uipc_socket2.c revision 1.15 1 /* $NetBSD: uipc_socket2.c,v 1.15 1996/10/13 02:32:47 christos Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1988, 1990, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * @(#)uipc_socket2.c 8.1 (Berkeley) 6/10/93
36 */
37
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/proc.h>
41 #include <sys/file.h>
42 #include <sys/buf.h>
43 #include <sys/malloc.h>
44 #include <sys/mbuf.h>
45 #include <sys/protosw.h>
46 #include <sys/socket.h>
47 #include <sys/socketvar.h>
48 #include <sys/signalvar.h>
49
50 /*
51 * Primitive routines for operating on sockets and socket buffers
52 */
53
54 /* strings for sleep message: */
55 char netio[] = "netio";
56 char netcon[] = "netcon";
57 char netcls[] = "netcls";
58
59 u_long sb_max = SB_MAX; /* patchable */
60
61 /*
62 * Procedures to manipulate state flags of socket
63 * and do appropriate wakeups. Normal sequence from the
64 * active (originating) side is that soisconnecting() is
65 * called during processing of connect() call,
66 * resulting in an eventual call to soisconnected() if/when the
67 * connection is established. When the connection is torn down
68 * soisdisconnecting() is called during processing of disconnect() call,
69 * and soisdisconnected() is called when the connection to the peer
70 * is totally severed. The semantics of these routines are such that
71 * connectionless protocols can call soisconnected() and soisdisconnected()
72 * only, bypassing the in-progress calls when setting up a ``connection''
73 * takes no time.
74 *
75 * From the passive side, a socket is created with
76 * two queues of sockets: so_q0 for connections in progress
77 * and so_q for connections already made and awaiting user acceptance.
78 * As a protocol is preparing incoming connections, it creates a socket
79 * structure queued on so_q0 by calling sonewconn(). When the connection
80 * is established, soisconnected() is called, and transfers the
81 * socket structure to so_q, making it available to accept().
82 *
83 * If a socket is closed with sockets on either
84 * so_q0 or so_q, these sockets are dropped.
85 *
86 * If higher level protocols are implemented in
87 * the kernel, the wakeups done here will sometimes
88 * cause software-interrupt process scheduling.
89 */
90
91 void
92 soisconnecting(so)
93 register struct socket *so;
94 {
95
96 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
97 so->so_state |= SS_ISCONNECTING;
98 }
99
100 void
101 soisconnected(so)
102 register struct socket *so;
103 {
104 register struct socket *head = so->so_head;
105
106 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
107 so->so_state |= SS_ISCONNECTED;
108 if (head && soqremque(so, 0)) {
109 soqinsque(head, so, 1);
110 sorwakeup(head);
111 wakeup((caddr_t)&head->so_timeo);
112 } else {
113 wakeup((caddr_t)&so->so_timeo);
114 sorwakeup(so);
115 sowwakeup(so);
116 }
117 }
118
119 void
120 soisdisconnecting(so)
121 register struct socket *so;
122 {
123
124 so->so_state &= ~SS_ISCONNECTING;
125 so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
126 wakeup((caddr_t)&so->so_timeo);
127 sowwakeup(so);
128 sorwakeup(so);
129 }
130
131 void
132 soisdisconnected(so)
133 register struct socket *so;
134 {
135
136 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
137 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE);
138 wakeup((caddr_t)&so->so_timeo);
139 sowwakeup(so);
140 sorwakeup(so);
141 }
142
143 /*
144 * When an attempt at a new connection is noted on a socket
145 * which accepts connections, sonewconn is called. If the
146 * connection is possible (subject to space constraints, etc.)
147 * then we allocate a new structure, propoerly linked into the
148 * data structure of the original socket, and return this.
149 * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
150 *
151 * Currently, sonewconn() is defined as sonewconn1() in socketvar.h
152 * to catch calls that are missing the (new) second parameter.
