uipc_socket2.c revision 1.19.8.2 1 /* $NetBSD: uipc_socket2.c,v 1.19.8.2 1997/06/26 21:25:46 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1988, 1990, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * @(#)uipc_socket2.c 8.1 (Berkeley) 6/10/93
36 */
37
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/proc.h>
41 #include <sys/file.h>
42 #include <sys/buf.h>
43 #include <sys/malloc.h>
44 #include <sys/mbuf.h>
45 #include <sys/protosw.h>
46 #include <sys/socket.h>
47 #include <sys/socketvar.h>
48 #include <sys/signalvar.h>
49
50 /*
51 * Primitive routines for operating on sockets and socket buffers
52 */
53
54 /* strings for sleep message: */
55 char netio[] = "netio";
56 char netcon[] = "netcon";
57 char netcls[] = "netcls";
58
59 u_long sb_max = SB_MAX; /* patchable */
60
61 /*
62 * Procedures to manipulate state flags of socket
63 * and do appropriate wakeups. Normal sequence from the
64 * active (originating) side is that soisconnecting() is
65 * called during processing of connect() call,
66 * resulting in an eventual call to soisconnected() if/when the
67 * connection is established. When the connection is torn down
68 * soisdisconnecting() is called during processing of disconnect() call,
69 * and soisdisconnected() is called when the connection to the peer
70 * is totally severed. The semantics of these routines are such that
71 * connectionless protocols can call soisconnected() and soisdisconnected()
72 * only, bypassing the in-progress calls when setting up a ``connection''
73 * takes no time.
74 *
75 * From the passive side, a socket is created with
76 * two queues of sockets: so_q0 for connections in progress
77 * and so_q for connections already made and awaiting user acceptance.
78 * As a protocol is preparing incoming connections, it creates a socket
79 * structure queued on so_q0 by calling sonewconn(). When the connection
80 * is established, soisconnected() is called, and transfers the
81 * socket structure to so_q, making it available to accept().
82 *
83 * If a socket is closed with sockets on either
84 * so_q0 or so_q, these sockets are dropped.
85 *
86 * If higher level protocols are implemented in
87 * the kernel, the wakeups done here will sometimes
88 * cause software-interrupt process scheduling.
89 */
90
91 void
92 soisconnecting(so)
93 register struct socket *so;
94 {
95
96 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
97 so->so_state |= SS_ISCONNECTING;
98 }
99
100 void
101 soisconnected(so)
102 register struct socket *so;
103 {
104 register struct socket *head = so->so_head;
105
106 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
107 so->so_state |= SS_ISCONNECTED;
108 if (head && soqremque(so, 0)) {
109 soqinsque(head, so, 1);
110 sorwakeup(head);
111 wakeup((caddr_t)&head->so_timeo);
112 } else {
113 wakeup((caddr_t)&so->so_timeo);
114 sorwakeup(so);
115 sowwakeup(so);
116 }
117 }
118
119 void
120 soisdisconnecting(so)
121 register struct socket *so;
122 {
123
124 so->so_state &= ~SS_ISCONNECTING;
125 so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
126 wakeup((caddr_t)&so->so_timeo);
127 sowwakeup(so);
128 sorwakeup(so);
129 }
130
131 void
132 soisdisconnected(so)
133 register struct socket *so;
134 {
135
136 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
137 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE);
138 wakeup((caddr_t)&so->so_timeo);
139 sowwakeup(so);
140 sorwakeup(so);
141 }
142
143 /*
144 * When an attempt at a new connection is noted on a socket
145 * which accepts connections, sonewconn is called. If the
146 * connection is possible (subject to space constraints, etc.)
147 * then we allocate a new structure, propoerly linked into the
148 * data structure of the original socket, and return this.
149 * Connstatus may be 0, or SS_ISCONFIRMING, or SS_ISCONNECTED.
150 * If Connstatus also has SS_FORCE set, it means ignore the queue
151 * limits.
152 *
153 * Currently, sonewconn() is defined as sonewconn1() in socketvar.h
154 * to catch calls that are missing the (new) second parameter.
