = n;
   1184 
   1185 		for (np = n; np; np = np->m_next)
   1186 			sballoc(sb, np);
   1187 	}
   1188 
   1189 	SBLASTRECORDCHK(sb, "sbappendaddrchain 1");
   1190 
   1191 	/* Drop the entire chain of (asa+m) records onto the socket */
   1192 	SBLINKRECORDCHAIN(sb, n0, nlast);
   1193 
   1194 	SBLASTRECORDCHK(sb, "sbappendaddrchain 2");
   1195 
   1196 	for (m = nlast; m->m_next; m = m->m_next)
   1197 		;
   1198 	sb->sb_mbtail = m;
   1199 	SBLASTMBUFCHK(sb, "sbappendaddrchain");
   1200 
   1201 	return (1);
   1202 
   1203 bad:
   1204 	/*
   1205 	 * On error, free the prepended addreseses. For consistency
   1206 	 * with sbappendaddr(), leave it to our caller to free
   1207 	 * the input record chain passed to us as m0.
   1208 	 */
   1209 	while ((n = n0) != NULL) {
   1210 	  	struct mbuf *np;
   1211 
   1212 		/* Undo the sballoc() of this record */
   1213 		for (np = n; np; np = np->m_next)
   1214 			sbfree(sb, np);
   1215 
   1216 		n0 = n->m_nextpkt;	/* iterate at next prepended address */
   1217 		np = m_free(n);		/* free prepended address (not data) */
   1218 	}
   1219 	return error;
   1220 }
   1221 
   1222 
   1223 int
   1224 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
   1225 {
   1226 	struct mbuf	*m, *mlast, *n;
   1227 	int		space;
   1228 
   1229 	KASSERT(solocked(sb->sb_so));
   1230 
   1231 	space = 0;
   1232 	if (control == NULL)
   1233 		panic("sbappendcontrol");
   1234 	for (m = control; ; m = m->m_next) {
   1235 		space += m->m_len;
   1236 		MCLAIM(m, sb->sb_mowner);
   1237 		if (m->m_next == NULL)
   1238 			break;
   1239 	}
   1240 	n = m;			/* save pointer to last control buffer */
   1241 	for (m = m0; m; m = m->m_next) {
   1242 		MCLAIM(m, sb->sb_mowner);
   1243 		space += m->m_len;
   1244 	}
   1245 	if (space > sbspace(sb))
   1246 		return (0);
   1247 	n->m_next = m0;			/* concatenate data to control */
   1248 
   1249 	SBLASTRECORDCHK(sb, "sbappendcontrol 1");
   1250 
   1251 	for (m = control; m->m_next != NULL; m = m->m_next)
   1252 		sballoc(sb, m);
   1253 	sballoc(sb, m);
   1254 	mlast = m;
   1255 	SBLINKRECORD(sb, control);
   1256 
   1257 	sb->sb_mbtail = mlast;
   1258 	SBLASTMBUFCHK(sb, "sbappendcontrol");
   1259 	SBLASTRECORDCHK(sb, "sbappendcontrol 2");
   1260 
   1261 	return (1);
   1262 }
   1263 
   1264 /*
   1265  * Compress mbuf chain m into the socket
   1266  * buffer sb following mbuf n.  If n
   1267  * is null, the buffer is presumed empty.
   1268  */
   1269 void
   1270 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
   1271 {
   1272 	int		eor;
   1273 	struct mbuf	*o;
   1274 
   1275 	KASSERT(solocked(sb->sb_so));
   1276 
   1277 	eor = 0;
   1278 	while (m) {
   1279 		eor |= m->m_flags & M_EOR;
   1280 		if (m->m_len == 0 &&
   1281 		    (eor == 0 ||
   1282 		     (((o = m->m_next) || (o = n)) &&
   1283 		      o->m_type == m->m_type))) {
   1284 			if (sb->sb_lastrecord == m)
   1285 				sb->sb_lastrecord = m->m_next;
   1286 			m = m_free(m);
   1287 			continue;
   1288 		}
   1289 		if (n && (n->m_flags & M_EOR) == 0 &&
   1290 		    /* M_TRAILINGSPACE() checks buffer writeability */
   1291 		    m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
   1292 		    m->m_len <= M_TRAILINGSPACE(n) &&
   1293 		    n->m_type == m->m_type) {
   1294 			memcpy(mtod(n, char *) + n->m_len, mtod(m, void *),
   1295 			    (unsigned)m->m_len);
   1296 			n->m_len += m->m_len;
   1297 			sb->sb_cc += m->m_len;
   1298 			m = m_free(m);
   1299 			continue;
   1300 		}
   1301 		if (n)
   1302 			n->m_next = m;
   1303 		else
   1304 			sb->sb_mb = m;
   1305 		sb->sb_mbtail = m;
   1306 		sballoc(sb, m);
   1307 		n = m;
   1308 		m->m_flags &= ~M_EOR;
   1309 		m = m->m_next;
   1310 		n->m_next = 0;
   1311 	}
   1312 	if (eor) {
   1313 		if (n)
   1314 			n->m_flags |= eor;
   1315 		else
   1316 			printf("semi-panic: sbcompress\n");
   1317 	}
   1318 	SBLASTMBUFCHK(sb, __func__);
   1319 }
   1320 
   1321 /*
   1322  * Free all mbufs in a sockbuf.
