uipc_socket2.c revision 1.144 1 /* $NetBSD: uipc_socket2.c,v 1.144 2024/12/06 18:36:31 riastradh Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*
30 * Copyright (c) 1982, 1986, 1988, 1990, 1993
31 * The Regents of the University of California. All rights reserved.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 * 3. Neither the name of the University nor the names of its contributors
42 * may be used to endorse or promote products derived from this software
43 * without specific prior written permission.
44 *
45 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 * SUCH DAMAGE.
56 *
57 * @(#)uipc_socket2.c 8.2 (Berkeley) 2/14/95
58 */
59
60 #include <sys/cdefs.h>
61 __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.144 2024/12/06 18:36:31 riastradh Exp $");
62
63 #ifdef _KERNEL_OPT
64 #include "opt_ddb.h"
65 #include "opt_inet.h"
66 #include "opt_mbuftrace.h"
67 #include "opt_sb_max.h"
68 #endif
69
70 #include <sys/param.h>
71 #include <sys/types.h>
72
73 #include <sys/buf.h>
74 #include <sys/domain.h>
75 #include <sys/file.h>
76 #include <sys/kauth.h>
77 #include <sys/mbuf.h>
78 #include <sys/poll.h>
79 #include <sys/pool.h>
80 #include <sys/proc.h>
81 #include <sys/protosw.h>
82 #include <sys/signalvar.h>
83 #include <sys/socket.h>
84 #include <sys/socketvar.h>
85 #include <sys/systm.h>
86 #include <sys/uidinfo.h>
87
88 #ifdef DDB
89 #include <sys/filedesc.h>
90 #include <ddb/db_active.h>
91 #endif
92
93 /*
94 * Primitive routines for operating on sockets and socket buffers.
95 *
96 * Connection life-cycle:
97 *
98 * Normal sequence from the active (originating) side:
99 *
100 * - soisconnecting() is called during processing of connect() call,
101 * - resulting in an eventual call to soisconnected() if/when the
102 * connection is established.
103 *
104 * When the connection is torn down during processing of disconnect():
105 *
106 * - soisdisconnecting() is called and,
107 * - soisdisconnected() is called when the connection to the peer
108 * is totally severed.
109 *
110 * The semantics of these routines are such that connectionless protocols
111 * can call soisconnected() and soisdisconnected() only, bypassing the
112 * in-progress calls when setting up a ``connection'' takes no time.
113 *
114 * From the passive side, a socket is created with two queues of sockets:
115 *
116 * - so_q0 (0) for partial connections (i.e. connections in progress)
117 * - so_q (1) for connections already made and awaiting user acceptance.
118 *
119 * As a protocol is preparing incoming connections, it creates a socket
120 * structure queued on so_q0 by calling sonewconn(). When the connection
121 * is established, soisconnected() is called, and transfers the
122 * socket structure to so_q, making it available to accept().
123 *
124 * If a socket is closed with sockets on either so_q0 or so_q, these
125 * sockets are dropped.
126 *
127 * Locking rules and assumptions:
128 *
129 * o socket::so_lock can change on the fly. The low level routines used
130 * to lock sockets are aware of this. When so_lock is acquired, the
131 * routine locking must check to see if so_lock still points to the
132 * lock that was acquired. If so_lock has changed in the meantime, the
133 * now irrelevant lock that was acquired must be dropped and the lock
134 * operation retried. Although not proven here, this is completely safe
135 * on a multiprocessor system, even with relaxed memory ordering, given
136 * the next two rules:
137 *
138 * o In order to mutate so_lock, the lock pointed to by the current value
139 * of so_lock must be held: i.e., the socket must be held locked by the
140 * changing thread. The thread must issue membar_release() to prevent
141 * memory accesses being reordered, and can set so_lock to the desired
142 * value. If the lock pointed to by the new value of so_lock is not
143 * held by the changing thread, the socket must then be considered
144 * unlocked.
145 *
146 * o If so_lock is mutated, and the previous lock referred to by so_lock
147 * could still be visible to other threads in the system (e.g. via file
148 * descriptor or protocol-internal reference), then the old lock must
149 * remain valid until the socket and/or protocol control block has been
150 * torn down.
151 *
152 * o If a socket has a non-NULL so_head value (i.e. is in the process of
153 * connecting), then locking the socket must also lock the socket pointed
154 * to by so_head: their lock pointers must match.
155 *
156 * o If a socket has connections in progress (so_q, so_q0 not empty) then
157 * locking the socket must also lock the sockets attached to both queues.
158 * Again, their lock pointers must match.
159 *
160 * o Beyond the initial lock assignment in socreate(), assigning locks to
161 * sockets is the responsibility of the individual protocols / protocol
162 * domains.
163 */
164
165 static pool_cache_t socket_cache;
166 u_long sb_max = SB_MAX;/* maximum socket buffer size */
167 static u_long sb_max_adj; /* adjusted sb_max */
168
169 void
170 soisconnecting(struct socket *so)
171 {
172
173 KASSERT(solocked(so));
174
175 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
176 so->so_state |= SS_ISCONNECTING;
177 }
178
179 void
180 soisconnected(struct socket *so)
181 {
182 struct socket *head;
183
184 head = so->so_head;
185
186 KASSERT(solocked(so));
187 KASSERT(head == NULL || solocked2(so, head));
188
189 so->so_state &= ~(SS_ISCONNECTING | SS_ISDISCONNECTING);
190 so->so_state |= SS_ISCONNECTED;
191 if (head && so->so_onq == &head->so_q0) {
192 if ((so->so_options & SO_ACCEPTFILTER) == 0) {
193 /*
194 * Re-enqueue and wake up any waiters, e.g.
195 * processes blocking on accept().
196 */
197 soqremque(so, 0);
198 soqinsque(head, so, 1);
199 sorwakeup(head);
200 cv_broadcast(&head->so_cv);
201 } else {
202 so->so_upcall =
203 head->so_accf->so_accept_filter->accf_callback;
204 so->so_upcallarg = head->so_accf->so_accept_filter_arg;
205 so->so_rcv.sb_flags |= SB_UPCALL;
206 so->so_options &= ~SO_ACCEPTFILTER;
207 (*so->so_upcall)(so, so->so_upcallarg,
208 POLLIN|POLLRDNORM, M_DONTWAIT);
209 }
210 } else {
211 cv_broadcast(&so->so_cv);
212 sorwakeup(so);
213 sowwakeup(so);
214 }
215 }
216
217 void
218 soisdisconnecting(struct socket *so)
219 {
220
221 KASSERT(solocked(so));
222
223 so->so_state &= ~SS_ISCONNECTING;
224 so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
225 cv_broadcast(&so->so_cv);
226 sowwakeup(so);
227 sorwakeup(so);
228 }
229
230 void
231 soisdisconnected(struct socket *so)
232 {
233
234 KASSERT(solocked(so));
235
236 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
237 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
238 cv_broadcast(&so->so_cv);
239 sowwakeup(so);
240 sorwakeup(so);
241 }
242
243 void
244 soinit2(void)
245 {
246
247 socket_cache = pool_cache_init(sizeof(struct socket), 0, 0, 0,
248 "socket", NULL, IPL_SOFTNET, NULL, NULL, NULL);
249 }
250
251 /*
252 * sonewconn: accept a new connection.
