uipc_socket2.c revision 1.16 1 /* $NetBSD: uipc_socket2.c,v 1.16 1996/11/10 05:58:37 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1988, 1990, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * @(#)uipc_socket2.c 8.1 (Berkeley) 6/10/93
36 */
37
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/proc.h>
41 #include <sys/file.h>
42 #include <sys/buf.h>
43 #include <sys/malloc.h>
44 #include <sys/mbuf.h>
45 #include <sys/protosw.h>
46 #include <sys/socket.h>
47 #include <sys/socketvar.h>
48 #include <sys/signalvar.h>
49
50 /*
51 * Primitive routines for operating on sockets and socket buffers
52 */
53
54 /* strings for sleep message: */
55 char netio[] = "netio";
56 char netcon[] = "netcon";
57 char netcls[] = "netcls";
58
59 u_long sb_max = SB_MAX; /* patchable */
60
61 /*
62 * Procedures to manipulate state flags of socket
63 * and do appropriate wakeups. Normal sequence from the
64 * active (originating) side is that soisconnecting() is
65 * called during processing of connect() call,
66 * resulting in an eventual call to soisconnected() if/when the
67 * connection is established. When the connection is torn down
68 * soisdisconnecting() is called during processing of disconnect() call,
69 * and soisdisconnected() is called when the connection to the peer
70 * is totally severed. The semantics of these routines are such that
71 * connectionless protocols can call soisconnected() and soisdisconnected()
72 * only, bypassing the in-progress calls when setting up a ``connection''
73 * takes no time.
74 *
75 * From the passive side, a socket is created with
76 * two queues of sockets: so_q0 for connections in progress
77 * and so_q for connections already made and awaiting user acceptance.
78 * As a protocol is preparing incoming connections, it creates a socket
79 * structure queued on so_q0 by calling sonewconn(). When the connection
80 * is established, soisconnected() is called, and transfers the
81 * socket structure to so_q, making it available to accept().
82 *
83 * If a socket is closed with sockets on either
84 * so_q0 or so_q, these sockets are dropped.
85 *
86 * If higher level protocols are implemented in
87 * the kernel, the wakeups done here will sometimes
88 * cause software-interrupt process scheduling.
89 */
90
91 void
92 soisconnecting(so)
93 register struct socket *so;
94 {
95
96 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
97 so->so_state |= SS_ISCONNECTING;
98 }
99
100 void
101 soisconnected(so)
102 register struct socket *so;
103 {
104 register struct socket *head = so->so_head;
105
106 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
107 so->so_state |= SS_ISCONNECTED;
108 if (head && soqremque(so, 0)) {
109 soqinsque(head, so, 1);
110 sorwakeup(head);
111 wakeup((caddr_t)&head->so_timeo);
112 } else {
113 wakeup((caddr_t)&so->so_timeo);
114 sorwakeup(so);
115 sowwakeup(so);
116 }
117 }
118
119 void
120 soisdisconnecting(so)
121 register struct socket *so;
122 {
123
124 so->so_state &= ~SS_ISCONNECTING;
125 so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
126 wakeup((caddr_t)&so->so_timeo);
127 sowwakeup(so);
128 sorwakeup(so);
129 }
130
131 void
132 soisdisconnected(so)
133 register struct socket *so;
134 {
135
136 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
137 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE);
138 wakeup((caddr_t)&so->so_timeo);
139 sowwakeup(so);
140 sorwakeup(so);
141 }
142
143 /*
144 * When an attempt at a new connection is noted on a socket
145 * which accepts connections, sonewconn is called. If the
146 * connection is possible (subject to space constraints, etc.)
147 * then we allocate a new structure, propoerly linked into the
148 * data structure of the original socket, and return this.
149 * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
150 *
151 * Currently, sonewconn() is defined as sonewconn1() in socketvar.h
152 * to catch calls that are missing the (new) second parameter.
