uipc_socket2.c revision 1.2 1 /*
2 * Copyright (c) 1982, 1986, 1988, 1990 Regents of the University of California.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 * @(#)uipc_socket2.c 7.17 (Berkeley) 5/4/91
34 *
35 * PATCHES MAGIC LEVEL PATCH THAT GOT US HERE
36 * -------------------- ----- ----------------------
37 * CURRENT PATCH LEVEL: 1 00061
38 * -------------------- ----- ----------------------
39 *
40 * 11 Dec 92 Williams Jolitz Fixed tty handling
41 */
42
43 #include "param.h"
44 #include "systm.h"
45 #include "proc.h"
46 #include "file.h"
47 #include "buf.h"
48 #include "malloc.h"
49 #include "mbuf.h"
50 #include "protosw.h"
51 #include "socket.h"
52 #include "socketvar.h"
53
54 /*
55 * Primitive routines for operating on sockets and socket buffers
56 */
57
58 /* strings for sleep message: */
59 char netio[] = "netio";
60 char netcon[] = "netcon";
61 char netcls[] = "netcls";
62
63 u_long sb_max = SB_MAX; /* patchable */
64
65 /*
66 * Procedures to manipulate state flags of socket
67 * and do appropriate wakeups. Normal sequence from the
68 * active (originating) side is that soisconnecting() is
69 * called during processing of connect() call,
70 * resulting in an eventual call to soisconnected() if/when the
71 * connection is established. When the connection is torn down
72 * soisdisconnecting() is called during processing of disconnect() call,
73 * and soisdisconnected() is called when the connection to the peer
74 * is totally severed. The semantics of these routines are such that
75 * connectionless protocols can call soisconnected() and soisdisconnected()
76 * only, bypassing the in-progress calls when setting up a ``connection''
77 * takes no time.
78 *
79 * From the passive side, a socket is created with
80 * two queues of sockets: so_q0 for connections in progress
81 * and so_q for connections already made and awaiting user acceptance.
82 * As a protocol is preparing incoming connections, it creates a socket
83 * structure queued on so_q0 by calling sonewconn(). When the connection
84 * is established, soisconnected() is called, and transfers the
85 * socket structure to so_q, making it available to accept().
86 *
87 * If a socket is closed with sockets on either
88 * so_q0 or so_q, these sockets are dropped.
89 *
90 * If higher level protocols are implemented in
91 * the kernel, the wakeups done here will sometimes
92 * cause software-interrupt process scheduling.
93 */
94
95 soisconnecting(so)
96 register struct socket *so;
97 {
98
99 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
100 so->so_state |= SS_ISCONNECTING;
101 }
102
103 soisconnected(so)
104 register struct socket *so;
105 {
106 register struct socket *head = so->so_head;
107
108 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
109 so->so_state |= SS_ISCONNECTED;
110 if (head && soqremque(so, 0)) {
111 soqinsque(head, so, 1);
112 sorwakeup(head);
113 wakeup((caddr_t)&head->so_timeo);
114 } else {
115 wakeup((caddr_t)&so->so_timeo);
116 sorwakeup(so);
117 sowwakeup(so);
118 }
119 }
120
121 soisdisconnecting(so)
122 register struct socket *so;
123 {
124
125 so->so_state &= ~SS_ISCONNECTING;
126 so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
127 wakeup((caddr_t)&so->so_timeo);
128 sowwakeup(so);
129 sorwakeup(so);
130 }
131
132 soisdisconnected(so)
133 register struct socket *so;
134 {
135
136 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
137 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE);
138 wakeup((caddr_t)&so->so_timeo);
139 sowwakeup(so);
140 sorwakeup(so);
141 }
142
143 /*
144 * When an attempt at a new connection is noted on a socket
145 * which accepts connections, sonewconn is called. If the
146 * connection is possible (subject to space constraints, etc.)
147 * then we allocate a new structure, propoerly linked into the
148 * data structure of the original socket, and return this.
149 * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
150 *
151 * Currently, sonewconn() is defined as sonewconn1() in socketvar.h
152 * to catch calls that are missing the (new) second parameter.