253 *
254 * When an attempt at a new connection is noted on a socket which accepts
255 * connections, sonewconn(9) is called. If the connection is possible
256 * (subject to space constraints, etc) then we allocate a new structure,
257 * properly linked into the data structure of the original socket.
258 *
259 * => If 'soready' is true, then socket will become ready for accept() i.e.
260 * inserted into the so_q queue, SS_ISCONNECTED set and waiters awoken.
261 * => May be called from soft-interrupt context.
262 * => Listening socket should be locked.
263 * => Returns the new socket locked.
264 */
265 struct socket *
266 sonewconn(struct socket *head, bool soready)
267 {
268 struct socket *so;
269 int soqueue, error;
270
271 KASSERT(solocked(head));
272
273 if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2) {
274 /*
275 * Listen queue overflow. If there is an accept filter
276 * active, pass through the oldest cxn it's handling.
277 */
278 if (head->so_accf == NULL) {
279 return NULL;
280 } else {
281 struct socket *so2, *next;
282
283 /* Pass the oldest connection waiting in the
284 accept filter */
285 for (so2 = TAILQ_FIRST(&head->so_q0);
286 so2 != NULL; so2 = next) {
287 next = TAILQ_NEXT(so2, so_qe);
288 if (so2->so_upcall == NULL) {
289 continue;
290 }
291 so2->so_upcall = NULL;
292 so2->so_upcallarg = NULL;
293 so2->so_options &= ~SO_ACCEPTFILTER;
294 so2->so_rcv.sb_flags &= ~SB_UPCALL;
295 soisconnected(so2);
296 break;
297 }
298
299 /* If nothing was nudged out of the acept filter, bail
300 * out; otherwise proceed allocating the socket. */
301 if (so2 == NULL) {
302 return NULL;
303 }
304 }
305 }
306 if ((head->so_options & SO_ACCEPTFILTER) != 0) {
307 soready = false;
308 }
309 soqueue = soready ? 1 : 0;
310
311 if ((so = soget(false)) == NULL) {
312 return NULL;
313 }
314 so->so_type = head->so_type;
315 so->so_options = head->so_options & ~SO_ACCEPTCONN;
316 so->so_linger = head->so_linger;
317 so->so_state = head->so_state | SS_NOFDREF;
318 so->so_proto = head->so_proto;
319 so->so_timeo = head->so_timeo;
320 so->so_pgid = head->so_pgid;
321 so->so_send = head->so_send;
322 so->so_receive = head->so_receive;
323 so->so_uidinfo = head->so_uidinfo;
324 so->so_egid = head->so_egid;
325 so->so_cpid = head->so_cpid;
326
327 /*
328 * Share the lock with the listening-socket, it may get unshared
329 * once the connection is complete.
330 *
331 * so_lock is stable while we hold the socket locked, so no
332 * need for atomic_load_* here.
333 */
334 mutex_obj_hold(head->so_lock);
335 so->so_lock = head->so_lock;
336
337 /*
338 * Reserve the space for socket buffers.
339 */
340 #ifdef MBUFTRACE
341 so->so_mowner = head->so_mowner;
342 so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
343 so->so_snd.sb_mowner = head->so_snd.sb_mowner;
344 #endif
345 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) {
346 goto out;
347 }
348 so->so_snd.sb_lowat = head->so_snd.sb_lowat;
349 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
350 so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
351 so->so_snd.sb_timeo = head->so_snd.sb_timeo;
352 so->so_rcv.sb_flags |= head->so_rcv.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
353 so->so_snd.sb_flags |= head->so_snd.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
354
355 /*
356 * Finally, perform the protocol attach. Note: a new socket
357 * lock may be assigned at this point (if so, it will be held).
358 */
359 error = (*so->so_proto->pr_usrreqs->pr_attach)(so, 0);
360 if (error) {
361 out:
362 KASSERT(solocked(so));
363 KASSERT(so->so_accf == NULL);
364 soput(so);
365
366 /* Note: the listening socket shall stay locked. */
367 KASSERT(solocked(head));
368 return NULL;
369 }
370 KASSERT(solocked2(head, so));
371
372 /*
373 * Insert into the queue. If ready, update the connection status
374 * and wake up any waiters, e.g. processes blocking on accept().
375 */
376 soqinsque(head, so, soqueue);
377 if (soready) {
378 so->so_state |= SS_ISCONNECTED;
379 sorwakeup(head);
380 cv_broadcast(&head->so_cv);
381 }
382 return so;
383 }
384
385 struct socket *
386 soget(bool waitok)
387 {
388 struct socket *so;
389
390 so = pool_cache_get(socket_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
391 if (__predict_false(so == NULL))
392 return (NULL);
393 memset(so, 0, sizeof(*so));
394 TAILQ_INIT(&so->so_q0);
395 TAILQ_INIT(&so->so_q);
396 cv_init(&so->so_cv, "socket");
397 cv_init(&so->so_rcv.sb_cv, "netio");
398 cv_init(&so->so_snd.sb_cv, "netio");
399 selinit(&so->so_rcv.sb_sel);
400 selinit(&so->so_snd.sb_sel);
401 so->so_rcv.sb_so = so;
402 so->so_snd.sb_so = so;
403 return so;
404 }
405
406 void
407 soput(struct socket *so)
408 {
409
410 KASSERT(!cv_has_waiters(&so->so_cv));
411 KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
412 KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
413 seldestroy(&so->so_rcv.sb_sel);
414 seldestroy(&so->so_snd.sb_sel);
415 mutex_obj_free(so->so_lock);
416 cv_destroy(&so->so_cv);
417 cv_destroy(&so->so_rcv.sb_cv);
418 cv_destroy(&so->so_snd.sb_cv);
419 pool_cache_put(socket_cache, so);
420 }
421
422 /*
423 * soqinsque: insert socket of a new connection into the specified
424 * accept queue of the listening socket (head).
425 *
426 * q = 0: queue of partial connections
427 * q = 1: queue of incoming connections
428 */
429 void
430 soqinsque(struct socket *head, struct socket *so, int q)
431 {
432 KASSERT(q == 0 || q == 1);
433 KASSERT(solocked2(head, so));
434 KASSERT(so->so_onq == NULL);
435 KASSERT(so->so_head == NULL);
436
437 so->so_head = head;
438 if (q == 0) {
439 head->so_q0len++;
440 so->so_onq = &head->so_q0;
441 } else {
442 head->so_qlen++;
443 so->so_onq = &head->so_q;
444 }
445 TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
446 }
447
448 /*
449 * soqremque: remove socket from the specified queue.
450 *
451 * => Returns true if socket was removed from the specified queue.
452 * => False if socket was not removed (because it was in other queue).