153 */
154 struct socket *
155 sonewconn1(head, connstatus)
156 register struct socket *head;
157 int connstatus;
158 {
159 register struct socket *so;
160 int soqueue = connstatus ? 1 : 0;
161
162 if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
163 return ((struct socket *)0);
164 MALLOC(so, struct socket *, sizeof(*so), M_SOCKET, M_DONTWAIT);
165 if (so == NULL)
166 return ((struct socket *)0);
167 bzero((caddr_t)so, sizeof(*so));
168 so->so_type = head->so_type;
169 so->so_options = head->so_options &~ SO_ACCEPTCONN;
170 so->so_linger = head->so_linger;
171 so->so_state = head->so_state | SS_NOFDREF;
172 so->so_proto = head->so_proto;
173 so->so_timeo = head->so_timeo;
174 so->so_pgid = head->so_pgid;
175 (void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
176 soqinsque(head, so, soqueue);
177 if ((*so->so_proto->pr_usrreq)(so, PRU_ATTACH,
178 (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
179 (struct proc *)0)) {
180 (void) soqremque(so, soqueue);
181 (void) free((caddr_t)so, M_SOCKET);
182 return ((struct socket *)0);
183 }
184 if (connstatus) {
185 sorwakeup(head);
186 wakeup((caddr_t)&head->so_timeo);
187 so->so_state |= connstatus;
188 }
189 return (so);
190 }
191
192 /*
193 * The following two routines (soqinsque & soqremque) have been changed
194 * to keep the queue of pending sockets in a double linked list.
195 * (Previously a singly linked list was used. This gave O(N)
196 * insertion/deletion times and was a major time consumer for sockets
197 * with large pending socket queues). The doublely-linked list gives
198 * constant insertion/deletion times with only small cost in complexity.
199 *
200 * Since a socket can be on, at most, one queue at a time both so_q and
201 * so_q0 can safely be used as (forward and backward, respectively) queue
202 * pointers.
203 *
204 * Unlike traditional doublely linked lists, the queue head is not present
205 * in the list. Instead only a single pointer to the first element is kept.
206 * Only when this first element is modified (either adding to an empty list
207 * or removing the first element) does the pointer change. If the list is
208 * empty, the pointer will be NULL.
209 *
210 * The back pointer of the first entry points to the last entry (instead of
211 * the queue head since there isn't a queue head).
212 */
213
214 void
215 soqinsque(head, so, q)
216 register struct socket *head, *so;
217 int q;
218 {
219 register struct socket **qh;
220
221 #ifdef DIAGNOSTIC
222 if (so->so_head != NULL)
223 panic("soqinsque");
224 #endif
225
226 so->so_head = head;
227 if (q == 0) {
228 head->so_q0len++;
229 qh = &head->so_q0;
230 } else {
231 head->so_qlen++;
232 qh = &head->so_q;
233 }
234 if ((*qh) == NULL) {
235 so->so_q = so->so_q0 = so;
236 (*qh) = so;
237 } else {
238 /* insert at tail */
239 so->so_q = (*qh);
240 so->so_q0 = (*qh)->so_q0;
241 so->so_q0->so_q = so;
242 (*qh)->so_q0 = so;
243 }
244 }
245
246 int
247 soqremque(so, q)
248 register struct socket *so;
249 int q;
250 {
251 register struct socket *head = so->so_head;
252 register struct socket **qh;
253
254 if (head == NULL) {
255 #ifdef DIAGNOSTIC
256 if (so->so_q != NULL || so->so_q0 != NULL)
257 panic("soqremque 1");
258 #endif
259 return (0);
260 }
261 if (q == 0) {
262 head->so_q0len--;
263 qh = &head->so_q0;
264 } else {
265 head->so_qlen--;
266 qh = &head->so_q;
267 }
268
269 #ifdef DIAGNOSTIC
270 if ((*qh) == NULL || so->so_q == NULL || so->so_q0 == NULL)
271 panic("soqremque 2");
272 #endif
273
274 if ((*qh) == so) {
275 /* first */
276 if (so->so_q == so) {
277 /* single entry; don't remove it from itself */
278 (*qh) = NULL;
279 } else {
280 so->so_q0->so_q = so->so_q;
281 so->so_q->so_q0 = so->so_q0;
282 (*qh) = so->so_q;
283 }
284 } else {
285 /* in the middle (or last) but not first */
286 so->so_q0->so_q = so->so_q;
287 so->so_q->so_q0 = so->so_q0;
288 }
289 so->so_q = so->so_q0 = NULL;
290 so->so_head = NULL;
291 return (1);
292 }
293
294 /*
295 * Socantsendmore indicates that no more data will be sent on the
296 * socket; it would normally be applied to a socket when the user
297 * informs the system that no more data is to be sent, by the protocol
298 * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data
299 * will be received, and will normally be applied to the socket by a
300 * protocol when it detects that the peer will send no more data.
