Home | History | Annotate | Line # | Download | only in kern
uipc_socket2.c revision 1.16
      1 /*	$NetBSD: uipc_socket2.c,v 1.16 1996/11/10 05:58:37 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1988, 1990, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by the University of
     18  *	California, Berkeley and its contributors.
     19  * 4. Neither the name of the University nor the names of its contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33  * SUCH DAMAGE.
     34  *
     35  *	@(#)uipc_socket2.c	8.1 (Berkeley) 6/10/93
     36  */
     37 
     38 #include <sys/param.h>
     39 #include <sys/systm.h>
     40 #include <sys/proc.h>
     41 #include <sys/file.h>
     42 #include <sys/buf.h>
     43 #include <sys/malloc.h>
     44 #include <sys/mbuf.h>
     45 #include <sys/protosw.h>
     46 #include <sys/socket.h>
     47 #include <sys/socketvar.h>
     48 #include <sys/signalvar.h>
     49 
     50 /*
     51  * Primitive routines for operating on sockets and socket buffers
     52  */
     53 
     54 /* strings for sleep message: */
     55 char	netio[] = "netio";
     56 char	netcon[] = "netcon";
     57 char	netcls[] = "netcls";
     58 
     59 u_long	sb_max = SB_MAX;		/* patchable */
     60 
     61 /*
     62  * Procedures to manipulate state flags of socket
     63  * and do appropriate wakeups.  Normal sequence from the
     64  * active (originating) side is that soisconnecting() is
     65  * called during processing of connect() call,
     66  * resulting in an eventual call to soisconnected() if/when the
     67  * connection is established.  When the connection is torn down
     68  * soisdisconnecting() is called during processing of disconnect() call,
     69  * and soisdisconnected() is called when the connection to the peer
     70  * is totally severed.  The semantics of these routines are such that
     71  * connectionless protocols can call soisconnected() and soisdisconnected()
     72  * only, bypassing the in-progress calls when setting up a ``connection''
     73  * takes no time.
     74  *
     75  * From the passive side, a socket is created with
     76  * two queues of sockets: so_q0 for connections in progress
     77  * and so_q for connections already made and awaiting user acceptance.
     78  * As a protocol is preparing incoming connections, it creates a socket
     79  * structure queued on so_q0 by calling sonewconn().  When the connection
     80  * is established, soisconnected() is called, and transfers the
     81  * socket structure to so_q, making it available to accept().
     82  *
     83  * If a socket is closed with sockets on either
     84  * so_q0 or so_q, these sockets are dropped.
     85  *
     86  * If higher level protocols are implemented in
     87  * the kernel, the wakeups done here will sometimes
     88  * cause software-interrupt process scheduling.
     89  */
     90 
     91 void
     92 soisconnecting(so)
     93 	register struct socket *so;
     94 {
     95 
     96 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
     97 	so->so_state |= SS_ISCONNECTING;
     98 }
     99 
    100 void
    101 soisconnected(so)
    102 	register struct socket *so;
    103 {
    104 	register struct socket *head = so->so_head;
    105 
    106 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
    107 	so->so_state |= SS_ISCONNECTED;
    108 	if (head && soqremque(so, 0)) {
    109 		soqinsque(head, so, 1);
    110 		sorwakeup(head);
    111 		wakeup((caddr_t)&head->so_timeo);
    112 	} else {
    113 		wakeup((caddr_t)&so->so_timeo);
    114 		sorwakeup(so);
    115 		sowwakeup(so);
    116 	}
    117 }
    118 
    119 void
    120 soisdisconnecting(so)
    121 	register struct socket *so;
    122 {
    123 
    124 	so->so_state &= ~SS_ISCONNECTING;
    125 	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
    126 	wakeup((caddr_t)&so->so_timeo);
    127 	sowwakeup(so);
    128 	sorwakeup(so);
    129 }
    130 
    131 void
    132 soisdisconnected(so)
    133 	register struct socket *so;
    134 {
    135 
    136 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
    137 	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE);
    138 	wakeup((caddr_t)&so->so_timeo);
    139 	sowwakeup(so);
    140 	sorwakeup(so);
    141 }
    142 
    143 /*
    144  * When an attempt at a new connection is noted on a socket
    145  * which accepts connections, sonewconn is called.  If the
    146  * connection is possible (subject to space constraints, etc.)