453 */
454 bool
455 soqremque(struct socket *so, int q)
456 {
457 struct socket *head = so->so_head;
458
459 KASSERT(q == 0 || q == 1);
460 KASSERT(solocked(so));
461 KASSERT(so->so_onq != NULL);
462 KASSERT(head != NULL);
463
464 if (q == 0) {
465 if (so->so_onq != &head->so_q0)
466 return false;
467 head->so_q0len--;
468 } else {
469 if (so->so_onq != &head->so_q)
470 return false;
471 head->so_qlen--;
472 }
473 KASSERT(solocked2(so, head));
474 TAILQ_REMOVE(so->so_onq, so, so_qe);
475 so->so_onq = NULL;
476 so->so_head = NULL;
477 return true;
478 }
479
480 /*
481 * socantsendmore: indicates that no more data will be sent on the
482 * socket; it would normally be applied to a socket when the user
483 * informs the system that no more data is to be sent, by the protocol
484 * code (in case pr_shutdown()).
485 */
486 void
487 socantsendmore(struct socket *so)
488 {
489 KASSERT(solocked(so));
490
491 so->so_state |= SS_CANTSENDMORE;
492 sowwakeup(so);
493 }
494
495 /*
496 * socantrcvmore(): indicates that no more data will be received and
497 * will normally be applied to the socket by a protocol when it detects
498 * that the peer will send no more data. Data queued for reading in
499 * the socket may yet be read.
500 */
501 void
502 socantrcvmore(struct socket *so)
503 {
504 KASSERT(solocked(so));
505
506 so->so_state |= SS_CANTRCVMORE;
507 sorwakeup(so);
508 }
509
510 /*
511 * soroverflow(): indicates that data was attempted to be sent
512 * but the receiving buffer overflowed.
513 */
514 void
515 soroverflow(struct socket *so)
516 {
517 KASSERT(solocked(so));
518
519 so->so_rcv.sb_overflowed++;
520 if (so->so_options & SO_RERROR) {
521 so->so_rerror = ENOBUFS;
522 sorwakeup(so);
523 }
524 }
525
526 /*
527 * Wait for data to arrive at/drain from a socket buffer.
528 */
529 int
530 sbwait(struct sockbuf *sb)
531 {
532 struct socket *so;
533 kmutex_t *lock;
534 int error;
535
536 so = sb->sb_so;
537
538 KASSERT(solocked(so));
539
540 sb->sb_flags |= SB_NOTIFY;
541 lock = so->so_lock;
542 if ((sb->sb_flags & SB_NOINTR) != 0)
543 error = cv_timedwait(&sb->sb_cv, lock, sb->sb_timeo);
544 else
545 error = cv_timedwait_sig(&sb->sb_cv, lock, sb->sb_timeo);
546 if (__predict_false(lock != atomic_load_relaxed(&so->so_lock)))
547 solockretry(so, lock);
548 return error;
549 }
550
551 /*
552 * Wakeup processes waiting on a socket buffer.
553 * Do asynchronous notification via SIGIO
554 * if the socket buffer has the SB_ASYNC flag set.
555 */
556 void
557 sowakeup(struct socket *so, struct sockbuf *sb, int code)
558 {
559 int band;
560
561 KASSERT(solocked(so));
562 KASSERT(sb->sb_so == so);
563
564 switch (code) {
565 case POLL_IN:
566 band = POLLIN|POLLRDNORM;
567 break;
568
569 case POLL_OUT:
570 band = POLLOUT|POLLWRNORM;
571 break;
572
573 case POLL_HUP:
574 band = POLLHUP;
575 break;
576
577 default:
578 band = 0;
579 #ifdef DIAGNOSTIC
580 printf("bad siginfo code %d in socket notification.\n", code);
581 #endif
582 break;
583 }
584
585 sb->sb_flags &= ~SB_NOTIFY;
586 selnotify(&sb->sb_sel, band, NOTE_SUBMIT);
587 cv_broadcast(&sb->sb_cv);
588 if (sb->sb_flags & SB_ASYNC)
589 fownsignal(so->so_pgid, SIGIO, code, band, so);
590 if (sb->sb_flags & SB_UPCALL)
591 (*so->so_upcall)(so, so->so_upcallarg, band, M_DONTWAIT);
592 }
593
594 /*
595 * Reset a socket's lock pointer. Wake all threads waiting on the
596 * socket's condition variables so that they can restart their waits
597 * using the new lock. The existing lock must be held.
598 *
599 * Caller must have issued membar_release before this.
600 */
601 void
602 solockreset(struct socket *so, kmutex_t *lock)
603 {
604
605 KASSERT(solocked(so));
606
607 so->so_lock = lock;
608 cv_broadcast(&so->so_snd.sb_cv);
609 cv_broadcast(&so->so_rcv.sb_cv);
610 cv_broadcast(&so->so_cv);
611 }
612
613 /*
614 * Socket buffer (struct sockbuf) utility routines.
615 *
616 * Each socket contains two socket buffers: one for sending data and
617 * one for receiving data. Each buffer contains a queue of mbufs,
618 * information about the number of mbufs and amount of data in the
619 * queue, and other fields allowing poll() statements and notification
620 * on data availability to be implemented.
621 *
622 * Data stored in a socket buffer is maintained as a list of records.
623 * Each record is a list of mbufs chained together with the m_next
624 * field. Records are chained together with the m_nextpkt field. The upper
625 * level routine soreceive() expects the following conventions to be
626 * observed when placing information in the receive buffer:
627 *
628 * 1. If the protocol requires each message be preceded by the sender's
629 * name, then a record containing that name must be present before
630 * any associated data (mbuf's must be of type MT_SONAME).
631 * 2. If the protocol supports the exchange of ``access rights'' (really
632 * just additional data associated with the message), and there are
633 * ``rights'' to be received, then a record containing this data
634 * should be present (mbuf's must be of type MT_CONTROL).
635 * 3. If a name or rights record exists, then it must be followed by
636 * a data record, perhaps of zero length.
637 *
638 * Before using a new socket structure it is first necessary to reserve
639 * buffer space to the socket, by calling sbreserve(). This should commit
640 * some of the available buffer space in the system buffer pool for the
641 * socket (currently, it does nothing but enforce limits). The space
642 * should be released by calling sbrelease() when the socket is destroyed.
643 */
644
645 int
646 sb_max_set(u_long new_sbmax)
647 {
648 int s;
649
650 if (new_sbmax < (16 * 1024))
651 return (EINVAL);
652
653 s = splsoftnet();
654 sb_max = new_sbmax;
655 sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
656 splx(s);
657
658 return (0);
659 }
660
661 int
662 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
663 {
664 KASSERT(so->so_pcb == NULL || solocked(so));
665
666 /*
667 * there's at least one application (a configure script of screen)
668 * which expects a fifo is writable even if it has "some" bytes
669 * in its buffer.
670 * so we want to make sure (hiwat - lowat) >= (some bytes).
671 *
672 * PIPE_BUF here is an arbitrary value chosen as (some bytes) above.
673 * we expect it's large enough for such applications.
674 */
675 u_long lowat = MAX(sock_loan_thresh, MCLBYTES);
676 u_long hiwat = lowat + PIPE_BUF;
677
678 if (sndcc < hiwat)
679 sndcc = hiwat;
680 if (sbreserve(&so->so_snd, sndcc, so) == 0)
681 goto bad;
682 if (sbreserve(&so->so_rcv, rcvcc, so) == 0)
683 goto bad2;
684 if (so->so_rcv.sb_lowat == 0)
685 so->so_rcv.sb_lowat = 1;
686 if (so->so_snd.sb_lowat == 0)
687 so->so_snd.sb_lowat = lowat;
688 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
689 so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
690 return (0);
691 bad2:
692 sbrelease(&so->so_snd, so);
693 bad:
694 return (ENOBUFS);
695 }
696
697 /*
698 * Allot mbufs to a sockbuf.