301 * Data queued for reading in the socket may yet be read.
302 */
303
304 void
305 socantsendmore(so)
306 struct socket *so;
307 {
308
309 so->so_state |= SS_CANTSENDMORE;
310 sowwakeup(so);
311 }
312
313 void
314 socantrcvmore(so)
315 struct socket *so;
316 {
317
318 so->so_state |= SS_CANTRCVMORE;
319 sorwakeup(so);
320 }
321
322 /*
323 * Wait for data to arrive at/drain from a socket buffer.
324 */
325 int
326 sbwait(sb)
327 struct sockbuf *sb;
328 {
329
330 sb->sb_flags |= SB_WAIT;
331 return (tsleep((caddr_t)&sb->sb_cc,
332 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, netio,
333 sb->sb_timeo));
334 }
335
336 /*
337 * Lock a sockbuf already known to be locked;
338 * return any error returned from sleep (EINTR).
339 */
340 int
341 sb_lock(sb)
342 register struct sockbuf *sb;
343 {
344 int error;
345
346 while (sb->sb_flags & SB_LOCK) {
347 sb->sb_flags |= SB_WANT;
348 error = tsleep((caddr_t)&sb->sb_flags,
349 (sb->sb_flags & SB_NOINTR) ?
350 PSOCK : PSOCK|PCATCH, netio, 0);
351 if (error)
352 return (error);
353 }
354 sb->sb_flags |= SB_LOCK;
355 return (0);
356 }
357
358 /*
359 * Wakeup processes waiting on a socket buffer.
360 * Do asynchronous notification via SIGIO
361 * if the socket has the SS_ASYNC flag set.
362 */
363 void
364 sowakeup(so, sb)
365 register struct socket *so;
366 register struct sockbuf *sb;
367 {
368 struct proc *p;
369
370 selwakeup(&sb->sb_sel);
371 sb->sb_flags &= ~SB_SEL;
372 if (sb->sb_flags & SB_WAIT) {
373 sb->sb_flags &= ~SB_WAIT;
374 wakeup((caddr_t)&sb->sb_cc);
375 }
376 if (so->so_state & SS_ASYNC) {
377 if (so->so_pgid < 0)
378 gsignal(-so->so_pgid, SIGIO);
379 else if (so->so_pgid > 0 && (p = pfind(so->so_pgid)) != 0)
380 psignal(p, SIGIO);
381 }
382 }
383
384 /*
385 * Socket buffer (struct sockbuf) utility routines.
386 *
387 * Each socket contains two socket buffers: one for sending data and
388 * one for receiving data. Each buffer contains a queue of mbufs,
389 * information about the number of mbufs and amount of data in the
390 * queue, and other fields allowing poll() statements and notification
391 * on data availability to be implemented.
392 *
393 * Data stored in a socket buffer is maintained as a list of records.
394 * Each record is a list of mbufs chained together with the m_next
395 * field. Records are chained together with the m_nextpkt field. The upper
396 * level routine soreceive() expects the following conventions to be
397 * observed when placing information in the receive buffer:
398 *
399 * 1. If the protocol requires each message be preceded by the sender's
400 * name, then a record containing that name must be present before
401 * any associated data (mbuf's must be of type MT_SONAME).
402 * 2. If the protocol supports the exchange of ``access rights'' (really
403 * just additional data associated with the message), and there are
404 * ``rights'' to be received, then a record containing this data
405 * should be present (mbuf's must be of type MT_CONTROL).
406 * 3. If a name or rights record exists, then it must be followed by
407 * a data record, perhaps of zero length.
408 *
409 * Before using a new socket structure it is first necessary to reserve
410 * buffer space to the socket, by calling sbreserve(). This should commit
411 * some of the available buffer space in the system buffer pool for the
412 * socket (currently, it does nothing but enforce limits). The space
413 * should be released by calling sbrelease() when the socket is destroyed.