    147  * then we allocate a new structure, propoerly linked into the
    148  * data structure of the original socket, and return this.
    149  * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
    150  *
    151  * Currently, sonewconn() is defined as sonewconn1() in socketvar.h
    152  * to catch calls that are missing the (new) second parameter.
    153  */
    154 struct socket *
    155 sonewconn1(head, connstatus)
    156 	register struct socket *head;
    157 	int connstatus;
    158 {
    159 	register struct socket *so;
    160 	int soqueue = connstatus ? 1 : 0;
    161 
    162 	if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
    163 		return ((struct socket *)0);
    164 	MALLOC(so, struct socket *, sizeof(*so), M_SOCKET, M_DONTWAIT);
    165 	if (so == NULL)
    166 		return ((struct socket *)0);
    167 	bzero((caddr_t)so, sizeof(*so));
    168 	so->so_type = head->so_type;
    169 	so->so_options = head->so_options &~ SO_ACCEPTCONN;
    170 	so->so_linger = head->so_linger;
    171 	so->so_state = head->so_state | SS_NOFDREF;
    172 	so->so_proto = head->so_proto;
    173 	so->so_timeo = head->so_timeo;
    174 	so->so_pgid = head->so_pgid;
    175 	(void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
    176 	soqinsque(head, so, soqueue);
    177 	if ((*so->so_proto->pr_usrreq)(so, PRU_ATTACH,
    178 	    (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
    179 	    (struct proc *)0)) {
    180 		(void) soqremque(so, soqueue);
    181 		(void) free((caddr_t)so, M_SOCKET);
    182 		return ((struct socket *)0);
    183 	}
    184 	if (connstatus) {
    185 		sorwakeup(head);
    186 		wakeup((caddr_t)&head->so_timeo);
    187 		so->so_state |= connstatus;
    188 	}
    189 	return (so);
    190 }
    191 
    192 /*
    193  * The following two routines (soqinsque & soqremque) have been changed
    194  * to keep the queue of pending sockets in a double linked list.
    195  * (Previously a singly linked list was used.  This gave O(N)
    196  * insertion/deletion times and was a major time consumer for sockets
    197  * with large pending socket queues).  The doublely-linked list gives
    198  * constant insertion/deletion times with only small cost in complexity.
    199  *
    200  * Since a socket can be on, at most, one queue at a time both so_q and
    201  * so_q0 can safely be used as (forward and backward, respectively) queue
    202  * pointers.
    203  *
    204  * Unlike traditional doublely linked lists, the queue head is not present
    205  * in the list.  Instead only a single pointer to the first element is kept.
    206  * Only when this first element is modified (either adding to an empty list
    207  * or removing the first element) does the pointer change.  If the list is
    208  * empty, the pointer will be NULL.
    209  *
    210  * The back pointer of the first entry points to the last entry (instead of
    211  * the queue head since there isn't a queue head).