699 * Attempt to scale mbmax so that mbcnt doesn't become limiting
700 * if buffering efficiency is near the normal case.
701 */
702 int
703 sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
704 {
705 struct lwp *l = curlwp; /* XXX */
706 rlim_t maxcc;
707 struct uidinfo *uidinfo;
708
709 KASSERT(so->so_pcb == NULL || solocked(so));
710 KASSERT(sb->sb_so == so);
711 KASSERT(sb_max_adj != 0);
712
713 if (cc == 0 || cc > sb_max_adj)
714 return (0);
715
716 maxcc = l->l_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur;
717
718 uidinfo = so->so_uidinfo;
719 if (!chgsbsize(uidinfo, &sb->sb_hiwat, cc, maxcc))
720 return 0;
721 sb->sb_mbmax = uimin(cc * 2, sb_max);
722 if (sb->sb_lowat > sb->sb_hiwat)
723 sb->sb_lowat = sb->sb_hiwat;
724
725 return (1);
726 }
727
728 /*
729 * Free mbufs held by a socket, and reserved mbuf space. We do not assert
730 * that the socket is held locked here: see sorflush().
731 */
732 void
733 sbrelease(struct sockbuf *sb, struct socket *so)
734 {
735
736 KASSERT(sb->sb_so == so);
737
738 sbflush(sb);
739 (void)chgsbsize(so->so_uidinfo, &sb->sb_hiwat, 0, RLIM_INFINITY);
740 sb->sb_mbmax = 0;
741 }
742
743 /*
744 * Routines to add and remove
745 * data from an mbuf queue.
746 *
747 * The routines sbappend() or sbappendrecord() are normally called to
748 * append new mbufs to a socket buffer, after checking that adequate
749 * space is available, comparing the function sbspace() with the amount
750 * of data to be added. sbappendrecord() differs from sbappend() in
751 * that data supplied is treated as the beginning of a new record.
752 * To place a sender's address, optional access rights, and data in a
753 * socket receive buffer, sbappendaddr() should be used. To place
754 * access rights and data in a socket receive buffer, sbappendrights()
755 * should be used. In either case, the new data begins a new record.
756 * Note that unlike sbappend() and sbappendrecord(), these routines check
757 * for the caller that there will be enough space to store the data.
758 * Each fails if there is not enough space, or if it cannot find mbufs
759 * to store additional information in.
760 *
761 * Reliable protocols may use the socket send buffer to hold data
762 * awaiting acknowledgement. Data is normally copied from a socket
763 * send buffer in a protocol with m_copym for output to a peer,
764 * and then removing the data from the socket buffer with sbdrop()
765 * or sbdroprecord() when the data is acknowledged by the peer.
766 */
767
768 #ifdef SOCKBUF_DEBUG
769 void
770 sblastrecordchk(struct sockbuf *sb, const char *where)
771 {
772 struct mbuf *m = sb->sb_mb;
773
774 KASSERT(solocked(sb->sb_so));
775
776 while (m && m->m_nextpkt)
777 m = m->m_nextpkt;
778
779 if (m != sb->sb_lastrecord) {
780 printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
781 sb->sb_mb, sb->sb_lastrecord, m);
782 printf("packet chain:\n");
783 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
784 printf("\t%p\n", m);
785 panic("sblastrecordchk from %s", where);
786 }
787 }
788
789 void
790 sblastmbufchk(struct sockbuf *sb, const char *where)
791 {
792 struct mbuf *m = sb->sb_mb;
793 struct mbuf *n;
794
795 KASSERT(solocked(sb->sb_so));
796
797 while (m && m->m_nextpkt)
798 m = m->m_nextpkt;
799
800 while (m && m->m_next)
801 m = m->m_next;
802
803 if (m != sb->sb_mbtail) {
804 printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
805 sb->sb_mb, sb->sb_mbtail, m);
806 printf("packet tree:\n");
807 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
808 printf("\t");
809 for (n = m; n != NULL; n = n->m_next)
810 printf("%p ", n);
811 printf("\n");
812 }
813 panic("sblastmbufchk from %s", where);
814 }
815 }
816 #endif /* SOCKBUF_DEBUG */
817
818 /*
819 * Link a chain of records onto a socket buffer
820 */
821 #define SBLINKRECORDCHAIN(sb, m0, mlast) \
822 do { \
823 if ((sb)->sb_lastrecord != NULL) \
824 (sb)->sb_lastrecord->m_nextpkt = (m0); \
825 else \
826 (sb)->sb_mb = (m0); \
827 (sb)->sb_lastrecord = (mlast); \
828 } while (/*CONSTCOND*/0)
829
830
831 #define SBLINKRECORD(sb, m0) \
832 SBLINKRECORDCHAIN(sb, m0, m0)
833
834 /*
835 * Append mbuf chain m to the last record in the
836 * socket buffer sb. The additional space associated
837 * the mbuf chain is recorded in sb. Empty mbufs are
838 * discarded and mbufs are compacted where possible.
839 */
840 void
841 sbappend(struct sockbuf *sb, struct mbuf *m)
842 {
843 struct mbuf *n;
844
845 KASSERT(solocked(sb->sb_so));
846
847 if (m == NULL)
848 return;
849
850 #ifdef MBUFTRACE
851 m_claimm(m, sb->sb_mowner);
852 #endif
853
854 SBLASTRECORDCHK(sb, "sbappend 1");
855
856 if ((n = sb->sb_lastrecord) != NULL) {
857 /*
858 * XXX Would like to simply use sb_mbtail here, but
859 * XXX I need to verify that I won't miss an EOR that
860 * XXX way.
861 */
862 do {
863 if (n->m_flags & M_EOR) {
864 sbappendrecord(sb, m); /* XXXXXX!!!! */
865 return;
866 }
867 } while (n->m_next && (n = n->m_next));
868 } else {
869 /*
870 * If this is the first record in the socket buffer, it's
871 * also the last record.
872 */
873 sb->sb_lastrecord = m;
874 }
875 sbcompress(sb, m, n);
876 SBLASTRECORDCHK(sb, "sbappend 2");
877 }
878
879 /*
880 * This version of sbappend() should only be used when the caller
881 * absolutely knows that there will never be more than one record
882 * in the socket buffer, that is, a stream protocol (such as TCP).