   1323  * Check that all resources are reclaimed.
   1324  */
   1325 void
   1326 sbflush(struct sockbuf *sb)
   1327 {
   1328 
   1329 	KASSERT(solocked(sb->sb_so));
   1330 	KASSERT((sb->sb_flags & SB_LOCK) == 0);
   1331 
   1332 	while (sb->sb_mbcnt)
   1333 		sbdrop(sb, (int)sb->sb_cc);
   1334 
   1335 	KASSERT(sb->sb_cc == 0);
   1336 	KASSERT(sb->sb_mb == NULL);
   1337 	KASSERT(sb->sb_mbtail == NULL);
   1338 	KASSERT(sb->sb_lastrecord == NULL);
   1339 }
   1340 
   1341 /*
   1342  * Drop data from (the front of) a sockbuf.
   1343  */
   1344 void
   1345 sbdrop(struct sockbuf *sb, int len)
   1346 {
   1347 	struct mbuf	*m, *next;
   1348 
   1349 	KASSERT(solocked(sb->sb_so));
   1350 
   1351 	next = (m = sb->sb_mb) ? m->m_nextpkt : NULL;
   1352 	while (len > 0) {
   1353 		if (m == NULL) {
   1354 			if (next == NULL)
   1355 				panic("sbdrop(%p,%d): cc=%lu",
   1356 				    sb, len, sb->sb_cc);
   1357 			m = next;
   1358 			next = m->m_nextpkt;
   1359 			continue;
   1360 		}
   1361 		if (m->m_len > len) {
   1362 			m->m_len -= len;
   1363 			m->m_data += len;
   1364 			sb->sb_cc -= len;
   1365 			break;
   1366 		}
   1367 		len -= m->m_len;
   1368 		sbfree(sb, m);
   1369 		m = m_free(m);
   1370 	}
   1371 	while (m && m->m_len == 0) {
   1372 		sbfree(sb, m);
   1373 		m = m_free(m);
   1374 	}
   1375 	if (m) {
   1376 		sb->sb_mb = m;
   1377 		m->m_nextpkt = next;
   1378 	} else
   1379 		sb->sb_mb = next;
   1380 	/*
   1381 	 * First part is an inline SB_EMPTY_FIXUP().  Second part
   1382 	 * makes sure sb_lastrecord is up-to-date if we dropped
   1383 	 * part of the last record.
   1384 	 */
   1385 	m = sb->sb_mb;
   1386 	if (m == NULL) {
   1387 		sb->sb_mbtail = NULL;
   1388 		sb->sb_lastrecord = NULL;
   1389 	} else if (m->m_nextpkt == NULL)
   1390 		sb->sb_lastrecord = m;
   1391 }
   1392 
   1393 /*
   1394  * Drop a record off the front of a sockbuf
   1395  * and move the next record to the front.
   1396  */
   1397 void
   1398 sbdroprecord(struct sockbuf *sb)
   1399 {
   1400 	struct mbuf	*m, *mn;
   1401 
   1402 	KASSERT(solocked(sb->sb_so));
   1403 
   1404 	m = sb->sb_mb;
   1405 	if (m) {
   1406 		sb->sb_mb = m->m_nextpkt;
   1407 		do {
   1408 			sbfree(sb, m);
   1409 			mn = m_free(m);
   1410 		} while ((m = mn) != NULL);
   1411 	}
   1412 	SB_EMPTY_FIXUP(sb);
   1413 }
   1414 
   1415 /*
   1416  * Create a "control" mbuf containing the specified data
   1417  * with the specified type for presentation on a socket buffer.