    212  */
    213 
    214 void
    215 soqinsque(head, so, q)
    216 	register struct socket *head, *so;
    217 	int q;
    218 {
    219 	register struct socket **qh;
    220 
    221 #ifdef DIAGNOSTIC
    222 	if (so->so_head != NULL)
    223 		panic("soqinsque");
    224 #endif
    225 
    226 	so->so_head = head;
    227 	if (q == 0) {
    228 		head->so_q0len++;
    229 		qh = &head->so_q0;
    230 	} else {
    231 		head->so_qlen++;
    232 		qh = &head->so_q;
    233 	}
    234 	if ((*qh) == NULL) {
    235 		so->so_q = so->so_q0 = so;
    236 		(*qh) = so;
    237 	} else {
    238 		/* insert at tail */
    239 		so->so_q = (*qh);
    240 		so->so_q0 = (*qh)->so_q0;
    241 		so->so_q0->so_q = so;
    242 		(*qh)->so_q0 = so;
    243 	}
    244 }
    245 
    246 int
    247 soqremque(so, q)
    248 	register struct socket *so;
    249 	int q;
    250 {
    251 	register struct socket *head = so->so_head;
    252 	register struct socket **qh;
    253 
    254 	if (head == NULL) {
    255 #ifdef DIAGNOSTIC
    256 		if (so->so_q != NULL || so->so_q0 != NULL)
    257 			panic("soqremque 1");
    258 #endif
    259 		return (0);
    260 	}
    261 	if (q == 0) {
    262 		head->so_q0len--;
    263 		qh = &head->so_q0;
    264 	} else {
    265 		head->so_qlen--;
    266 		qh = &head->so_q;
    267 	}
    268 
    269 #ifdef DIAGNOSTIC
    270 	if ((*qh) == NULL || so->so_q == NULL || so->so_q0 == NULL)
    271 		panic("soqremque 2");
    272 #endif
    273 
    274 	if ((*qh) == so) {
    275 		/* first */
    276 		if (so->so_q == so) {
    277 			/* single entry; don't remove it from itself */
    278 			(*qh) = NULL;
    279 		} else {
    280 			so->so_q0->so_q = so->so_q;
    281 			so->so_q->so_q0 = so->so_q0;
    282 			(*qh) = so->so_q;
    283 		}
    284 	} else {
    285 		/* in the middle (or last) but not first */
    286 		so->so_q0->so_q = so->so_q;
    287 		so->so_q->so_q0 = so->so_q0;
    288 	}
    289 	so->so_q = so->so_q0 = NULL;
    290 	so->so_head = NULL;
    291 	return (1);
    292 }
    293 
    294 /*
    295  * Socantsendmore indicates that no more data will be sent on the
    296  * socket; it would normally be applied to a socket when the user
    297  * informs the system that no more data is to be sent, by the protocol
    298  * code (in case PRU_SHUTDOWN).  Socantrcvmore indicates that no more data
    299  * will be received, and will normally be applied to the socket by a
    300  * protocol when it detects that the peer will send no more data.
    301  * Data queued for reading in the socket may yet be read.
    302  */
    303 
    304 void
    305 socantsendmore(so)
    306 	struct socket *so;
    307 {
    308 
    309 	so->so_state |= SS_CANTSENDMORE;
    310 	sowwakeup(so);
    311 }
    312 
    313 void
    314 socantrcvmore(so)
    315 	struct socket *so;
    316 {
    317 
    318 	so->so_state |= SS_CANTRCVMORE;
    319 	sorwakeup(so);
    320 }
    321 
    322 /*
    323  * Wait for data to arrive at/drain from a socket buffer.
    324  */
    325 int
    326 sbwait(sb)
    327 	struct sockbuf *sb;
    328 {
    329 
    330 	sb->sb_flags |= SB_WAIT;
    331 	return (tsleep((caddr_t)&sb->sb_cc,
    332 	    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, netio,
    333 	    sb->sb_timeo));
    334 }
    335 
    336 /*
    337  * Lock a sockbuf already known to be locked;
    338  * return any error returned from sleep (EINTR).
    339  */
    340 int
    341 sb_lock(sb)
    342 	register struct sockbuf *sb;
    343 {
    344 	int error;
    345 
    346 	while (sb->sb_flags & SB_LOCK) {
    347 		sb->sb_flags |= SB_WANT;
    348 		error = tsleep((caddr_t)&sb->sb_flags,
    349 			       (sb->sb_flags & SB_NOINTR) ?
    350 					PSOCK : PSOCK|PCATCH, netio, 0);
    351 		if (error)
    352 			return (error);
    353 	}
    354 	sb->sb_flags |= SB_LOCK;
    355 	return (0);
    356 }
    357 
    358 /*
    359  * Wakeup processes waiting on a socket buffer.
    360  * Do asynchronous notification via SIGIO
    361  * if the socket has the SS_ASYNC flag set.