153 */
154 struct socket *
155 sonewconn1(head, connstatus)
156 register struct socket *head;
157 int connstatus;
158 {
159 register struct socket *so;
160 int soqueue = connstatus ? 1 : 0;
161
162 if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
163 return ((struct socket *)0);
164 MALLOC(so, struct socket *, sizeof(*so), M_SOCKET, M_DONTWAIT);
165 if (so == NULL)
166 return ((struct socket *)0);
167 bzero((caddr_t)so, sizeof(*so));
168 so->so_type = head->so_type;
169 so->so_options = head->so_options &~ SO_ACCEPTCONN;
170 so->so_linger = head->so_linger;
171 so->so_state = head->so_state | SS_NOFDREF;
172 so->so_proto = head->so_proto;
173 so->so_timeo = head->so_timeo;
174 so->so_pgid = head->so_pgid;
175 (void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
176 soqinsque(head, so, soqueue);
177 if ((*so->so_proto->pr_usrreq)(so, PRU_ATTACH,
178 (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
179 (struct proc *)0)) {
180 (void) soqremque(so, soqueue);
181 (void) free((caddr_t)so, M_SOCKET);
182 return ((struct socket *)0);
183 }
184 if (connstatus) {
185 sorwakeup(head);
186 wakeup((caddr_t)&head->so_timeo);
187 so->so_state |= connstatus;
188 }
189 return (so);
190 }
191
192 void
193 soqinsque(head, so, q)
194 register struct socket *head, *so;
195 int q;
196 {
197
198 register struct socket **prev;
199 so->so_head = head;
200 if (q == 0) {
201 head->so_q0len++;
202 so->so_q0 = 0;
203 for (prev = &(head->so_q0); *prev; )
204 prev = &((*prev)->so_q0);
205 } else {
206 head->so_qlen++;
207 so->so_q = 0;
208 for (prev = &(head->so_q); *prev; )
209 prev = &((*prev)->so_q);
210 }
211 *prev = so;
212 }
213
214 int
215 soqremque(so, q)
216 register struct socket *so;
217 int q;
218 {
219 register struct socket *head, *prev, *next;
220
221 head = so->so_head;
222 prev = head;
223 for (;;) {
224 next = q ? prev->so_q : prev->so_q0;
225 if (next == so)
226 break;
227 if (next == 0)
228 return (0);
229 prev = next;
230 }
231 if (q == 0) {
232 prev->so_q0 = next->so_q0;
233 head->so_q0len--;
234 } else {
235 prev->so_q = next->so_q;
236 head->so_qlen--;
237 }
238 next->so_q0 = next->so_q = 0;
239 next->so_head = 0;
240 return (1);
241 }
242
243 /*
244 * Socantsendmore indicates that no more data will be sent on the
245 * socket; it would normally be applied to a socket when the user
246 * informs the system that no more data is to be sent, by the protocol
247 * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data
248 * will be received, and will normally be applied to the socket by a
249 * protocol when it detects that the peer will send no more data.
250 * Data queued for reading in the socket may yet be read.
251 */
252
253 void
254 socantsendmore(so)
255 struct socket *so;
256 {
257
258 so->so_state |= SS_CANTSENDMORE;
259 sowwakeup(so);
260 }
261
262 void
263 socantrcvmore(so)
264 struct socket *so;
265 {
266
267 so->so_state |= SS_CANTRCVMORE;
268 sorwakeup(so);
269 }
270
271 /*
272 * Wait for data to arrive at/drain from a socket buffer.
273 */
274 int
275 sbwait(sb)
276 struct sockbuf *sb;
277 {
278
279 sb->sb_flags |= SB_WAIT;
280 return (tsleep((caddr_t)&sb->sb_cc,
281 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, netio,
282 sb->sb_timeo));
283 }
284
285 /*
286 * Lock a sockbuf already known to be locked;
287 * return any error returned from sleep (EINTR).