   1418  */
   1419 struct mbuf *
   1420 sbcreatecontrol1(void **p, int size, int type, int level, int flags)
   1421 {
   1422 	struct cmsghdr	*cp;
   1423 	struct mbuf	*m;
   1424 	int space = CMSG_SPACE(size);
   1425 
   1426 	if ((flags & M_DONTWAIT) && space > MCLBYTES) {
   1427 		printf("%s: message too large %d\n", __func__, space);
   1428 		return NULL;
   1429 	}
   1430 
   1431 	if ((m = m_get(flags, MT_CONTROL)) == NULL)
   1432 		return NULL;
   1433 	if (space > MLEN) {
   1434 		if (space > MCLBYTES)
   1435 			MEXTMALLOC(m, space, M_WAITOK);
   1436 		else
   1437 			MCLGET(m, flags);
   1438 		if ((m->m_flags & M_EXT) == 0) {
   1439 			m_free(m);
   1440 			return NULL;
   1441 		}
   1442 	}
   1443 	cp = mtod(m, struct cmsghdr *);
   1444 	*p = CMSG_DATA(cp);
   1445 	m->m_len = space;
   1446 	cp->cmsg_len = CMSG_LEN(size);
   1447 	cp->cmsg_level = level;
   1448 	cp->cmsg_type = type;
   1449 
   1450 	memset(cp + 1, 0, CMSG_LEN(0) - sizeof(*cp));
   1451 	memset((uint8_t *)*p + size, 0, CMSG_ALIGN(size) - size);
   1452 
   1453 	return m;
   1454 }
   1455 
   1456 struct mbuf *
   1457 sbcreatecontrol(void *p, int size, int type, int level)
   1458 {
   1459 	struct mbuf *m;
   1460 	void *v;
   1461 
   1462 	m = sbcreatecontrol1(&v, size, type, level, M_DONTWAIT);
   1463 	if (m == NULL)
   1464 		return NULL;
   1465 	memcpy(v, p, size);
   1466 	return m;
   1467 }
   1468 
   1469 void
   1470 solockretry(struct socket *so, kmutex_t *lock)
   1471 {
   1472 
   1473 	while (lock != atomic_load_relaxed(&so->so_lock)) {
   1474 		mutex_exit(lock);
   1475 		lock = atomic_load_consume(&so->so_lock);
   1476 		mutex_enter(lock);
   1477 	}
   1478 }
   1479 
   1480 bool
   1481 solocked(const struct socket *so)
   1482 {
   1483 
   1484 	/*
   1485 	 * Used only for diagnostic assertions, so so_lock should be
   1486 	 * stable at this point, hence on need for atomic_load_*.
   1487 	 */
   1488 	return mutex_owned(so->so_lock);
   1489 }
   1490 
   1491 bool
   1492 solocked2(const struct socket *so1, const struct socket *so2)
   1493 {
   1494 	const kmutex_t *lock;
   1495 
   1496 	/*
   1497 	 * Used only for diagnostic assertions, so so_lock should be
   1498 	 * stable at this point, hence on need for atomic_load_*.
   1499 	 */
   1500 	lock = so1->so_lock;
   1501 	if (lock != so2->so_lock)
   1502 		return false;
   1503 	return mutex_owned(lock);
   1504 }
   1505 
   1506 /*
   1507  * sosetlock: assign a default lock to a new socket.
   1508  */
   1509 void
   1510 sosetlock(struct socket *so)
   1511 {
   1512 	if (so->so_lock == NULL) {
   1513 		kmutex_t *lock = softnet_lock;
   1514 
   1515 		so->so_lock = lock;
   1516 		mutex_obj_hold(lock);
   1517 		mutex_enter(lock);
   1518 	}
   1519 	KASSERT(solocked(so));
   1520 }
   1521 
   1522 /*
   1523  * Set lock on sockbuf sb; sleep if lock is already held.
   1524  * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
   1525  * Returns error without lock if sleep is interrupted.