155 */
156 struct socket *
157 sonewconn1(head, connstatus)
158 register struct socket *head;
159 int connstatus;
160 {
161 register struct socket *so;
162 int soqueue = connstatus ? 1 : 0;
163
164 if ((head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2) &&
165 (connstatus & SS_FORCE) == 0)
166 return ((struct socket *)0);
167 connstatus &= ~SS_FORCE;
168 MALLOC(so, struct socket *, sizeof(*so), M_SOCKET, M_DONTWAIT);
169 if (so == NULL)
170 return ((struct socket *)0);
171 bzero((caddr_t)so, sizeof(*so));
172 so->so_type = head->so_type;
173 so->so_options = head->so_options &~ SO_ACCEPTCONN;
174 so->so_linger = head->so_linger;
175 so->so_state = head->so_state | SS_NOFDREF;
176 so->so_proto = head->so_proto;
177 so->so_timeo = head->so_timeo;
178 so->so_pgid = head->so_pgid;
179 (void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
180 soqinsque(head, so, soqueue);
181 if ((*so->so_proto->pr_usrreq)(so, PRU_ATTACH,
182 (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
183 (struct proc *)0)) {
184 (void) soqremque(so, soqueue);
185 (void) free((caddr_t)so, M_SOCKET);
186 return ((struct socket *)0);
187 }
188 if (connstatus) {
189 sorwakeup(head);
190 wakeup((caddr_t)&head->so_timeo);
191 so->so_state |= connstatus;
192 }
193 return (so);
194 }
195
196 void
197 soqinsque(head, so, q)
198 register struct socket *head, *so;
199 int q;
200 {
201
202 register struct socket **prev;
203 so->so_head = head;
204 if (q == 0) {
205 head->so_q0len++;
206 so->so_q0 = 0;
207 for (prev = &(head->so_q0); *prev; )
208 prev = &((*prev)->so_q0);
209 } else {
210 head->so_qlen++;
211 so->so_q = 0;
212 for (prev = &(head->so_q); *prev; )
213 prev = &((*prev)->so_q);
214 }
215 *prev = so;
216 }
217
218 int
219 soqremque(so, q)
220 register struct socket *so;
221 int q;
222 {
223 register struct socket *head, *prev, *next;
224
225 head = so->so_head;
226 prev = head;
227 for (;;) {
228 next = q ? prev->so_q : prev->so_q0;
229 if (next == so)
230 break;
231 if (next == 0)
232 return (0);
233 prev = next;
234 }
235 if (q == 0) {
236 prev->so_q0 = next->so_q0;
237 head->so_q0len--;
238 } else {
239 prev->so_q = next->so_q;
240 head->so_qlen--;
241 }
242 next->so_q0 = next->so_q = 0;
243 next->so_head = 0;
244 return (1);
245 }
246
247 /*
248 * Socantsendmore indicates that no more data will be sent on the
249 * socket; it would normally be applied to a socket when the user
250 * informs the system that no more data is to be sent, by the protocol
251 * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data
252 * will be received, and will normally be applied to the socket by a
253 * protocol when it detects that the peer will send no more data.
254 * Data queued for reading in the socket may yet be read.
255 */
256
257 void
258 socantsendmore(so)
259 struct socket *so;
260 {
261
262 so->so_state |= SS_CANTSENDMORE;
263 sowwakeup(so);
264 }
265
266 void
267 socantrcvmore(so)
268 struct socket *so;
269 {
270
271 so->so_state |= SS_CANTRCVMORE;
272 sorwakeup(so);
273 }
274
275 /*
276 * Wait for data to arrive at/drain from a socket buffer.
277 */
278 int
279 sbwait(sb)
280 struct sockbuf *sb;
281 {
282
283 sb->sb_flags |= SB_WAIT;
284 return (tsleep((caddr_t)&sb->sb_cc,
285 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, netio,
286 sb->sb_timeo));
287 }
288
289 /*
290 * Lock a sockbuf already known to be locked;
291 * return any error returned from sleep (EINTR).
292 */
293 int
294 sb_lock(sb)
295 register struct sockbuf *sb;
296 {
297 int error;
298
299 while (sb->sb_flags & SB_LOCK) {
300 sb->sb_flags |= SB_WANT;
301 error = tsleep((caddr_t)&sb->sb_flags,
302 (sb->sb_flags & SB_NOINTR) ?