414 */
415
416 int
417 soreserve(so, sndcc, rcvcc)
418 register struct socket *so;
419 u_long sndcc, rcvcc;
420 {
421
422 if (sbreserve(&so->so_snd, sndcc) == 0)
423 goto bad;
424 if (sbreserve(&so->so_rcv, rcvcc) == 0)
425 goto bad2;
426 if (so->so_rcv.sb_lowat == 0)
427 so->so_rcv.sb_lowat = 1;
428 if (so->so_snd.sb_lowat == 0)
429 so->so_snd.sb_lowat = MCLBYTES;
430 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
431 so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
432 return (0);
433 bad2:
434 sbrelease(&so->so_snd);
435 bad:
436 return (ENOBUFS);
437 }
438
439 /*
440 * Allot mbufs to a sockbuf.
441 * Attempt to scale mbmax so that mbcnt doesn't become limiting
442 * if buffering efficiency is near the normal case.
443 */
444 int
445 sbreserve(sb, cc)
446 struct sockbuf *sb;
447 u_long cc;
448 {
449
450 if (cc > sb_max * MCLBYTES / (MSIZE + MCLBYTES))
451 return (0);
452 sb->sb_hiwat = cc;
453 sb->sb_mbmax = min(cc * 2, sb_max);
454 if (sb->sb_lowat > sb->sb_hiwat)
455 sb->sb_lowat = sb->sb_hiwat;
456 return (1);
457 }
458
459 /*
460 * Free mbufs held by a socket, and reserved mbuf space.
461 */
462 void
463 sbrelease(sb)
464 struct sockbuf *sb;
465 {
466
467 sbflush(sb);
468 sb->sb_hiwat = sb->sb_mbmax = 0;
469 }
470
471 /*
472 * Routines to add and remove
473 * data from an mbuf queue.
474 *
475 * The routines sbappend() or sbappendrecord() are normally called to
476 * append new mbufs to a socket buffer, after checking that adequate
477 * space is available, comparing the function sbspace() with the amount
478 * of data to be added. sbappendrecord() differs from sbappend() in
479 * that data supplied is treated as the beginning of a new record.
480 * To place a sender's address, optional access rights, and data in a
481 * socket receive buffer, sbappendaddr() should be used. To place
482 * access rights and data in a socket receive buffer, sbappendrights()
483 * should be used. In either case, the new data begins a new record.
484 * Note that unlike sbappend() and sbappendrecord(), these routines check
485 * for the caller that there will be enough space to store the data.
486 * Each fails if there is not enough space, or if it cannot find mbufs
487 * to store additional information in.
488 *
489 * Reliable protocols may use the socket send buffer to hold data
490 * awaiting acknowledgement. Data is normally copied from a socket
491 * send buffer in a protocol with m_copy for output to a peer,
492 * and then removing the data from the socket buffer with sbdrop()
493 * or sbdroprecord() when the data is acknowledged by the peer.
494 */
495
496 /*
497 * Append mbuf chain m to the last record in the
498 * socket buffer sb. The additional space associated
499 * the mbuf chain is recorded in sb. Empty mbufs are
500 * discarded and mbufs are compacted where possible.
501 */
502 void
503 sbappend(sb, m)
504 struct sockbuf *sb;
505 struct mbuf *m;
506 {
507 register struct mbuf *n;
508
509 if (m == 0)
510 return;
511 if ((n = sb->sb_mb) != NULL) {
512 while (n->m_nextpkt)
513 n = n->m_nextpkt;
514 do {
515 if (n->m_flags & M_EOR) {
516 sbappendrecord(sb, m); /* XXXXXX!!!! */
517 return;
518 }
519 } while (n->m_next && (n = n->m_next));
520 }
521 sbcompress(sb, m, n);
522 }
523
524 #ifdef SOCKBUF_DEBUG
525 void
526 sbcheck(sb)
527 register struct sockbuf *sb;
528 {
529 register struct mbuf *m;
530 register int len = 0, mbcnt = 0;
531
532 for (m = sb->sb_mb; m; m = m->m_next) {
533 len += m->m_len;
534 mbcnt += MSIZE;
535 if (m->m_flags & M_EXT)
536 mbcnt += m->m_ext.ext_size;
537 if (m->m_nextpkt)
538 panic("sbcheck nextpkt");
539 }
540 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
541 printf("cc %d != %d || mbcnt %d != %d\n", len, sb->sb_cc,
542 mbcnt, sb->sb_mbcnt);
543 panic("sbcheck");
544 }
545 }
546 #endif
547
548 /*
549 * As above, except the mbuf chain
550 * begins a new record.