883 */
884 void
885 sbappendstream(struct sockbuf *sb, struct mbuf *m)
886 {
887
888 KASSERT(solocked(sb->sb_so));
889 KDASSERT(m->m_nextpkt == NULL);
890 KASSERT(sb->sb_mb == sb->sb_lastrecord);
891
892 SBLASTMBUFCHK(sb, __func__);
893
894 #ifdef MBUFTRACE
895 m_claimm(m, sb->sb_mowner);
896 #endif
897
898 sbcompress(sb, m, sb->sb_mbtail);
899
900 sb->sb_lastrecord = sb->sb_mb;
901 SBLASTRECORDCHK(sb, __func__);
902 }
903
904 #ifdef SOCKBUF_DEBUG
905 void
906 sbcheck(struct sockbuf *sb)
907 {
908 struct mbuf *m, *m2;
909 u_long len, mbcnt;
910
911 KASSERT(solocked(sb->sb_so));
912
913 len = 0;
914 mbcnt = 0;
915 for (m = sb->sb_mb; m; m = m->m_nextpkt) {
916 for (m2 = m; m2 != NULL; m2 = m2->m_next) {
917 len += m2->m_len;
918 mbcnt += MSIZE;
919 if (m2->m_flags & M_EXT)
920 mbcnt += m2->m_ext.ext_size;
921 if (m2->m_nextpkt != NULL)
922 panic("sbcheck nextpkt");
923 }
924 }
925 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
926 printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
927 mbcnt, sb->sb_mbcnt);
928 panic("sbcheck");
929 }
930 }
931 #endif
932
933 /*
934 * As above, except the mbuf chain
935 * begins a new record.
936 */
937 void
938 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
939 {
940 struct mbuf *m;
941
942 KASSERT(solocked(sb->sb_so));
943
944 if (m0 == NULL)
945 return;
946
947 #ifdef MBUFTRACE
948 m_claimm(m0, sb->sb_mowner);
949 #endif
950 /*
951 * Put the first mbuf on the queue.
952 * Note this permits zero length records.
953 */
954 sballoc(sb, m0);
955 SBLASTRECORDCHK(sb, "sbappendrecord 1");
956 SBLINKRECORD(sb, m0);
957 m = m0->m_next;
958 m0->m_next = 0;
959 if (m && (m0->m_flags & M_EOR)) {
960 m0->m_flags &= ~M_EOR;
961 m->m_flags |= M_EOR;
962 }
963 sbcompress(sb, m, m0);
964 SBLASTRECORDCHK(sb, "sbappendrecord 2");
965 }
966
967 /*
968 * As above except that OOB data
969 * is inserted at the beginning of the sockbuf,
970 * but after any other OOB data.
971 */
972 void
973 sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
974 {
975 struct mbuf *m, **mp;
976
977 KASSERT(solocked(sb->sb_so));
978
979 if (m0 == NULL)
980 return;
981
982 SBLASTRECORDCHK(sb, "sbinsertoob 1");
983
984 for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
985 again:
986 switch (m->m_type) {
987
988 case MT_OOBDATA:
989 continue; /* WANT next train */
990
991 case MT_CONTROL:
992 if ((m = m->m_next) != NULL)
993 goto again; /* inspect THIS train further */
994 }
995 break;
996 }
997 /*
998 * Put the first mbuf on the queue.
999 * Note this permits zero length records.
1000 */
1001 sballoc(sb, m0);
1002 m0->m_nextpkt = *mp;
1003 if (*mp == NULL) {
1004 /* m0 is actually the new tail */
1005 sb->sb_lastrecord = m0;
1006 }
1007 *mp = m0;
1008 m = m0->m_next;
1009 m0->m_next = 0;
1010 if (m && (m0->m_flags & M_EOR)) {
1011 m0->m_flags &= ~M_EOR;
1012 m->m_flags |= M_EOR;
1013 }
1014 sbcompress(sb, m, m0);
1015 SBLASTRECORDCHK(sb, "sbinsertoob 2");
1016 }
1017
1018 /*
1019 * Append address and data, and optionally, control (ancillary) data
1020 * to the receive queue of a socket. If present,
1021 * m0 must include a packet header with total length.
1022 * Returns 0 if no space in sockbuf or insufficient mbufs.
1023 */
1024 int
1025 sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0,
1026 struct mbuf *control)
1027 {
1028 struct mbuf *m, *n, *nlast;
1029 int space, len;
1030
1031 KASSERT(solocked(sb->sb_so));
1032
1033 space = asa->sa_len;
1034
1035 if (m0 != NULL) {
1036 if ((m0->m_flags & M_PKTHDR) == 0)
1037 panic("sbappendaddr");
1038 space += m0->m_pkthdr.len;
1039 #ifdef MBUFTRACE
1040 m_claimm(m0, sb->sb_mowner);
1041 #endif
1042 }
1043 for (n = control; n; n = n->m_next) {
1044 space += n->m_len;
1045 MCLAIM(n, sb->sb_mowner);
1046 if (n->m_next == NULL) /* keep pointer to last control buf */
1047 break;
1048 }
1049 if (space > sbspace(sb))
1050 return (0);
1051 m = m_get(M_DONTWAIT, MT_SONAME);
1052 if (m == NULL)
1053 return (0);
1054 MCLAIM(m, sb->sb_mowner);
1055 /*
1056 * XXX avoid 'comparison always true' warning which isn't easily
1057 * avoided.
1058 */
1059 len = asa->sa_len;
1060 if (len > MLEN) {
1061 MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
1062 if ((m->m_flags & M_EXT) == 0) {
1063 m_free(m);
1064 return (0);
1065 }
1066 }
1067 m->m_len = asa->sa_len;
1068 memcpy(mtod(m, void *), asa, asa->sa_len);
1069 if (n)
1070 n->m_next = m0; /* concatenate data to control */
1071 else
1072 control = m0;
1073 m->m_next = control;
1074
1075 SBLASTRECORDCHK(sb, "sbappendaddr 1");
1076
1077 for (n = m; n->m_next != NULL; n = n->m_next)
1078 sballoc(sb, n);
1079 sballoc(sb, n);
1080 nlast = n;
1081 SBLINKRECORD(sb, m);
1082
1083 sb->sb_mbtail = nlast;
1084 SBLASTMBUFCHK(sb, "sbappendaddr");
1085 SBLASTRECORDCHK(sb, "sbappendaddr 2");
1086
1087 return (1);
1088 }
1089
1090 /*
1091 * Helper for sbappendchainaddr: prepend a struct sockaddr* to
1092 * an mbuf chain.
1093 */
1094 static inline struct mbuf *
1095 m_prepend_sockaddr(struct sockbuf *sb, struct mbuf *m0,
1096 const struct sockaddr *asa)
1097 {
1098 struct mbuf *m;
1099 const int salen = asa->sa_len;
1100
1101 KASSERT(solocked(sb->sb_so));
1102
1103 /* only the first in each chain need be a pkthdr */
1104 m = m_gethdr(M_DONTWAIT, MT_SONAME);
1105 if (m == NULL)
1106 return NULL;
1107 MCLAIM(m, sb->sb_mowner);
1108 #ifdef notyet
1109 if (salen > MHLEN) {
1110 MEXTMALLOC(m, salen, M_NOWAIT);
1111 if ((m->m_flags & M_EXT) == 0) {
1112 m_free(m);
1113 return NULL;
1114 }
1115 }
1116 #else
1117 KASSERT(salen <= MHLEN);
1118 #endif
1119 m->m_len = salen;
1120 memcpy(mtod(m, void *), asa, salen);
1121 m->m_next = m0;
1122 m->m_pkthdr.len = salen + m0->m_pkthdr.len;
1123
1124 return m;
1125 }
1126
1127 int
1128 sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa,
1129 struct mbuf *m0, int sbprio)
1130 {
1131 struct mbuf *m, *n, *n0, *nlast;
1132 int error;
1133
1134 KASSERT(solocked(sb->sb_so));
1135
1136 /*
1137 * XXX sbprio reserved for encoding priority of this* request:
1138 * SB_PRIO_NONE --> honour normal sb limits
1139 * SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space,
1140 * take whole chain. Intended for large requests
1141 * that should be delivered atomically (all, or none).