153 */
154 struct socket *
155 sonewconn1(head, connstatus)
156 register struct socket *head;
157 int connstatus;
158 {
159 register struct socket *so;
160 int soqueue = connstatus ? 1 : 0;
161
162 if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
163 return ((struct socket *)0);
164 MALLOC(so, struct socket *, sizeof(*so), M_SOCKET, M_DONTWAIT);
165 if (so == NULL)
166 return ((struct socket *)0);
167 bzero((caddr_t)so, sizeof(*so));
168 so->so_type = head->so_type;
169 so->so_options = head->so_options &~ SO_ACCEPTCONN;
170 so->so_linger = head->so_linger;
171 so->so_state = head->so_state | SS_NOFDREF;
172 so->so_proto = head->so_proto;
173 so->so_timeo = head->so_timeo;
174 so->so_pgid = head->so_pgid;
175 (void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
176 soqinsque(head, so, soqueue);
177 if ((*so->so_proto->pr_usrreq)(so, PRU_ATTACH,
178 (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0)) {
179 (void) soqremque(so, soqueue);
180 (void) free((caddr_t)so, M_SOCKET);
181 return ((struct socket *)0);
182 }
183 if (connstatus) {
184 sorwakeup(head);
185 wakeup((caddr_t)&head->so_timeo);
186 so->so_state |= connstatus;
187 }
188 return (so);
189 }
190
191 soqinsque(head, so, q)
192 register struct socket *head, *so;
193 int q;
194 {
195
196 register struct socket **prev;
197 so->so_head = head;
198 if (q == 0) {
199 head->so_q0len++;
200 so->so_q0 = 0;
201 for (prev = &(head->so_q0); *prev; )
202 prev = &((*prev)->so_q0);
203 } else {
204 head->so_qlen++;
205 so->so_q = 0;
206 for (prev = &(head->so_q); *prev; )
207 prev = &((*prev)->so_q);
208 }
209 *prev = so;
210 }
211
212 soqremque(so, q)
213 register struct socket *so;
214 int q;
215 {
216 register struct socket *head, *prev, *next;
217
218 head = so->so_head;
219 prev = head;
220 for (;;) {
221 next = q ? prev->so_q : prev->so_q0;
222 if (next == so)
223 break;
224 if (next == 0)
225 return (0);
226 prev = next;
227 }
228 if (q == 0) {
229 prev->so_q0 = next->so_q0;
230 head->so_q0len--;
231 } else {
232 prev->so_q = next->so_q;
233 head->so_qlen--;
234 }
235 next->so_q0 = next->so_q = 0;
236 next->so_head = 0;
237 return (1);
238 }
239
240 /*
241 * Socantsendmore indicates that no more data will be sent on the
242 * socket; it would normally be applied to a socket when the user
243 * informs the system that no more data is to be sent, by the protocol
244 * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data
245 * will be received, and will normally be applied to the socket by a
246 * protocol when it detects that the peer will send no more data.
247 * Data queued for reading in the socket may yet be read.
248 */
249
250 socantsendmore(so)
251 struct socket *so;
252 {
253
254 so->so_state |= SS_CANTSENDMORE;
255 sowwakeup(so);
256 }
257
258 socantrcvmore(so)
259 struct socket *so;
260 {
261
262 so->so_state |= SS_CANTRCVMORE;
263 sorwakeup(so);
264 }
265
266 /*
267 * Socket select/wakeup routines.
268 */
269
270 /*
271 * Queue a process for a select on a socket buffer.
272 */
273 sbselqueue(sb, cp)
274 struct sockbuf *sb;
275 struct proc *cp;
276 {
277 struct proc *p;
278
279 if (sb->sb_sel && (p = pfind(sb->sb_sel)) && p->p_wchan == (caddr_t)&selwait)
280 sb->sb_flags |= SB_COLL;
281 else {
282 sb->sb_sel = cp->p_pid;
283 sb->sb_flags |= SB_SEL;
284 }
285 }
286
287 /*
288 * Wait for data to arrive at/drain from a socket buffer.
289 */
290 sbwait(sb)
291 struct sockbuf *sb;
292 {
293
294 sb->sb_flags |= SB_WAIT;
295 return (tsleep((caddr_t)&sb->sb_cc,
296 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, netio,
297 sb->sb_timeo));
298 }
299
300 /*
301 * Lock a sockbuf already known to be locked;
302 * return any error returned from sleep (EINTR).