288 */
289 int
290 sb_lock(sb)
291 register struct sockbuf *sb;
292 {
293 int error;
294
295 while (sb->sb_flags & SB_LOCK) {
296 sb->sb_flags |= SB_WANT;
297 error = tsleep((caddr_t)&sb->sb_flags,
298 (sb->sb_flags & SB_NOINTR) ?
299 PSOCK : PSOCK|PCATCH, netio, 0);
300 if (error)
301 return (error);
302 }
303 sb->sb_flags |= SB_LOCK;
304 return (0);
305 }
306
307 /*
308 * Wakeup processes waiting on a socket buffer.
309 * Do asynchronous notification via SIGIO
310 * if the socket has the SS_ASYNC flag set.
311 */
312 void
313 sowakeup(so, sb)
314 register struct socket *so;
315 register struct sockbuf *sb;
316 {
317 struct proc *p;
318
319 selwakeup(&sb->sb_sel);
320 sb->sb_flags &= ~SB_SEL;
321 if (sb->sb_flags & SB_WAIT) {
322 sb->sb_flags &= ~SB_WAIT;
323 wakeup((caddr_t)&sb->sb_cc);
324 }
325 if (so->so_state & SS_ASYNC) {
326 if (so->so_pgid < 0)
327 gsignal(-so->so_pgid, SIGIO);
328 else if (so->so_pgid > 0 && (p = pfind(so->so_pgid)) != 0)
329 psignal(p, SIGIO);
330 }
331 }
332
333 /*
334 * Socket buffer (struct sockbuf) utility routines.
335 *
336 * Each socket contains two socket buffers: one for sending data and
337 * one for receiving data. Each buffer contains a queue of mbufs,
338 * information about the number of mbufs and amount of data in the
339 * queue, and other fields allowing poll() statements and notification
340 * on data availability to be implemented.
341 *
342 * Data stored in a socket buffer is maintained as a list of records.
343 * Each record is a list of mbufs chained together with the m_next
344 * field. Records are chained together with the m_nextpkt field. The upper
345 * level routine soreceive() expects the following conventions to be
346 * observed when placing information in the receive buffer:
347 *
348 * 1. If the protocol requires each message be preceded by the sender's
349 * name, then a record containing that name must be present before
350 * any associated data (mbuf's must be of type MT_SONAME).
351 * 2. If the protocol supports the exchange of ``access rights'' (really
352 * just additional data associated with the message), and there are
353 * ``rights'' to be received, then a record containing this data
354 * should be present (mbuf's must be of type MT_CONTROL).
355 * 3. If a name or rights record exists, then it must be followed by
356 * a data record, perhaps of zero length.
357 *
358 * Before using a new socket structure it is first necessary to reserve
359 * buffer space to the socket, by calling sbreserve(). This should commit
360 * some of the available buffer space in the system buffer pool for the
361 * socket (currently, it does nothing but enforce limits). The space
362 * should be released by calling sbrelease() when the socket is destroyed.
363 */
364
365 int
366 soreserve(so, sndcc, rcvcc)
367 register struct socket *so;
368 u_long sndcc, rcvcc;
369 {
370
371 if (sbreserve(&so->so_snd, sndcc) == 0)
372 goto bad;
373 if (sbreserve(&so->so_rcv, rcvcc) == 0)
374 goto bad2;
375 if (so->so_rcv.sb_lowat == 0)
376 so->so_rcv.sb_lowat = 1;
377 if (so->so_snd.sb_lowat == 0)
378 so->so_snd.sb_lowat = MCLBYTES;
379 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
380 so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
381 return (0);
382 bad2:
383 sbrelease(&so->so_snd);
384 bad:
385 return (ENOBUFS);
386 }
387
388 /*
389 * Allot mbufs to a sockbuf.
390 * Attempt to scale mbmax so that mbcnt doesn't become limiting
391 * if buffering efficiency is near the normal case.