1142 * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow
1143 * over normal socket limits, for messages indicating
1144 * buffer overflow in earlier normal/lower-priority messages
1145 * SB_PRIO_BESTEFFORT --> ignore limits entirely.
1146 * Intended for kernel-generated messages only.
1147 * Up to generator to avoid total mbuf resource exhaustion.
1148 */
1149 (void)sbprio;
1150
1151 if (m0 && (m0->m_flags & M_PKTHDR) == 0)
1152 panic("sbappendaddrchain");
1153
1154 #ifdef notyet
1155 space = sbspace(sb);
1156
1157 /*
1158 * Enforce SB_PRIO_* limits as described above.
1159 */
1160 #endif
1161
1162 n0 = NULL;
1163 nlast = NULL;
1164 for (m = m0; m; m = m->m_nextpkt) {
1165 struct mbuf *np;
1166
1167 #ifdef MBUFTRACE
1168 m_claimm(m, sb->sb_mowner);
1169 #endif
1170
1171 /* Prepend sockaddr to this record (m) of input chain m0 */
1172 n = m_prepend_sockaddr(sb, m, asa);
1173 if (n == NULL) {
1174 error = ENOBUFS;
1175 goto bad;
1176 }
1177
1178 /* Append record (asa+m) to end of new chain n0 */
1179 if (n0 == NULL) {
1180 n0 = n;
1181 } else {
1182 nlast->m_nextpkt = n;
1183 }
1184 /* Keep track of last record on new chain */
1185 nlast = n;
1186
1187 for (np = n; np; np = np->m_next)
1188 sballoc(sb, np);
1189 }
1190
1191 SBLASTRECORDCHK(sb, "sbappendaddrchain 1");
1192
1193 /* Drop the entire chain of (asa+m) records onto the socket */
1194 SBLINKRECORDCHAIN(sb, n0, nlast);
1195
1196 SBLASTRECORDCHK(sb, "sbappendaddrchain 2");
1197
1198 for (m = nlast; m->m_next; m = m->m_next)
1199 ;
1200 sb->sb_mbtail = m;
1201 SBLASTMBUFCHK(sb, "sbappendaddrchain");
1202
1203 return (1);
1204
1205 bad:
1206 /*
1207 * On error, free the prepended addresses. For consistency
1208 * with sbappendaddr(), leave it to our caller to free
1209 * the input record chain passed to us as m0.
1210 */
1211 while ((n = n0) != NULL) {
1212 struct mbuf *np;
1213
1214 /* Undo the sballoc() of this record */
1215 for (np = n; np; np = np->m_next)
1216 sbfree(sb, np);
1217
1218 n0 = n->m_nextpkt; /* iterate at next prepended address */
1219 np = m_free(n); /* free prepended address (not data) */
1220 }
1221 return error;
1222 }
1223
1224
1225 int
1226 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
1227 {
1228 struct mbuf *m, *mlast, *n;
1229 int space;
1230
1231 KASSERT(solocked(sb->sb_so));
1232
1233 space = 0;
1234 if (control == NULL)
1235 panic("sbappendcontrol");
1236 for (m = control; ; m = m->m_next) {
1237 space += m->m_len;
1238 MCLAIM(m, sb->sb_mowner);
1239 if (m->m_next == NULL)
1240 break;
1241 }
1242 n = m; /* save pointer to last control buffer */
1243 for (m = m0; m; m = m->m_next) {
1244 MCLAIM(m, sb->sb_mowner);
1245 space += m->m_len;
1246 }
1247 if (space > sbspace(sb))
1248 return (0);
1249 n->m_next = m0; /* concatenate data to control */
1250
1251 SBLASTRECORDCHK(sb, "sbappendcontrol 1");
1252
1253 for (m = control; m->m_next != NULL; m = m->m_next)
1254 sballoc(sb, m);
1255 sballoc(sb, m);
1256 mlast = m;
1257 SBLINKRECORD(sb, control);
1258
1259 sb->sb_mbtail = mlast;
1260 SBLASTMBUFCHK(sb, "sbappendcontrol");
1261 SBLASTRECORDCHK(sb, "sbappendcontrol 2");
1262
1263 return (1);
1264 }
1265
1266 /*
1267 * Compress mbuf chain m into the socket
1268 * buffer sb following mbuf n. If n
1269 * is null, the buffer is presumed empty.
1270 */
1271 void
1272 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
1273 {
1274 int eor;
1275 struct mbuf *o;
1276
1277 KASSERT(solocked(sb->sb_so));
1278
1279 eor = 0;
1280 while (m) {
1281 eor |= m->m_flags & M_EOR;
1282 if (m->m_len == 0 &&
1283 (eor == 0 ||
1284 (((o = m->m_next) || (o = n)) &&
1285 o->m_type == m->m_type))) {
1286 if (sb->sb_lastrecord == m)
1287 sb->sb_lastrecord = m->m_next;
1288 m = m_free(m);
1289 continue;
1290 }
1291 if (n && (n->m_flags & M_EOR) == 0 &&
1292 /* M_TRAILINGSPACE() checks buffer writeability */
1293 m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
1294 m->m_len <= M_TRAILINGSPACE(n) &&
1295 n->m_type == m->m_type) {
1296 memcpy(mtod(n, char *) + n->m_len, mtod(m, void *),
1297 (unsigned)m->m_len);
1298 n->m_len += m->m_len;
1299 sb->sb_cc += m->m_len;
1300 m = m_free(m);
1301 continue;
1302 }
1303 if (n)
1304 n->m_next = m;
1305 else
1306 sb->sb_mb = m;
1307 sb->sb_mbtail = m;
1308 sballoc(sb, m);
1309 n = m;
1310 m->m_flags &= ~M_EOR;
1311 m = m->m_next;
1312 n->m_next = 0;
1313 }
1314 if (eor) {
1315 if (n)
1316 n->m_flags |= eor;
1317 else
1318 printf("semi-panic: sbcompress\n");
1319 }
1320 SBLASTMBUFCHK(sb, __func__);
1321 }
1322
1323 /*
1324 * Free all mbufs in a sockbuf.
1325 * Check that all resources are reclaimed.
1326 */
1327 void
1328 sbflush(struct sockbuf *sb)
1329 {
1330
1331 KASSERT(solocked(sb->sb_so));
1332 KASSERT((sb->sb_flags & SB_LOCK) == 0);
1333
1334 while (sb->sb_mbcnt)
1335 sbdrop(sb, (int)sb->sb_cc);
1336
1337 KASSERT(sb->sb_cc == 0);
1338 KASSERT(sb->sb_mb == NULL);
1339 KASSERT(sb->sb_mbtail == NULL);
1340 KASSERT(sb->sb_lastrecord == NULL);
1341 }
1342
1343 /*
1344 * Drop data from (the front of) a sockbuf.