303 */
304 sb_lock(sb)
305 register struct sockbuf *sb;
306 {
307 int error;
308
309 while (sb->sb_flags & SB_LOCK) {
310 sb->sb_flags |= SB_WANT;
311 if (error = tsleep((caddr_t)&sb->sb_flags,
312 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK|PCATCH,
313 netio, 0))
314 return (error);
315 }
316 sb->sb_flags |= SB_LOCK;
317 return (0);
318 }
319
320 /*
321 * Wakeup processes waiting on a socket buffer.
322 * Do asynchronous notification via SIGIO
323 * if the socket has the SS_ASYNC flag set.
324 */
325 sowakeup(so, sb)
326 register struct socket *so;
327 register struct sockbuf *sb;
328 {
329 struct proc *p;
330
331 if (sb->sb_sel) {
332 selwakeup(sb->sb_sel, sb->sb_flags & SB_COLL);
333 sb->sb_sel = 0;
334 sb->sb_flags &= ~(SB_SEL|SB_COLL);
335 }
336 if (sb->sb_flags & SB_WAIT) {
337 sb->sb_flags &= ~SB_WAIT;
338 wakeup((caddr_t)&sb->sb_cc);
339 }
340 if (so->so_state & SS_ASYNC) {
341 if (so->so_pgid < 0)
342 gsignal(-so->so_pgid, SIGIO);
343 else if (so->so_pgid > 0 && (p = pfind(so->so_pgid)) != 0)
344 psignal(p, SIGIO);
345 }
346 }
347
348 /*
349 * Socket buffer (struct sockbuf) utility routines.
350 *
351 * Each socket contains two socket buffers: one for sending data and
352 * one for receiving data. Each buffer contains a queue of mbufs,
353 * information about the number of mbufs and amount of data in the
354 * queue, and other fields allowing select() statements and notification
355 * on data availability to be implemented.
356 *
357 * Data stored in a socket buffer is maintained as a list of records.
358 * Each record is a list of mbufs chained together with the m_next
359 * field. Records are chained together with the m_nextpkt field. The upper
360 * level routine soreceive() expects the following conventions to be
361 * observed when placing information in the receive buffer:
362 *
363 * 1. If the protocol requires each message be preceded by the sender's
364 * name, then a record containing that name must be present before
365 * any associated data (mbuf's must be of type MT_SONAME).
366 * 2. If the protocol supports the exchange of ``access rights'' (really
367 * just additional data associated with the message), and there are
368 * ``rights'' to be received, then a record containing this data
369 * should be present (mbuf's must be of type MT_RIGHTS).
370 * 3. If a name or rights record exists, then it must be followed by
371 * a data record, perhaps of zero length.
372 *
373 * Before using a new socket structure it is first necessary to reserve
374 * buffer space to the socket, by calling sbreserve(). This should commit
375 * some of the available buffer space in the system buffer pool for the
376 * socket (currently, it does nothing but enforce limits). The space
377 * should be released by calling sbrelease() when the socket is destroyed.
378 */
379
380 soreserve(so, sndcc, rcvcc)
381 register struct socket *so;
382 u_long sndcc, rcvcc;
383 {
384
385 if (sbreserve(&so->so_snd, sndcc) == 0)
386 goto bad;
387 if (sbreserve(&so->so_rcv, rcvcc) == 0)
388 goto bad2;
389 if (so->so_rcv.sb_lowat == 0)
390 so->so_rcv.sb_lowat = 1;
391 if (so->so_snd.sb_lowat == 0)
392 so->so_snd.sb_lowat = MCLBYTES;
393 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
394 so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
395 return (0);
396 bad2:
397 sbrelease(&so->so_snd);
398 bad:
399 return (ENOBUFS);
400 }
401
402 /*
403 * Allot mbufs to a sockbuf.
404 * Attempt to scale mbmax so that mbcnt doesn't become limiting
405 * if buffering efficiency is near the normal case.