392 */
393 int
394 sbreserve(sb, cc)
395 struct sockbuf *sb;
396 u_long cc;
397 {
398
399 if (cc > sb_max * MCLBYTES / (MSIZE + MCLBYTES))
400 return (0);
401 sb->sb_hiwat = cc;
402 sb->sb_mbmax = min(cc * 2, sb_max);
403 if (sb->sb_lowat > sb->sb_hiwat)
404 sb->sb_lowat = sb->sb_hiwat;
405 return (1);
406 }
407
408 /*
409 * Free mbufs held by a socket, and reserved mbuf space.
410 */
411 void
412 sbrelease(sb)
413 struct sockbuf *sb;
414 {
415
416 sbflush(sb);
417 sb->sb_hiwat = sb->sb_mbmax = 0;
418 }
419
420 /*
421 * Routines to add and remove
422 * data from an mbuf queue.
423 *
424 * The routines sbappend() or sbappendrecord() are normally called to
425 * append new mbufs to a socket buffer, after checking that adequate
426 * space is available, comparing the function sbspace() with the amount
427 * of data to be added. sbappendrecord() differs from sbappend() in
428 * that data supplied is treated as the beginning of a new record.
429 * To place a sender's address, optional access rights, and data in a
430 * socket receive buffer, sbappendaddr() should be used. To place
431 * access rights and data in a socket receive buffer, sbappendrights()
432 * should be used. In either case, the new data begins a new record.
433 * Note that unlike sbappend() and sbappendrecord(), these routines check
434 * for the caller that there will be enough space to store the data.
435 * Each fails if there is not enough space, or if it cannot find mbufs
436 * to store additional information in.
437 *
438 * Reliable protocols may use the socket send buffer to hold data
439 * awaiting acknowledgement. Data is normally copied from a socket
440 * send buffer in a protocol with m_copy for output to a peer,
441 * and then removing the data from the socket buffer with sbdrop()
442 * or sbdroprecord() when the data is acknowledged by the peer.
443 */
444
445 /*
446 * Append mbuf chain m to the last record in the
447 * socket buffer sb. The additional space associated
448 * the mbuf chain is recorded in sb. Empty mbufs are
449 * discarded and mbufs are compacted where possible.
450 */
451 void
452 sbappend(sb, m)
453 struct sockbuf *sb;
454 struct mbuf *m;
455 {
456 register struct mbuf *n;
457
458 if (m == 0)
459 return;
460 if ((n = sb->sb_mb) != NULL) {
461 while (n->m_nextpkt)
462 n = n->m_nextpkt;
463 do {
464 if (n->m_flags & M_EOR) {
465 sbappendrecord(sb, m); /* XXXXXX!!!! */
466 return;
467 }
468 } while (n->m_next && (n = n->m_next));
469 }
470 sbcompress(sb, m, n);
471 }
472
473 #ifdef SOCKBUF_DEBUG
474 void
475 sbcheck(sb)
476 register struct sockbuf *sb;
477 {
478 register struct mbuf *m;
479 register int len = 0, mbcnt = 0;
480
481 for (m = sb->sb_mb; m; m = m->m_next) {
482 len += m->m_len;
483 mbcnt += MSIZE;
484 if (m->m_flags & M_EXT)
485 mbcnt += m->m_ext.ext_size;
486 if (m->m_nextpkt)
487 panic("sbcheck nextpkt");
488 }
489 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
490 printf("cc %d != %d || mbcnt %d != %d\n", len, sb->sb_cc,
491 mbcnt, sb->sb_mbcnt);
492 panic("sbcheck");
493 }
494 }
495 #endif
496
497 /*
498 * As above, except the mbuf chain
499 * begins a new record.
500 */
501 void
502 sbappendrecord(sb, m0)
503 register struct sockbuf *sb;
504 register struct mbuf *m0;
505 {
506 register struct mbuf *m;
507
508 if (m0 == 0)
509 return;
510 if ((m = sb->sb_mb) != NULL)
511 while (m->m_nextpkt)
512 m = m->m_nextpkt;
513 /*
514 * Put the first mbuf on the queue.