1345 */
1346 void
1347 sbdrop(struct sockbuf *sb, int len)
1348 {
1349 struct mbuf *m, *next;
1350
1351 KASSERT(solocked(sb->sb_so));
1352
1353 next = (m = sb->sb_mb) ? m->m_nextpkt : NULL;
1354 while (len > 0) {
1355 if (m == NULL) {
1356 if (next == NULL)
1357 panic("sbdrop(%p,%d): cc=%lu",
1358 sb, len, sb->sb_cc);
1359 m = next;
1360 next = m->m_nextpkt;
1361 continue;
1362 }
1363 if (m->m_len > len) {
1364 m->m_len -= len;
1365 m->m_data += len;
1366 sb->sb_cc -= len;
1367 break;
1368 }
1369 len -= m->m_len;
1370 sbfree(sb, m);
1371 m = m_free(m);
1372 }
1373 while (m && m->m_len == 0) {
1374 sbfree(sb, m);
1375 m = m_free(m);
1376 }
1377 if (m) {
1378 sb->sb_mb = m;
1379 m->m_nextpkt = next;
1380 } else
1381 sb->sb_mb = next;
1382 /*
1383 * First part is an inline SB_EMPTY_FIXUP(). Second part
1384 * makes sure sb_lastrecord is up-to-date if we dropped
1385 * part of the last record.
1386 */
1387 m = sb->sb_mb;
1388 if (m == NULL) {
1389 sb->sb_mbtail = NULL;
1390 sb->sb_lastrecord = NULL;
1391 } else if (m->m_nextpkt == NULL)
1392 sb->sb_lastrecord = m;
1393 }
1394
1395 /*
1396 * Drop a record off the front of a sockbuf
1397 * and move the next record to the front.
1398 */
1399 void
1400 sbdroprecord(struct sockbuf *sb)
1401 {
1402 struct mbuf *m, *mn;
1403
1404 KASSERT(solocked(sb->sb_so));
1405
1406 m = sb->sb_mb;
1407 if (m) {
1408 sb->sb_mb = m->m_nextpkt;
1409 do {
1410 sbfree(sb, m);
1411 mn = m_free(m);
1412 } while ((m = mn) != NULL);
1413 }
1414 SB_EMPTY_FIXUP(sb);
1415 }
1416
1417 /*
1418 * Create a "control" mbuf containing the specified data
1419 * with the specified type for presentation on a socket buffer.
1420 */
1421 struct mbuf *
1422 sbcreatecontrol1(void **p, int size, int type, int level, int flags)
1423 {
1424 struct cmsghdr *cp;
1425 struct mbuf *m;
1426 int space = CMSG_SPACE(size);
1427
1428 if ((flags & M_DONTWAIT) && space > MCLBYTES) {
1429 printf("%s: message too large %d\n", __func__, space);
1430 return NULL;
1431 }
1432
1433 if ((m = m_get(flags, MT_CONTROL)) == NULL)
1434 return NULL;
1435 if (space > MLEN) {
1436 if (space > MCLBYTES)
1437 MEXTMALLOC(m, space, M_WAITOK);
1438 else
1439 MCLGET(m, flags);
1440 if ((m->m_flags & M_EXT) == 0) {
1441 m_free(m);
1442 return NULL;
1443 }
1444 }
1445 cp = mtod(m, struct cmsghdr *);
1446 *p = CMSG_DATA(cp);
1447 m->m_len = space;
1448 cp->cmsg_len = CMSG_LEN(size);
1449 cp->cmsg_level = level;
1450 cp->cmsg_type = type;
1451
1452 memset(cp + 1, 0, CMSG_LEN(0) - sizeof(*cp));
1453 memset((uint8_t *)*p + size, 0, CMSG_ALIGN(size) - size);
1454
1455 return m;
1456 }
1457
1458 struct mbuf *
1459 sbcreatecontrol(void *p, int size, int type, int level)
1460 {
1461 struct mbuf *m;
1462 void *v;
1463
1464 m = sbcreatecontrol1(&v, size, type, level, M_DONTWAIT);
1465 if (m == NULL)
1466 return NULL;
1467 memcpy(v, p, size);
1468 return m;
1469 }
1470
1471 void
1472 solockretry(struct socket *so, kmutex_t *lock)
1473 {
1474
1475 while (lock != atomic_load_relaxed(&so->so_lock)) {
1476 mutex_exit(lock);
1477 lock = atomic_load_consume(&so->so_lock);
1478 mutex_enter(lock);
1479 }
1480 }
1481
1482 bool
1483 solocked(const struct socket *so)
1484 {
1485
1486 /*
1487 * Used only for diagnostic assertions, so so_lock should be
1488 * stable at this point, hence on need for atomic_load_*.
1489 */
1490 return mutex_owned(so->so_lock);
1491 }
1492
1493 bool
1494 solocked2(const struct socket *so1, const struct socket *so2)
1495 {
1496 const kmutex_t *lock;
1497
1498 /*
1499 * Used only for diagnostic assertions, so so_lock should be
1500 * stable at this point, hence on need for atomic_load_*.
1501 */
1502 lock = so1->so_lock;
1503 if (lock != so2->so_lock)
1504 return false;
1505 return mutex_owned(lock);
1506 }
1507
1508 /*
1509 * sosetlock: assign a default lock to a new socket.
1510 */
1511 void
1512 sosetlock(struct socket *so)
1513 {
1514 if (so->so_lock == NULL) {
1515 kmutex_t *lock = softnet_lock;
1516
1517 so->so_lock = lock;
1518 mutex_obj_hold(lock);
1519 mutex_enter(lock);
1520 }
1521 KASSERT(solocked(so));
1522 }
1523
1524 /*
1525 * Set lock on sockbuf sb; sleep if lock is already held.
1526 * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
1527 * Returns error without lock if sleep is interrupted.