    362  */
    363 void
    364 sowakeup(so, sb)
    365 	register struct socket *so;
    366 	register struct sockbuf *sb;
    367 {
    368 	struct proc *p;
    369 
    370 	selwakeup(&sb->sb_sel);
    371 	sb->sb_flags &= ~SB_SEL;
    372 	if (sb->sb_flags & SB_WAIT) {
    373 		sb->sb_flags &= ~SB_WAIT;
    374 		wakeup((caddr_t)&sb->sb_cc);
    375 	}
    376 	if (so->so_state & SS_ASYNC) {
    377 		if (so->so_pgid < 0)
    378 			gsignal(-so->so_pgid, SIGIO);
    379 		else if (so->so_pgid > 0 && (p = pfind(so->so_pgid)) != 0)
    380 			psignal(p, SIGIO);
    381 	}
    382 }
    383 
    384 /*
    385  * Socket buffer (struct sockbuf) utility routines.
    386  *
    387  * Each socket contains two socket buffers: one for sending data and
    388  * one for receiving data.  Each buffer contains a queue of mbufs,
    389  * information about the number of mbufs and amount of data in the
    390  * queue, and other fields allowing poll() statements and notification
    391  * on data availability to be implemented.
    392  *
    393  * Data stored in a socket buffer is maintained as a list of records.
    394  * Each record is a list of mbufs chained together with the m_next
    395  * field.  Records are chained together with the m_nextpkt field. The upper
    396  * level routine soreceive() expects the following conventions to be
    397  * observed when placing information in the receive buffer:
    398  *
    399  * 1. If the protocol requires each message be preceded by the sender's
    400  *    name, then a record containing that name must be present before
    401  *    any associated data (mbuf's must be of type MT_SONAME).
    402  * 2. If the protocol supports the exchange of ``access rights'' (really
    403  *    just additional data associated with the message), and there are
    404  *    ``rights'' to be received, then a record containing this data
    405  *    should be present (mbuf's must be of type MT_CONTROL).
    406  * 3. If a name or rights record exists, then it must be followed by
    407  *    a data record, perhaps of zero length.
    408  *
    409  * Before using a new socket structure it is first necessary to reserve
    410  * buffer space to the socket, by calling sbreserve().  This should commit
    411  * some of the available buffer space in the system buffer pool for the
    412  * socket (currently, it does nothing but enforce limits).  The space
    413  * should be released by calling sbrelease() when the socket is destroyed.
    414  */
    415 
    416 int
    417 soreserve(so, sndcc, rcvcc)
    418 	register struct socket *so;
    419 	u_long sndcc, rcvcc;
    420 {
    421 
    422 	if (sbreserve(&so->so_snd, sndcc) == 0)
    423 		goto bad;
    424 	if (sbreserve(&so->so_rcv, rcvcc) == 0)
    425 		goto bad2;
    426 	if (so->so_rcv.sb_lowat == 0)
    427 		so->so_rcv.sb_lowat = 1;
    428 	if (so->so_snd.sb_lowat == 0)
    429 		so->so_snd.sb_lowat = MCLBYTES;
    430 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
    431 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
    432 	return (0);
    433 bad2:
    434 	sbrelease(&so->so_snd);
    435 bad:
    436 	return (ENOBUFS);
    437 }
    438 
    439 /*
    440  * Allot mbufs to a sockbuf.
    441  * Attempt to scale mbmax so that mbcnt doesn't become limiting
    442  * if buffering efficiency is near the normal case.
    443  */
    444 int
    445 sbreserve(sb, cc)
    446 	struct sockbuf *sb;
    447 	u_long cc;
    448 {
    449 
    450 	if (cc > sb_max * MCLBYTES / (MSIZE + MCLBYTES))
    451 		return (0);
    452 	sb->sb_hiwat = cc;
    453 	sb->sb_mbmax = min(cc * 2, sb_max);
    454 	if (sb->sb_lowat > sb->sb_hiwat)
    455 		sb->sb_lowat = sb->sb_hiwat;
    456 	return (1);
    457 }
    458 
    459 /*
    460  * Free mbufs held by a socket, and reserved mbuf space.
    461  */
    462 void
    463 sbrelease(sb)
    464 	struct sockbuf *sb;
    465 {
    466 
    467 	sbflush(sb);
    468 	sb->sb_hiwat = sb->sb_mbmax = 0;
    469 }
    470 
    471 /*
    472  * Routines to add and remove
    473  * data from an mbuf queue.