515 * Note this permits zero length records.
516 */
517 sballoc(sb, m0);
518 if (m)
519 m->m_nextpkt = m0;
520 else
521 sb->sb_mb = m0;
522 m = m0->m_next;
523 m0->m_next = 0;
524 if (m && (m0->m_flags & M_EOR)) {
525 m0->m_flags &= ~M_EOR;
526 m->m_flags |= M_EOR;
527 }
528 sbcompress(sb, m, m0);
529 }
530
531 /*
532 * As above except that OOB data
533 * is inserted at the beginning of the sockbuf,
534 * but after any other OOB data.
535 */
536 void
537 sbinsertoob(sb, m0)
538 register struct sockbuf *sb;
539 register struct mbuf *m0;
540 {
541 register struct mbuf *m;
542 register struct mbuf **mp;
543
544 if (m0 == 0)
545 return;
546 for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
547 again:
548 switch (m->m_type) {
549
550 case MT_OOBDATA:
551 continue; /* WANT next train */
552
553 case MT_CONTROL:
554 if ((m = m->m_next) != NULL)
555 goto again; /* inspect THIS train further */
556 }
557 break;
558 }
559 /*
560 * Put the first mbuf on the queue.
561 * Note this permits zero length records.
562 */
563 sballoc(sb, m0);
564 m0->m_nextpkt = *mp;
565 *mp = m0;
566 m = m0->m_next;
567 m0->m_next = 0;
568 if (m && (m0->m_flags & M_EOR)) {
569 m0->m_flags &= ~M_EOR;
570 m->m_flags |= M_EOR;
571 }
572 sbcompress(sb, m, m0);
573 }
574
575 /*
576 * Append address and data, and optionally, control (ancillary) data
577 * to the receive queue of a socket. If present,
578 * m0 must include a packet header with total length.
579 * Returns 0 if no space in sockbuf or insufficient mbufs.
580 */
581 int
582 sbappendaddr(sb, asa, m0, control)
583 register struct sockbuf *sb;
584 struct sockaddr *asa;
585 struct mbuf *m0, *control;
586 {
587 register struct mbuf *m, *n;
588 int space = asa->sa_len;
589
590 if (m0 && (m0->m_flags & M_PKTHDR) == 0)
591 panic("sbappendaddr");
592 if (m0)
593 space += m0->m_pkthdr.len;
594 for (n = control; n; n = n->m_next) {
595 space += n->m_len;
596 if (n->m_next == 0) /* keep pointer to last control buf */
597 break;
598 }
599 if (space > sbspace(sb))
600 return (0);
601 if (asa->sa_len > MLEN)
602 return (0);
603 MGET(m, M_DONTWAIT, MT_SONAME);
604 if (m == 0)
605 return (0);
606 m->m_len = asa->sa_len;
607 bcopy((caddr_t)asa, mtod(m, caddr_t), asa->sa_len);
608 if (n)
609 n->m_next = m0; /* concatenate data to control */
610 else
611 control = m0;
612 m->m_next = control;
613 for (n = m; n; n = n->m_next)
614 sballoc(sb, n);
615 if ((n = sb->sb_mb) != NULL) {
616 while (n->m_nextpkt)
617 n = n->m_nextpkt;
618 n->m_nextpkt = m;
619 } else
620 sb->sb_mb = m;
621 return (1);
622 }
623
624 int
625 sbappendcontrol(sb, m0, control)
626 struct sockbuf *sb;
627 struct mbuf *m0, *control;
628 {
629 register struct mbuf *m, *n;
630 int space = 0;
631
632 if (control == 0)
633 panic("sbappendcontrol");
634 for (m = control; ; m = m->m_next) {
635 space += m->m_len;
636 if (m->m_next == 0)
637 break;
638 }
639 n = m; /* save pointer to last control buffer */
640 for (m = m0; m; m = m->m_next)
641 space += m->m_len;
642 if (space > sbspace(sb))
643 return (0);
644 n->m_next = m0; /* concatenate data to control */
645 for (m = control; m; m = m->m_next)
646 sballoc(sb, m);
647 if ((n = sb->sb_mb) != NULL) {
648 while (n->m_nextpkt)
649 n = n->m_nextpkt;
650 n->m_nextpkt = control;
651 } else
652 sb->sb_mb = control;
653 return (1);
654 }
655
656 /*
657 * Compress mbuf chain m into the socket
658 * buffer sb following mbuf n. If n
659 * is null, the buffer is presumed empty.