303 PSOCK : PSOCK|PCATCH, netio, 0);
304 if (error)
305 return (error);
306 }
307 sb->sb_flags |= SB_LOCK;
308 return (0);
309 }
310
311 /*
312 * Wakeup processes waiting on a socket buffer.
313 * Do asynchronous notification via SIGIO
314 * if the socket has the SS_ASYNC flag set.
315 */
316 void
317 sowakeup(so, sb)
318 register struct socket *so;
319 register struct sockbuf *sb;
320 {
321 struct proc *p;
322
323 selwakeup(&sb->sb_sel);
324 sb->sb_flags &= ~SB_SEL;
325 if (sb->sb_flags & SB_WAIT) {
326 sb->sb_flags &= ~SB_WAIT;
327 wakeup((caddr_t)&sb->sb_cc);
328 }
329 if (so->so_state & SS_ASYNC) {
330 if (so->so_pgid < 0)
331 gsignal(-so->so_pgid, SIGIO);
332 else if (so->so_pgid > 0 && (p = pfind(so->so_pgid)) != 0)
333 psignal(p, SIGIO);
334 }
335 }
336
337 /*
338 * Socket buffer (struct sockbuf) utility routines.
339 *
340 * Each socket contains two socket buffers: one for sending data and
341 * one for receiving data. Each buffer contains a queue of mbufs,
342 * information about the number of mbufs and amount of data in the
343 * queue, and other fields allowing poll() statements and notification
344 * on data availability to be implemented.
345 *
346 * Data stored in a socket buffer is maintained as a list of records.
347 * Each record is a list of mbufs chained together with the m_next
348 * field. Records are chained together with the m_nextpkt field. The upper
349 * level routine soreceive() expects the following conventions to be
350 * observed when placing information in the receive buffer:
351 *
352 * 1. If the protocol requires each message be preceded by the sender's
353 * name, then a record containing that name must be present before
354 * any associated data (mbuf's must be of type MT_SONAME).
355 * 2. If the protocol supports the exchange of ``access rights'' (really
356 * just additional data associated with the message), and there are
357 * ``rights'' to be received, then a record containing this data
358 * should be present (mbuf's must be of type MT_CONTROL).
359 * 3. If a name or rights record exists, then it must be followed by
360 * a data record, perhaps of zero length.
361 *
362 * Before using a new socket structure it is first necessary to reserve
363 * buffer space to the socket, by calling sbreserve(). This should commit
364 * some of the available buffer space in the system buffer pool for the
365 * socket (currently, it does nothing but enforce limits). The space
366 * should be released by calling sbrelease() when the socket is destroyed.
367 */
368
369 int
370 soreserve(so, sndcc, rcvcc)
371 register struct socket *so;
372 u_long sndcc, rcvcc;
373 {
374
375 if (sbreserve(&so->so_snd, sndcc) == 0)
376 goto bad;
377 if (sbreserve(&so->so_rcv, rcvcc) == 0)
378 goto bad2;
379 if (so->so_rcv.sb_lowat == 0)
380 so->so_rcv.sb_lowat = 1;
381 if (so->so_snd.sb_lowat == 0)
382 so->so_snd.sb_lowat = MCLBYTES;
383 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
384 so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
385 return (0);
386 bad2:
387 sbrelease(&so->so_snd);
388 bad:
389 return (ENOBUFS);
390 }
391
392 /*
393 * Allot mbufs to a sockbuf.
394 * Attempt to scale mbmax so that mbcnt doesn't become limiting
395 * if buffering efficiency is near the normal case.
396 */
397 int
398 sbreserve(sb, cc)
399 struct sockbuf *sb;
400 u_long cc;
401 {
402
403 if (cc == 0 || cc > sb_max * MCLBYTES / (MSIZE + MCLBYTES))
404 return (0);
405 sb->sb_hiwat = cc;
406 sb->sb_mbmax = min(cc * 2, sb_max);
407 if (sb->sb_lowat > sb->sb_hiwat)
408 sb->sb_lowat = sb->sb_hiwat;
409 return (1);
410 }
411
412 /*
413 * Free mbufs held by a socket, and reserved mbuf space.