    474  *
    475  * The routines sbappend() or sbappendrecord() are normally called to
    476  * append new mbufs to a socket buffer, after checking that adequate
    477  * space is available, comparing the function sbspace() with the amount
    478  * of data to be added.  sbappendrecord() differs from sbappend() in
    479  * that data supplied is treated as the beginning of a new record.
    480  * To place a sender's address, optional access rights, and data in a
    481  * socket receive buffer, sbappendaddr() should be used.  To place
    482  * access rights and data in a socket receive buffer, sbappendrights()
    483  * should be used.  In either case, the new data begins a new record.
    484  * Note that unlike sbappend() and sbappendrecord(), these routines check
    485  * for the caller that there will be enough space to store the data.
    486  * Each fails if there is not enough space, or if it cannot find mbufs
    487  * to store additional information in.
    488  *
    489  * Reliable protocols may use the socket send buffer to hold data
    490  * awaiting acknowledgement.  Data is normally copied from a socket
    491  * send buffer in a protocol with m_copy for output to a peer,
    492  * and then removing the data from the socket buffer with sbdrop()
    493  * or sbdroprecord() when the data is acknowledged by the peer.
    494  */
    495 
    496 /*
    497  * Append mbuf chain m to the last record in the
    498  * socket buffer sb.  The additional space associated
    499  * the mbuf chain is recorded in sb.  Empty mbufs are
    500  * discarded and mbufs are compacted where possible.
    501  */
    502 void
    503 sbappend(sb, m)
    504 	struct sockbuf *sb;
    505 	struct mbuf *m;
    506 {
    507 	register struct mbuf *n;
    508 
    509 	if (m == 0)
    510 		return;
    511 	if ((n = sb->sb_mb) != NULL) {
    512 		while (n->m_nextpkt)
    513 			n = n->m_nextpkt;
    514 		do {
    515 			if (n->m_flags & M_EOR) {
    516 				sbappendrecord(sb, m); /* XXXXXX!!!! */
    517 				return;
    518 			}
    519 		} while (n->m_next && (n = n->m_next));
    520 	}
    521 	sbcompress(sb, m, n);
    522 }
    523 
    524 #ifdef SOCKBUF_DEBUG
    525 void
    526 sbcheck(sb)
    527 	register struct sockbuf *sb;
    528 {
    529 	register struct mbuf *m;
    530 	register int len = 0, mbcnt = 0;
    531 
    532 	for (m = sb->sb_mb; m; m = m->m_next) {
    533 		len += m->m_len;
    534 		mbcnt += MSIZE;
    535 		if (m->m_flags & M_EXT)
    536 			mbcnt += m->m_ext.ext_size;
    537 		if (m->m_nextpkt)
    538 			panic("sbcheck nextpkt");
    539 	}
    540 	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
    541 		printf("cc %d != %d || mbcnt %d != %d\n", len, sb->sb_cc,
    542 		    mbcnt, sb->sb_mbcnt);
    543 		panic("sbcheck");
    544 	}
    545 }
    546 #endif
    547 
    548 /*
    549  * As above, except the mbuf chain
    550  * begins a new record.
    551  */
    552 void
    553 sbappendrecord(sb, m0)
    554 	register struct sockbuf *sb;
    555 	register struct mbuf *m0;
    556 {
    557 	register struct mbuf *m;
    558 
    559 	if (m0 == 0)
    560 		return;
    561 	if ((m = sb->sb_mb) != NULL)
    562 		while (m->m_nextpkt)
    563 			m = m->m_nextpkt;
    564 	/*
    565 	 * Put the first mbuf on the queue.
    566 	 * Note this permits zero length records.
    567 	 */
    568 	sballoc(sb, m0);
    569 	if (m)
    570 		m->m_nextpkt = m0;
    571 	else
    572 		sb->sb_mb = m0;
    573 	m = m0->m_next;
    574 	m0->m_next = 0;
    575 	if (m && (m0->m_flags & M_EOR)) {
    576 		m0->m_flags &= ~M_EOR;
    577 		m->m_flags |= M_EOR;
    578 	}
    579 	sbcompress(sb, m, m0);
    580 }
    581 
    582 /*
    583  * As above except that OOB data
    584  * is inserted at the beginning of the sockbuf,
    585  * but after any other OOB data.