660 */
661 void
662 sbcompress(sb, m, n)
663 register struct sockbuf *sb;
664 register struct mbuf *m, *n;
665 {
666 register int eor = 0;
667 register struct mbuf *o;
668
669 while (m) {
670 eor |= m->m_flags & M_EOR;
671 if (m->m_len == 0 &&
672 (eor == 0 ||
673 (((o = m->m_next) || (o = n)) &&
674 o->m_type == m->m_type))) {
675 m = m_free(m);
676 continue;
677 }
678 if (n && (n->m_flags & (M_EXT | M_EOR)) == 0 &&
679 (n->m_data + n->m_len + m->m_len) < &n->m_dat[MLEN] &&
680 n->m_type == m->m_type) {
681 bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len,
682 (unsigned)m->m_len);
683 n->m_len += m->m_len;
684 sb->sb_cc += m->m_len;
685 m = m_free(m);
686 continue;
687 }
688 if (n)
689 n->m_next = m;
690 else
691 sb->sb_mb = m;
692 sballoc(sb, m);
693 n = m;
694 m->m_flags &= ~M_EOR;
695 m = m->m_next;
696 n->m_next = 0;
697 }
698 if (eor) {
699 if (n)
700 n->m_flags |= eor;
701 else
702 printf("semi-panic: sbcompress\n");
703 }
704 }
705
706 /*
707 * Free all mbufs in a sockbuf.
708 * Check that all resources are reclaimed.
709 */
710 void
711 sbflush(sb)
712 register struct sockbuf *sb;
713 {
714
715 if (sb->sb_flags & SB_LOCK)
716 panic("sbflush");
717 while (sb->sb_mbcnt)
718 sbdrop(sb, (int)sb->sb_cc);
719 if (sb->sb_cc || sb->sb_mb)
720 panic("sbflush 2");
721 }
722
723 /*
724 * Drop data from (the front of) a sockbuf.
725 */
726 void
727 sbdrop(sb, len)
728 register struct sockbuf *sb;
729 register int len;
730 {
731 register struct mbuf *m, *mn;
732 struct mbuf *next;
733
734 next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
735 while (len > 0) {
736 if (m == 0) {
737 if (next == 0)
738 panic("sbdrop");
739 m = next;
740 next = m->m_nextpkt;
741 continue;
742 }
743 if (m->m_len > len) {
744 m->m_len -= len;
745 m->m_data += len;
746 sb->sb_cc -= len;
747 break;
748 }
749 len -= m->m_len;
750 sbfree(sb, m);
751 MFREE(m, mn);
752 m = mn;
753 }
754 while (m && m->m_len == 0) {
755 sbfree(sb, m);
756 MFREE(m, mn);
757 m = mn;
758 }
759 if (m) {
760 sb->sb_mb = m;
761 m->m_nextpkt = next;
762 } else
763 sb->sb_mb = next;
764 }
765
766 /*
767 * Drop a record off the front of a sockbuf
768 * and move the next record to the front.
769 */
770 void
771 sbdroprecord(sb)
772 register struct sockbuf *sb;
773 {
774 register struct mbuf *m, *mn;
775
776 m = sb->sb_mb;
777 if (m) {
778 sb->sb_mb = m->m_nextpkt;
779 do {
780 sbfree(sb, m);
781 MFREE(m, mn);
782 } while ((m = mn) != NULL);
783 }
784 }
785