414 */
415 void
416 sbrelease(sb)
417 struct sockbuf *sb;
418 {
419
420 sbflush(sb);
421 sb->sb_hiwat = sb->sb_mbmax = 0;
422 }
423
424 /*
425 * Routines to add and remove
426 * data from an mbuf queue.
427 *
428 * The routines sbappend() or sbappendrecord() are normally called to
429 * append new mbufs to a socket buffer, after checking that adequate
430 * space is available, comparing the function sbspace() with the amount
431 * of data to be added. sbappendrecord() differs from sbappend() in
432 * that data supplied is treated as the beginning of a new record.
433 * To place a sender's address, optional access rights, and data in a
434 * socket receive buffer, sbappendaddr() should be used. To place
435 * access rights and data in a socket receive buffer, sbappendrights()
436 * should be used. In either case, the new data begins a new record.
437 * Note that unlike sbappend() and sbappendrecord(), these routines check
438 * for the caller that there will be enough space to store the data.
439 * Each fails if there is not enough space, or if it cannot find mbufs
440 * to store additional information in.
441 *
442 * Reliable protocols may use the socket send buffer to hold data
443 * awaiting acknowledgement. Data is normally copied from a socket
444 * send buffer in a protocol with m_copy for output to a peer,
445 * and then removing the data from the socket buffer with sbdrop()
446 * or sbdroprecord() when the data is acknowledged by the peer.
447 */
448
449 /*
450 * Append mbuf chain m to the last record in the
451 * socket buffer sb. The additional space associated
452 * the mbuf chain is recorded in sb. Empty mbufs are
453 * discarded and mbufs are compacted where possible.
454 */
455 void
456 sbappend(sb, m)
457 struct sockbuf *sb;
458 struct mbuf *m;
459 {
460 register struct mbuf *n;
461
462 if (m == 0)
463 return;
464 if ((n = sb->sb_mb) != NULL) {
465 while (n->m_nextpkt)
466 n = n->m_nextpkt;
467 do {
468 if (n->m_flags & M_EOR) {
469 sbappendrecord(sb, m); /* XXXXXX!!!! */
470 return;
471 }
472 } while (n->m_next && (n = n->m_next));
473 }
474 sbcompress(sb, m, n);
475 }
476
477 #ifdef SOCKBUF_DEBUG
478 void
479 sbcheck(sb)
480 register struct sockbuf *sb;
481 {
482 register struct mbuf *m;
483 register int len = 0, mbcnt = 0;
484
485 for (m = sb->sb_mb; m; m = m->m_next) {
486 len += m->m_len;
487 mbcnt += MSIZE;
488 if (m->m_flags & M_EXT)
489 mbcnt += m->m_ext.ext_size;
490 if (m->m_nextpkt)
491 panic("sbcheck nextpkt");
492 }
493 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
494 printf("cc %d != %d || mbcnt %d != %d\n", len, sb->sb_cc,
495 mbcnt, sb->sb_mbcnt);
496 panic("sbcheck");
497 }
498 }
499 #endif
500
501 /*
502 * As above, except the mbuf chain
503 * begins a new record.
504 */
505 void
506 sbappendrecord(sb, m0)
507 register struct sockbuf *sb;
508 register struct mbuf *m0;
509 {
510 register struct mbuf *m;
511
512 if (m0 == 0)
513 return;
514 if ((m = sb->sb_mb) != NULL)
515 while (m->m_nextpkt)
516 m = m->m_nextpkt;
517 /*
518 * Put the first mbuf on the queue.
519 * Note this permits zero length records.
520 */
521 sballoc(sb, m0);
522 if (m)
523 m->m_nextpkt = m0;
524 else
525 sb->sb_mb = m0;
526 m = m0->m_next;
527 m0->m_next = 0;
528 if (m && (m0->m_flags & M_EOR)) {
529 m0->m_flags &= ~M_EOR;
530 m->m_flags |= M_EOR;
531 }
532 sbcompress(sb, m, m0);
533 }
534
535 /*
536 * As above except that OOB data
537 * is inserted at the beginning of the sockbuf,
538 * but after any other OOB data.