    586  */
    587 void
    588 sbinsertoob(sb, m0)
    589 	register struct sockbuf *sb;
    590 	register struct mbuf *m0;
    591 {
    592 	register struct mbuf *m;
    593 	register struct mbuf **mp;
    594 
    595 	if (m0 == 0)
    596 		return;
    597 	for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
    598 	    again:
    599 		switch (m->m_type) {
    600 
    601 		case MT_OOBDATA:
    602 			continue;		/* WANT next train */
    603 
    604 		case MT_CONTROL:
    605 			if ((m = m->m_next) != NULL)
    606 				goto again;	/* inspect THIS train further */
    607 		}
    608 		break;
    609 	}
    610 	/*
    611 	 * Put the first mbuf on the queue.
    612 	 * Note this permits zero length records.
    613 	 */
    614 	sballoc(sb, m0);
    615 	m0->m_nextpkt = *mp;
    616 	*mp = m0;
    617 	m = m0->m_next;
    618 	m0->m_next = 0;
    619 	if (m && (m0->m_flags & M_EOR)) {
    620 		m0->m_flags &= ~M_EOR;
    621 		m->m_flags |= M_EOR;
    622 	}
    623 	sbcompress(sb, m, m0);
    624 }
    625 
    626 /*
    627  * Append address and data, and optionally, control (ancillary) data
    628  * to the receive queue of a socket.  If present,
    629  * m0 must include a packet header with total length.
    630  * Returns 0 if no space in sockbuf or insufficient mbufs.
    631  */
    632 int
    633 sbappendaddr(sb, asa, m0, control)
    634 	register struct sockbuf *sb;
    635 	struct sockaddr *asa;
    636 	struct mbuf *m0, *control;
    637 {
    638 	register struct mbuf *m, *n;
    639 	int space = asa->sa_len;
    640 
    641 if (m0 && (m0->m_flags & M_PKTHDR) == 0)
    642 panic("sbappendaddr");
    643 	if (m0)
    644 		space += m0->m_pkthdr.len;
    645 	for (n = control; n; n = n->m_next) {
    646 		space += n->m_len;
    647 		if (n->m_next == 0)	/* keep pointer to last control buf */
    648 			break;
    649 	}
    650 	if (space > sbspace(sb))
    651 		return (0);
    652 	if (asa->sa_len > MLEN)
    653 		return (0);
    654 	MGET(m, M_DONTWAIT, MT_SONAME);
    655 	if (m == 0)
    656 		return (0);
    657 	m->m_len = asa->sa_len;
    658 	bcopy((caddr_t)asa, mtod(m, caddr_t), asa->sa_len);
    659 	if (n)
    660 		n->m_next = m0;		/* concatenate data to control */
    661 	else
    662 		control = m0;
    663 	m->m_next = control;
    664 	for (n = m; n; n = n->m_next)
    665 		sballoc(sb, n);
    666 	if ((n = sb->sb_mb) != NULL) {
    667 		while (n->m_nextpkt)
    668 			n = n->m_nextpkt;
    669 		n->m_nextpkt = m;
    670 	} else
    671 		sb->sb_mb = m;
    672 	return (1);
    673 }
    674 
    675 int
    676 sbappendcontrol(sb, m0, control)
    677 	struct sockbuf *sb;
    678 	struct mbuf *m0, *control;
    679 {
    680 	register struct mbuf *m, *n;
    681 	int space = 0;
    682 
    683 	if (control == 0)
    684 		panic("sbappendcontrol");
    685 	for (m = control; ; m = m->m_next) {
    686 		space += m->m_len;
    687 		if (m->m_next == 0)
    688 			break;
    689 	}
    690 	n = m;			/* save pointer to last control buffer */
    691 	for (m = m0; m; m = m->m_next)
    692 		space += m->m_len;
    693 	if (space > sbspace(sb))
    694 		return (0);
    695 	n->m_next = m0;			/* concatenate data to control */
    696 	for (m = control; m; m = m->m_next)
    697 		sballoc(sb, m);
    698 	if ((n = sb->sb_mb) != NULL) {
    699 		while (n->m_nextpkt)
    700 			n = n->m_nextpkt;
    701 		n->m_nextpkt = control;
    702 	} else
    703 		sb->sb_mb = control;
    704 	return (1);
    705 }
    706 
    707 /*
    708  * Compress mbuf chain m into the socket
    709  * buffer sb following mbuf n.  If n
    710  * is null, the buffer is presumed empty.