551 */
552 void
553 sbappendrecord(sb, m0)
554 register struct sockbuf *sb;
555 register struct mbuf *m0;
556 {
557 register struct mbuf *m;
558
559 if (m0 == 0)
560 return;
561 if ((m = sb->sb_mb) != NULL)
562 while (m->m_nextpkt)
563 m = m->m_nextpkt;
564 /*
565 * Put the first mbuf on the queue.
566 * Note this permits zero length records.
567 */
568 sballoc(sb, m0);
569 if (m)
570 m->m_nextpkt = m0;
571 else
572 sb->sb_mb = m0;
573 m = m0->m_next;
574 m0->m_next = 0;
575 if (m && (m0->m_flags & M_EOR)) {
576 m0->m_flags &= ~M_EOR;
577 m->m_flags |= M_EOR;
578 }
579 sbcompress(sb, m, m0);
580 }
581
582 /*
583 * As above except that OOB data
584 * is inserted at the beginning of the sockbuf,
585 * but after any other OOB data.
586 */
587 void
588 sbinsertoob(sb, m0)
589 register struct sockbuf *sb;
590 register struct mbuf *m0;
591 {
592 register struct mbuf *m;
593 register struct mbuf **mp;
594
595 if (m0 == 0)
596 return;
597 for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
598 again:
599 switch (m->m_type) {
600
601 case MT_OOBDATA:
602 continue; /* WANT next train */
603
604 case MT_CONTROL:
605 if ((m = m->m_next) != NULL)
606 goto again; /* inspect THIS train further */
607 }
608 break;
609 }
610 /*
611 * Put the first mbuf on the queue.
612 * Note this permits zero length records.
613 */
614 sballoc(sb, m0);
615 m0->m_nextpkt = *mp;
616 *mp = m0;
617 m = m0->m_next;
618 m0->m_next = 0;
619 if (m && (m0->m_flags & M_EOR)) {
620 m0->m_flags &= ~M_EOR;
621 m->m_flags |= M_EOR;
622 }
623 sbcompress(sb, m, m0);
624 }
625
626 /*
627 * Append address and data, and optionally, control (ancillary) data
628 * to the receive queue of a socket. If present,
629 * m0 must include a packet header with total length.
630 * Returns 0 if no space in sockbuf or insufficient mbufs.
631 */
632 int
633 sbappendaddr(sb, asa, m0, control)
634 register struct sockbuf *sb;
635 struct sockaddr *asa;
636 struct mbuf *m0, *control;
637 {
638 register struct mbuf *m, *n;
639 int space = asa->sa_len;
640
641 if (m0 && (m0->m_flags & M_PKTHDR) == 0)
642 panic("sbappendaddr");
643 if (m0)
644 space += m0->m_pkthdr.len;
645 for (n = control; n; n = n->m_next) {
646 space += n->m_len;
647 if (n->m_next == 0) /* keep pointer to last control buf */
648 break;
649 }
650 if (space > sbspace(sb))
651 return (0);
652 if (asa->sa_len > MLEN)
653 return (0);
654 MGET(m, M_DONTWAIT, MT_SONAME);
655 if (m == 0)
656 return (0);
657 m->m_len = asa->sa_len;
658 bcopy((caddr_t)asa, mtod(m, caddr_t), asa->sa_len);
659 if (n)
660 n->m_next = m0; /* concatenate data to control */
661 else
662 control = m0;
663 m->m_next = control;
664 for (n = m; n; n = n->m_next)
665 sballoc(sb, n);
666 if ((n = sb->sb_mb) != NULL) {
667 while (n->m_nextpkt)
668 n = n->m_nextpkt;
669 n->m_nextpkt = m;
670 } else
671 sb->sb_mb = m;
672 return (1);
673 }
674
675 int
676 sbappendcontrol(sb, m0, control)
677 struct sockbuf *sb;
678 struct mbuf *m0, *control;
679 {
680 register struct mbuf *m, *n;
681 int space = 0;
682
683 if (control == 0)
684 panic("sbappendcontrol");
685 for (m = control; ; m = m->m_next) {
686 space += m->m_len;
687 if (m->m_next == 0)
688 break;
689 }
690 n = m; /* save pointer to last control buffer */
691 for (m = m0; m; m = m->m_next)
692 space += m->m_len;
693 if (space > sbspace(sb))
694 return (0);
695 n->m_next = m0; /* concatenate data to control */
696 for (m = control; m; m = m->m_next)
697 sballoc(sb, m);
698 if ((n = sb->sb_mb) != NULL) {
699 while (n->m_nextpkt)
700 n = n->m_nextpkt;
701 n->m_nextpkt = control;
702 } else
703 sb->sb_mb = control;
704 return (1);
705 }
706
707 /*
708 * Compress mbuf chain m into the socket
709 * buffer sb following mbuf n. If n
710 * is null, the buffer is presumed empty.