1528 */
1529 int
1530 sblock(struct sockbuf *sb, int wf)
1531 {
1532 struct socket *so;
1533 kmutex_t *lock;
1534 int error;
1535
1536 KASSERT(solocked(sb->sb_so));
1537
1538 for (;;) {
1539 if (__predict_true((sb->sb_flags & SB_LOCK) == 0)) {
1540 sb->sb_flags |= SB_LOCK;
1541 return 0;
1542 }
1543 if (wf != M_WAITOK)
1544 return EWOULDBLOCK;
1545 so = sb->sb_so;
1546 lock = so->so_lock;
1547 if ((sb->sb_flags & SB_NOINTR) != 0) {
1548 cv_wait(&so->so_cv, lock);
1549 error = 0;
1550 } else
1551 error = cv_wait_sig(&so->so_cv, lock);
1552 if (__predict_false(lock != atomic_load_relaxed(&so->so_lock)))
1553 solockretry(so, lock);
1554 if (error != 0)
1555 return error;
1556 }
1557 }
1558
1559 void
1560 sbunlock(struct sockbuf *sb)
1561 {
1562 struct socket *so;
1563
1564 so = sb->sb_so;
1565
1566 KASSERT(solocked(so));
1567 KASSERT((sb->sb_flags & SB_LOCK) != 0);
1568
1569 sb->sb_flags &= ~SB_LOCK;
1570 cv_broadcast(&so->so_cv);
1571 }
1572
1573 int
1574 sowait(struct socket *so, bool catch_p, int timo)
1575 {
1576 kmutex_t *lock;
1577 int error;
1578
1579 KASSERT(solocked(so));
1580 KASSERT(catch_p || timo != 0);
1581
1582 lock = so->so_lock;
1583 if (catch_p)
1584 error = cv_timedwait_sig(&so->so_cv, lock, timo);
1585 else
1586 error = cv_timedwait(&so->so_cv, lock, timo);
1587 if (__predict_false(lock != atomic_load_relaxed(&so->so_lock)))
1588 solockretry(so, lock);
1589 return error;
1590 }
1591
1592 #ifdef DDB
1593
1594 /*
1595 * Currently, sofindproc() is used only from DDB. It could be used from others
1596 * by using db_mutex_enter()
1597 */
1598
1599 static inline int
1600 db_mutex_enter(kmutex_t *mtx)
1601 {
1602 int rv;
1603
1604 if (!db_active) {
1605 mutex_enter(mtx);
1606 rv = 1;
1607 } else
1608 rv = mutex_tryenter(mtx);
1609
1610 return rv;
1611 }
1612
1613 int
1614 sofindproc(struct socket *so, int all, void (*pr)(const char *, ...))
1615 {
1616 proc_t *p;
1617 filedesc_t *fdp;
1618 fdtab_t *dt;
1619 fdfile_t *ff;
1620 file_t *fp = NULL;
1621 int found = 0;
1622 int i, t;
1623
1624 if (so == NULL)
1625 return 0;
1626
1627 t = db_mutex_enter(&proc_lock);
1628 if (!t) {
1629 pr("could not acquire proc_lock mutex\n");
1630 return 0;
1631 }
1632 PROCLIST_FOREACH(p, &allproc) {
1633 if (p->p_stat == SIDL)
1634 continue;
1635 fdp = p->p_fd;
1636 t = db_mutex_enter(&fdp->fd_lock);
1637 if (!t) {
1638 pr("could not acquire fd_lock mutex\n");
1639 continue;
1640 }
1641 dt = atomic_load_consume(&fdp->fd_dt);
1642 for (i = 0; i < dt->dt_nfiles; i++) {
1643 ff = dt->dt_ff[i];
1644 if (ff == NULL)
1645 continue;
1646
1647 fp = atomic_load_consume(&ff->ff_file);
1648 if (fp == NULL)
1649 continue;
1650
1651 t = db_mutex_enter(&fp->f_lock);
1652 if (!t) {
1653 pr("could not acquire f_lock mutex\n");
1654 continue;
1655 }
1656 if ((struct socket *)fp->f_data != so) {
1657 mutex_exit(&fp->f_lock);
1658 continue;
1659 }
1660 found++;
1661 if (pr)
1662 pr("socket %p: owner %s(pid=%d)\n",
1663 so, p->p_comm, p->p_pid);
1664 mutex_exit(&fp->f_lock);
1665 if (all == 0)
1666 break;
1667 }
1668 mutex_exit(&fdp->fd_lock);
1669 if (all == 0 && found != 0)
1670 break;
1671 }
1672 mutex_exit(&proc_lock);
1673
1674 return found;
1675 }
1676
1677 void
1678 socket_print(const char *modif, void (*pr)(const char *, ...))
1679 {
1680 file_t *fp;
1681 struct socket *so;
1682 struct sockbuf *sb_snd, *sb_rcv;
1683 struct mbuf *m_rec, *m;
1684 bool opt_v = false;
1685 bool opt_m = false;
1686 bool opt_a = false;
1687 bool opt_p = false;
1688 int nrecs, nmbufs;
1689 char ch;
1690 const char *family;
1691
1692 while ( (ch = *(modif++)) != '\0') {
1693 switch (ch) {
1694 case 'v':
1695 opt_v = true;
1696 break;
1697 case 'm':
1698 opt_m = true;
1699 break;
1700 case 'a':
1701 opt_a = true;
1702 break;
1703 case 'p':
1704 opt_p = true;
1705 break;
1706 }
1707 }
1708 if (opt_v == false && pr)
1709 (pr)("Ignore empty sockets. use /v to print all.\n");
1710 if (opt_p == true && pr)
1711 (pr)("Don't search owner process.\n");
1712
1713 LIST_FOREACH(fp, &filehead, f_list) {
1714 if (fp->f_type != DTYPE_SOCKET)
1715 continue;
1716 so = (struct socket *)fp->f_data;
1717 if (so == NULL)
1718 continue;
1719
1720 if (so->so_proto->pr_domain->dom_family == AF_INET)
1721 family = "INET";
1722 #ifdef INET6
1723 else if (so->so_proto->pr_domain->dom_family == AF_INET6)
1724 family = "INET6";
1725 #endif
1726 else if (so->so_proto->pr_domain->dom_family == pseudo_AF_KEY)
1727 family = "KEY";
1728 else if (so->so_proto->pr_domain->dom_family == AF_ROUTE)
1729 family = "ROUTE";
1730 else
1731 continue;
1732
1733 sb_snd = &so->so_snd;
1734 sb_rcv = &so->so_rcv;
1735
1736 if (opt_v != true &&
1737 sb_snd->sb_cc == 0 && sb_rcv->sb_cc == 0)
1738 continue;
1739
1740 pr("---SOCKET %p: type %s\n", so, family);
1741 if (opt_p != true)
1742 sofindproc(so, opt_a == true ? 1 : 0, pr);
1743 pr("Send Buffer Bytes: %d [bytes]\n", sb_snd->sb_cc);
1744 pr("Send Buffer mbufs:\n");
1745 m_rec = m = sb_snd->sb_mb;
1746 nrecs = 0;
1747 nmbufs = 0;
1748 while (m_rec) {
1749 nrecs++;
1750 if (opt_m == true)
1751 pr(" mbuf chain %p\n", m_rec);
1752 while (m) {
1753 nmbufs++;
1754 m = m->m_next;
1755 }
1756 m_rec = m = m_rec->m_nextpkt;
1757 }
1758 pr(" Total %d records, %d mbufs.\n", nrecs, nmbufs);
1759
1760 pr("Recv Buffer Usage: %d [bytes]\n", sb_rcv->sb_cc);
1761 pr("Recv Buffer mbufs:\n");
1762 m_rec = m = sb_rcv->sb_mb;
1763 nrecs = 0;
1764 nmbufs = 0;
1765 while (m_rec) {
1766 nrecs++;
1767 if (opt_m == true)
1768 pr(" mbuf chain %p\n", m_rec);
1769 while (m) {
1770 nmbufs++;
1771 m = m->m_next;
1772 }
1773 m_rec = m = m_rec->m_nextpkt;
1774 }
1775 pr(" Total %d records, %d mbufs.\n", nrecs, nmbufs);
1776 }
1777 }
1778 #endif /* DDB */
1779