    711  */
    712 void
    713 sbcompress(sb, m, n)
    714 	register struct sockbuf *sb;
    715 	register struct mbuf *m, *n;
    716 {
    717 	register int eor = 0;
    718 	register struct mbuf *o;
    719 
    720 	while (m) {
    721 		eor |= m->m_flags & M_EOR;
    722 		if (m->m_len == 0 &&
    723 		    (eor == 0 ||
    724 		     (((o = m->m_next) || (o = n)) &&
    725 		      o->m_type == m->m_type))) {
    726 			m = m_free(m);
    727 			continue;
    728 		}
    729 		if (n && (n->m_flags & (M_EXT | M_EOR)) == 0 &&
    730 		    (n->m_data + n->m_len + m->m_len) < &n->m_dat[MLEN] &&
    731 		    n->m_type == m->m_type) {
    732 			bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len,
    733 			    (unsigned)m->m_len);
    734 			n->m_len += m->m_len;
    735 			sb->sb_cc += m->m_len;
    736 			m = m_free(m);
    737 			continue;
    738 		}
    739 		if (n)
    740 			n->m_next = m;
    741 		else
    742 			sb->sb_mb = m;
    743 		sballoc(sb, m);
    744 		n = m;
    745 		m->m_flags &= ~M_EOR;
    746 		m = m->m_next;
    747 		n->m_next = 0;
    748 	}
    749 	if (eor) {
    750 		if (n)
    751 			n->m_flags |= eor;
    752 		else
    753 			printf("semi-panic: sbcompress\n");
    754 	}
    755 }
    756 
    757 /*
    758  * Free all mbufs in a sockbuf.
    759  * Check that all resources are reclaimed.
    760  */
    761 void
    762 sbflush(sb)
    763 	register struct sockbuf *sb;
    764 {
    765 
    766 	if (sb->sb_flags & SB_LOCK)
    767 		panic("sbflush");
    768 	while (sb->sb_mbcnt)
    769 		sbdrop(sb, (int)sb->sb_cc);
    770 	if (sb->sb_cc || sb->sb_mb)
    771 		panic("sbflush 2");
    772 }
    773 
    774 /*
    775  * Drop data from (the front of) a sockbuf.
    776  */
    777 void
    778 sbdrop(sb, len)
    779 	register struct sockbuf *sb;
    780 	register int len;
    781 {
    782 	register struct mbuf *m, *mn;
    783 	struct mbuf *next;
    784 
    785 	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
    786 	while (len > 0) {
    787 		if (m == 0) {
    788 			if (next == 0)
    789 				panic("sbdrop");
    790 			m = next;
    791 			next = m->m_nextpkt;
    792 			continue;
    793 		}
    794 		if (m->m_len > len) {
    795 			m->m_len -= len;
    796 			m->m_data += len;
    797 			sb->sb_cc -= len;
    798 			break;
    799 		}
    800 		len -= m->m_len;
    801 		sbfree(sb, m);
    802 		MFREE(m, mn);
    803 		m = mn;
    804 	}
    805 	while (m && m->m_len == 0) {
    806 		sbfree(sb, m);
    807 		MFREE(m, mn);
    808 		m = mn;
    809 	}
    810 	if (m) {
    811 		sb->sb_mb = m;
    812 		m->m_nextpkt = next;
    813 	} else
    814 		sb->sb_mb = next;
    815 }
    816 
    817 /*
    818  * Drop a record off the front of a sockbuf
    819  * and move the next record to the front.
    820  */
    821 void
    822 sbdroprecord(sb)
    823 	register struct sockbuf *sb;
    824 {
    825 	register struct mbuf *m, *mn;
    826 
    827 	m = sb->sb_mb;
    828 	if (m) {
    829 		sb->sb_mb = m->m_nextpkt;
    830 		do {
    831 			sbfree(sb, m);
    832 			MFREE(m, mn);
    833 		} while ((m = mn) != NULL);
    834 	}
    835 }
    836