539 */
540 void
541 sbinsertoob(sb, m0)
542 register struct sockbuf *sb;
543 register struct mbuf *m0;
544 {
545 register struct mbuf *m;
546 register struct mbuf **mp;
547
548 if (m0 == 0)
549 return;
550 for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
551 again:
552 switch (m->m_type) {
553
554 case MT_OOBDATA:
555 continue; /* WANT next train */
556
557 case MT_CONTROL:
558 if ((m = m->m_next) != NULL)
559 goto again; /* inspect THIS train further */
560 }
561 break;
562 }
563 /*
564 * Put the first mbuf on the queue.
565 * Note this permits zero length records.
566 */
567 sballoc(sb, m0);
568 m0->m_nextpkt = *mp;
569 *mp = m0;
570 m = m0->m_next;
571 m0->m_next = 0;
572 if (m && (m0->m_flags & M_EOR)) {
573 m0->m_flags &= ~M_EOR;
574 m->m_flags |= M_EOR;
575 }
576 sbcompress(sb, m, m0);
577 }
578
579 /*
580 * Append address and data, and optionally, control (ancillary) data
581 * to the receive queue of a socket. If present,
582 * m0 must include a packet header with total length.
583 * Returns 0 if no space in sockbuf or insufficient mbufs.
584 */
585 int
586 sbappendaddr(sb, asa, m0, control)
587 register struct sockbuf *sb;
588 struct sockaddr *asa;
589 struct mbuf *m0, *control;
590 {
591 register struct mbuf *m, *n;
592 int space = asa->sa_len;
593
594 if (m0 && (m0->m_flags & M_PKTHDR) == 0)
595 panic("sbappendaddr");
596 if (m0)
597 space += m0->m_pkthdr.len;
598 for (n = control; n; n = n->m_next) {
599 space += n->m_len;
600 if (n->m_next == 0) /* keep pointer to last control buf */
601 break;
602 }
603 if (space > sbspace(sb))
604 return (0);
605 MGET(m, M_DONTWAIT, MT_SONAME);
606 if (m == 0)
607 return (0);
608 if (asa->sa_len > MLEN) {
609 MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
610 if ((m->m_flags & M_EXT) == 0) {
611 m_free(m);
612 return (0);
613 }
614 }
615 m->m_len = asa->sa_len;
616 bcopy((caddr_t)asa, mtod(m, caddr_t), asa->sa_len);
617 if (n)
618 n->m_next = m0; /* concatenate data to control */
619 else
620 control = m0;
621 m->m_next = control;
622 for (n = m; n; n = n->m_next)
623 sballoc(sb, n);
624 if ((n = sb->sb_mb) != NULL) {
625 while (n->m_nextpkt)
626 n = n->m_nextpkt;
627 n->m_nextpkt = m;
628 } else
629 sb->sb_mb = m;
630 return (1);
631 }
632
633 int
634 sbappendcontrol(sb, m0, control)
635 struct sockbuf *sb;
636 struct mbuf *m0, *control;
637 {
638 register struct mbuf *m, *n;
639 int space = 0;
640
641 if (control == 0)
642 panic("sbappendcontrol");
643 for (m = control; ; m = m->m_next) {
644 space += m->m_len;
645 if (m->m_next == 0)
646 break;
647 }
648 n = m; /* save pointer to last control buffer */
649 for (m = m0; m; m = m->m_next)
650 space += m->m_len;
651 if (space > sbspace(sb))
652 return (0);
653 n->m_next = m0; /* concatenate data to control */
654 for (m = control; m; m = m->m_next)
655 sballoc(sb, m);
656 if ((n = sb->sb_mb) != NULL) {
657 while (n->m_nextpkt)
658 n = n->m_nextpkt;
659 n->m_nextpkt = control;
660 } else
661 sb->sb_mb = control;
662 return (1);
663 }
664
665 /*
666 * Compress mbuf chain m into the socket
667 * buffer sb following mbuf n. If n
668 * is null, the buffer is presumed empty.