711 */
712 void
713 sbcompress(sb, m, n)
714 register struct sockbuf *sb;
715 register struct mbuf *m, *n;
716 {
717 register int eor = 0;
718 register struct mbuf *o;
719
720 while (m) {
721 eor |= m->m_flags & M_EOR;
722 if (m->m_len == 0 &&
723 (eor == 0 ||
724 (((o = m->m_next) || (o = n)) &&
725 o->m_type == m->m_type))) {
726 m = m_free(m);
727 continue;
728 }
729 if (n && (n->m_flags & (M_EXT | M_EOR)) == 0 &&
730 (n->m_data + n->m_len + m->m_len) < &n->m_dat[MLEN] &&
731 n->m_type == m->m_type) {
732 bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len,
733 (unsigned)m->m_len);
734 n->m_len += m->m_len;
735 sb->sb_cc += m->m_len;
736 m = m_free(m);
737 continue;
738 }
739 if (n)
740 n->m_next = m;
741 else
742 sb->sb_mb = m;
743 sballoc(sb, m);
744 n = m;
745 m->m_flags &= ~M_EOR;
746 m = m->m_next;
747 n->m_next = 0;
748 }
749 if (eor) {
750 if (n)
751 n->m_flags |= eor;
752 else
753 printf("semi-panic: sbcompress\n");
754 }
755 }
756
757 /*
758 * Free all mbufs in a sockbuf.
759 * Check that all resources are reclaimed.
760 */
761 void
762 sbflush(sb)
763 register struct sockbuf *sb;
764 {
765
766 if (sb->sb_flags & SB_LOCK)
767 panic("sbflush");
768 while (sb->sb_mbcnt)
769 sbdrop(sb, (int)sb->sb_cc);
770 if (sb->sb_cc || sb->sb_mb)
771 panic("sbflush 2");
772 }
773
774 /*
775 * Drop data from (the front of) a sockbuf.
776 */
777 void
778 sbdrop(sb, len)
779 register struct sockbuf *sb;
780 register int len;
781 {
782 register struct mbuf *m, *mn;
783 struct mbuf *next;
784
785 next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
786 while (len > 0) {
787 if (m == 0) {
788 if (next == 0)
789 panic("sbdrop");
790 m = next;
791 next = m->m_nextpkt;
792 continue;
793 }
794 if (m->m_len > len) {
795 m->m_len -= len;
796 m->m_data += len;
797 sb->sb_cc -= len;
798 break;
799 }
800 len -= m->m_len;
801 sbfree(sb, m);
802 MFREE(m, mn);
803 m = mn;
804 }
805 while (m && m->m_len == 0) {
806 sbfree(sb, m);
807 MFREE(m, mn);
808 m = mn;
809 }
810 if (m) {
811 sb->sb_mb = m;
812 m->m_nextpkt = next;
813 } else
814 sb->sb_mb = next;
815 }
816
817 /*
818 * Drop a record off the front of a sockbuf
819 * and move the next record to the front.
820 */
821 void
822 sbdroprecord(sb)
823 register struct sockbuf *sb;
824 {
825 register struct mbuf *m, *mn;
826
827 m = sb->sb_mb;
828 if (m) {
829 sb->sb_mb = m->m_nextpkt;
830 do {
831 sbfree(sb, m);
832 MFREE(m, mn);
833 } while ((m = mn) != NULL);
834 }
835 }
836