   1526  */
   1527 int
   1528 sblock(struct sockbuf *sb, int wf)
   1529 {
   1530 	struct socket *so;
   1531 	kmutex_t *lock;
   1532 	int error;
   1533 
   1534 	KASSERT(solocked(sb->sb_so));
   1535 
   1536 	for (;;) {
   1537 		if (__predict_true((sb->sb_flags & SB_LOCK) == 0)) {
   1538 			sb->sb_flags |= SB_LOCK;
   1539 			return 0;
   1540 		}
   1541 		if (wf != M_WAITOK)
   1542 			return EWOULDBLOCK;
   1543 		so = sb->sb_so;
   1544 		lock = so->so_lock;
   1545 		if ((sb->sb_flags & SB_NOINTR) != 0) {
   1546 			cv_wait(&so->so_cv, lock);
   1547 			error = 0;
   1548 		} else
   1549 			error = cv_wait_sig(&so->so_cv, lock);
   1550 		if (__predict_false(lock != atomic_load_relaxed(&so->so_lock)))
   1551 			solockretry(so, lock);
   1552 		if (error != 0)
   1553 			return error;
   1554 	}
   1555 }
   1556 
   1557 void
   1558 sbunlock(struct sockbuf *sb)
   1559 {
   1560 	struct socket *so;
   1561 
   1562 	so = sb->sb_so;
   1563 
   1564 	KASSERT(solocked(so));
   1565 	KASSERT((sb->sb_flags & SB_LOCK) != 0);
   1566 
   1567 	sb->sb_flags &= ~SB_LOCK;
   1568 	cv_broadcast(&so->so_cv);
   1569 }
   1570 
   1571 int
   1572 sowait(struct socket *so, bool catch_p, int timo)
   1573 {
   1574 	kmutex_t *lock;
   1575 	int error;
   1576 
   1577 	KASSERT(solocked(so));
   1578 	KASSERT(catch_p || timo != 0);
   1579 
   1580 	lock = so->so_lock;
   1581 	if (catch_p)
   1582 		error = cv_timedwait_sig(&so->so_cv, lock, timo);
   1583 	else
   1584 		error = cv_timedwait(&so->so_cv, lock, timo);
   1585 	if (__predict_false(lock != atomic_load_relaxed(&so->so_lock)))
   1586 		solockretry(so, lock);
   1587 	return error;
   1588 }
   1589 
   1590 #ifdef DDB
   1591 
   1592 /*
   1593  * Currently, sofindproc() is used only from DDB. It could be used from others
   1594  * by using db_mutex_enter()
   1595  */
   1596 
   1597 static inline int
   1598 db_mutex_enter(kmutex_t *mtx)
   1599 {
   1600 	int rv;
   1601 
   1602 	if (!db_active) {
   1603 		mutex_enter(mtx);
   1604 		rv = 1;
   1605 	} else
   1606 		rv = mutex_tryenter(mtx);
   1607 
   1608 	return rv;
   1609 }
   1610 
   1611 int
   1612 sofindproc(struct socket *so, int all, void (*pr)(const char *, ...))
   1613 {
   1614 	proc_t *p;
   1615 	filedesc_t *fdp;
   1616 	fdtab_t *dt;
   1617 	fdfile_t *ff;
   1618 	file_t *fp = NULL;
   1619 	int found = 0;
   1620 	int i, t;
   1621 
   1622 	if (so == NULL)
   1623 		return 0;
   1624 
   1625 	t = db_mutex_enter(&proc_lock);
   1626 	if (!t) {
   1627 		pr("could not acquire proc_lock mutex\n");
   1628 		return 0;
   1629 	}
   1630 	PROCLIST_FOREACH(p, &allproc) {
   1631 		if (p->p_stat == SIDL)
   1632 			continue;
   1633 		fdp = p->p_fd;
   1634 		t = db_mutex_enter(&fdp->fd_lock);
   1635 		if (!t) {
   1636 			pr("could not acquire fd_lock mutex\n");
   1637 			continue;
   1638 		}
   1639 		dt = atomic_load_consume(&fdp->fd_dt);
   1640 		for (i = 0; i < dt->dt_nfiles; i++) {
   1641 			ff = dt->dt_ff[i];
   1642 			if (ff == NULL)
   1643 				continue;
   1644 
   1645 			fp = atomic_load_consume(&ff->ff_file);
   1646 			if (fp == NULL)
   1647 				continue;
   1648 
   1649 			t = db_mutex_enter(&fp->f_lock);
   1650 			if (!t) {
   1651 				pr("could not acquire f_lock mutex\n");
   1652 				continue;
   1653 			}
   1654 			if ((struct socket *)fp->f_data != so) {
   1655 				mutex_exit(&fp->f_lock);
   1656 				continue;
   1657 			}
   1658 			found++;
   1659 			if (pr)
   1660 				pr("socket %p: owner %s(pid=%d)\n",
   1661 				    so, p->p_comm, p->p_pid);
   1662 			mutex_exit(&fp->f_lock);
   1663 			if (all == 0)
   1664 				break;
   1665 		}
   1666 		mutex_exit(&fdp->fd_lock);
   1667 		if (all == 0 && found != 0)
   1668 			break;
   1669 	}
   1670 	mutex_exit(&proc_lock);
   1671 
   1672 	return found;
   1673 }
   1674 
   1675 void
   1676 socket_print(const char *modif, void (*pr)(const char *, ...))