669 */
670 void
671 sbcompress(sb, m, n)
672 register struct sockbuf *sb;
673 register struct mbuf *m, *n;
674 {
675 register int eor = 0;
676 register struct mbuf *o;
677
678 while (m) {
679 eor |= m->m_flags & M_EOR;
680 if (m->m_len == 0 &&
681 (eor == 0 ||
682 (((o = m->m_next) || (o = n)) &&
683 o->m_type == m->m_type))) {
684 m = m_free(m);
685 continue;
686 }
687 if (n && (n->m_flags & (M_EXT | M_EOR)) == 0 &&
688 (n->m_data + n->m_len + m->m_len) < &n->m_dat[MLEN] &&
689 n->m_type == m->m_type) {
690 bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len,
691 (unsigned)m->m_len);
692 n->m_len += m->m_len;
693 sb->sb_cc += m->m_len;
694 m = m_free(m);
695 continue;
696 }
697 if (n)
698 n->m_next = m;
699 else
700 sb->sb_mb = m;
701 sballoc(sb, m);
702 n = m;
703 m->m_flags &= ~M_EOR;
704 m = m->m_next;
705 n->m_next = 0;
706 }
707 if (eor) {
708 if (n)
709 n->m_flags |= eor;
710 else
711 printf("semi-panic: sbcompress\n");
712 }
713 }
714
715 /*
716 * Free all mbufs in a sockbuf.
717 * Check that all resources are reclaimed.
718 */
719 void
720 sbflush(sb)
721 register struct sockbuf *sb;
722 {
723
724 if (sb->sb_flags & SB_LOCK)
725 panic("sbflush");
726 while (sb->sb_mbcnt)
727 sbdrop(sb, (int)sb->sb_cc);
728 if (sb->sb_cc || sb->sb_mb)
729 panic("sbflush 2");
730 }
731
732 /*
733 * Drop data from (the front of) a sockbuf.
734 */
735 void
736 sbdrop(sb, len)
737 register struct sockbuf *sb;
738 register int len;
739 {
740 register struct mbuf *m, *mn;
741 struct mbuf *next;
742
743 next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
744 while (len > 0) {
745 if (m == 0) {
746 if (next == 0)
747 panic("sbdrop");
748 m = next;
749 next = m->m_nextpkt;
750 continue;
751 }
752 if (m->m_len > len) {
753 m->m_len -= len;
754 m->m_data += len;
755 sb->sb_cc -= len;
756 break;
757 }
758 len -= m->m_len;
759 sbfree(sb, m);
760 MFREE(m, mn);
761 m = mn;
762 }
763 while (m && m->m_len == 0) {
764 sbfree(sb, m);
765 MFREE(m, mn);
766 m = mn;
767 }
768 if (m) {
769 sb->sb_mb = m;
770 m->m_nextpkt = next;
771 } else
772 sb->sb_mb = next;
773 }
774
775 /*
776 * Drop a record off the front of a sockbuf
777 * and move the next record to the front.
778 */
779 void
780 sbdroprecord(sb)
781 register struct sockbuf *sb;
782 {
783 register struct mbuf *m, *mn;
784
785 m = sb->sb_mb;
786 if (m) {
787 sb->sb_mb = m->m_nextpkt;
788 do {
789 sbfree(sb, m);
790 MFREE(m, mn);
791 } while ((m = mn) != NULL);
792 }
793 }
794
795 /*
796 * Create a "control" mbuf containing the specified data
797 * with the specified type for presentation on a socket buffer.
798 */
799 struct mbuf *
800 sbcreatecontrol(p, size, type, level)
801 caddr_t p;
802 register int size;
803 int type, level;
804 {
805 register struct cmsghdr *cp;
806 struct mbuf *m;
807
808 if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
809 return ((struct mbuf *) NULL);
810 cp = mtod(m, struct cmsghdr *);
811 bcopy(p, CMSG_DATA(cp), size);
812 size += sizeof(*cp);
813 m->m_len = size;
814 cp->cmsg_len = size;
815 cp->cmsg_level = level;
816 cp->cmsg_type = type;
817 return (m);
818 }
819