   1677 {
   1678 	file_t *fp;
   1679 	struct socket *so;
   1680 	struct sockbuf *sb_snd, *sb_rcv;
   1681 	struct mbuf *m_rec, *m;
   1682 	bool opt_v = false;
   1683 	bool opt_m = false;
   1684 	bool opt_a = false;
   1685 	bool opt_p = false;
   1686 	int nrecs, nmbufs;
   1687 	char ch;
   1688 	const char *family;
   1689 
   1690 	while ( (ch = *(modif++)) != '\0') {
   1691 		switch (ch) {
   1692 		case 'v':
   1693 			opt_v = true;
   1694 			break;
   1695 		case 'm':
   1696 			opt_m = true;
   1697 			break;
   1698 		case 'a':
   1699 			opt_a = true;
   1700 			break;
   1701 		case 'p':
   1702 			opt_p = true;
   1703 			break;
   1704 		}
   1705 	}
   1706 	if (opt_v == false && pr)
   1707 		(pr)("Ignore empty sockets. use /v to print all.\n");
   1708 	if (opt_p == true && pr)
   1709 		(pr)("Don't search owner process.\n");
   1710 
   1711 	LIST_FOREACH(fp, &filehead, f_list) {
   1712 		if (fp->f_type != DTYPE_SOCKET)
   1713 			continue;
   1714 		so = (struct socket *)fp->f_data;
   1715 		if (so == NULL)
   1716 			continue;
   1717 
   1718 		if (so->so_proto->pr_domain->dom_family == AF_INET)
   1719 			family = "INET";
   1720 #ifdef INET6
   1721 		else if (so->so_proto->pr_domain->dom_family == AF_INET6)
   1722 			family = "INET6";
   1723 #endif
   1724 		else if (so->so_proto->pr_domain->dom_family == pseudo_AF_KEY)
   1725 			family = "KEY";
   1726 		else if (so->so_proto->pr_domain->dom_family == AF_ROUTE)
   1727 			family = "ROUTE";
   1728 		else
   1729 			continue;
   1730 
   1731 		sb_snd = &so->so_snd;
   1732 		sb_rcv = &so->so_rcv;
   1733 
   1734 		if (opt_v != true &&
   1735 		    sb_snd->sb_cc == 0 && sb_rcv->sb_cc == 0)
   1736 			continue;
   1737 
   1738 		pr("---SOCKET %p: type %s\n", so, family);
   1739 		if (opt_p != true)
   1740 			sofindproc(so, opt_a == true ? 1 : 0, pr);
   1741 		pr("Send Buffer Bytes: %d [bytes]\n", sb_snd->sb_cc);
   1742 		pr("Send Buffer mbufs:\n");
   1743 		m_rec = m = sb_snd->sb_mb;
   1744 		nrecs = 0;
   1745 		nmbufs = 0;
   1746 		while (m_rec) {
   1747 			nrecs++;
   1748 			if (opt_m == true)
   1749 				pr(" mbuf chain %p\n", m_rec);
   1750 			while (m) {
   1751 				nmbufs++;
   1752 				m = m->m_next;
   1753 			}
   1754 			m_rec = m = m_rec->m_nextpkt;
   1755 		}
   1756 		pr(" Total %d records, %d mbufs.\n", nrecs, nmbufs);
   1757 
   1758 		pr("Recv Buffer Usage: %d [bytes]\n", sb_rcv->sb_cc);
   1759 		pr("Recv Buffer mbufs:\n");
   1760 		m_rec = m = sb_rcv->sb_mb;
   1761 		nrecs = 0;
   1762 		nmbufs = 0;
   1763 		while (m_rec) {
   1764 			nrecs++;
   1765 			if (opt_m == true)
   1766 				pr(" mbuf chain %p\n", m_rec);
   1767 			while (m) {
   1768 				nmbufs++;
   1769 				m = m->m_next;
   1770 			}
   1771 			m_rec = m = m_rec->m_nextpkt;
   1772 		}
   1773 		pr(" Total %d records, %d mbufs.\n", nrecs, nmbufs);
   1774 	}
   1775 }
   1776 #endif /* DDB */
   1777