406 */
407 sbreserve(sb, cc)
408 struct sockbuf *sb;
409 u_long cc;
410 {
411
412 if (cc > sb_max * MCLBYTES / (MSIZE + MCLBYTES))
413 return (0);
414 sb->sb_hiwat = cc;
415 sb->sb_mbmax = min(cc * 2, sb_max);
416 if (sb->sb_lowat > sb->sb_hiwat)
417 sb->sb_lowat = sb->sb_hiwat;
418 return (1);
419 }
420
421 /*
422 * Free mbufs held by a socket, and reserved mbuf space.
423 */
424 sbrelease(sb)
425 struct sockbuf *sb;
426 {
427
428 sbflush(sb);
429 sb->sb_hiwat = sb->sb_mbmax = 0;
430 }
431
432 /*
433 * Routines to add and remove
434 * data from an mbuf queue.
435 *
436 * The routines sbappend() or sbappendrecord() are normally called to
437 * append new mbufs to a socket buffer, after checking that adequate
438 * space is available, comparing the function sbspace() with the amount
439 * of data to be added. sbappendrecord() differs from sbappend() in
440 * that data supplied is treated as the beginning of a new record.
441 * To place a sender's address, optional access rights, and data in a
442 * socket receive buffer, sbappendaddr() should be used. To place
443 * access rights and data in a socket receive buffer, sbappendrights()
444 * should be used. In either case, the new data begins a new record.
445 * Note that unlike sbappend() and sbappendrecord(), these routines check
446 * for the caller that there will be enough space to store the data.
447 * Each fails if there is not enough space, or if it cannot find mbufs
448 * to store additional information in.
449 *
450 * Reliable protocols may use the socket send buffer to hold data
451 * awaiting acknowledgement. Data is normally copied from a socket
452 * send buffer in a protocol with m_copy for output to a peer,
453 * and then removing the data from the socket buffer with sbdrop()
454 * or sbdroprecord() when the data is acknowledged by the peer.
455 */
456
457 /*
458 * Append mbuf chain m to the last record in the
459 * socket buffer sb. The additional space associated
460 * the mbuf chain is recorded in sb. Empty mbufs are
461 * discarded and mbufs are compacted where possible.
462 */
463 sbappend(sb, m)
464 struct sockbuf *sb;
465 struct mbuf *m;
466 {
467 register struct mbuf *n;
468
469 if (m == 0)
470 return;
471 if (n = sb->sb_mb) {
472 while (n->m_nextpkt)
473 n = n->m_nextpkt;
474 do {
475 if (n->m_flags & M_EOR) {
476 sbappendrecord(sb, m); /* XXXXXX!!!! */
477 return;
478 }
479 } while (n->m_next && (n = n->m_next));
480 }
481 sbcompress(sb, m, n);
482 }
483
484 #ifdef SOCKBUF_DEBUG
485 sbcheck(sb)
486 register struct sockbuf *sb;
487 {
488 register struct mbuf *m;
489 register int len = 0, mbcnt = 0;
490
491 for (m = sb->sb_mb; m; m = m->m_next) {
492 len += m->m_len;
493 mbcnt += MSIZE;
494 if (m->m_flags & M_EXT)
495 mbcnt += m->m_ext.ext_size;
496 if (m->m_nextpkt)
497 panic("sbcheck nextpkt");
498 }
499 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
500 printf("cc %d != %d || mbcnt %d != %d\n", len, sb->sb_cc,
501 mbcnt, sb->sb_mbcnt);
502 panic("sbcheck");
503 }
504 }
505 #endif
506
507 /*
508 * As above, except the mbuf chain
509 * begins a new record.
510 */
511 sbappendrecord(sb, m0)
512 register struct sockbuf *sb;
513 register struct mbuf *m0;
514 {
515 register struct mbuf *m;
516
517 if (m0 == 0)
518 return;
519 if (m = sb->sb_mb)
520 while (m->m_nextpkt)
521 m = m->m_nextpkt;
522 /*
523 * Put the first mbuf on the queue.
524 * Note this permits zero length records.
525 */
526 sballoc(sb, m0);
527 if (m)
528 m->m_nextpkt = m0;
529 else
530 sb->sb_mb = m0;
531 m = m0->m_next;
532 m0->m_next = 0;
533 if (m && (m0->m_flags & M_EOR)) {
534 m0->m_flags &= ~M_EOR;
535 m->m_flags |= M_EOR;
536 }
537 sbcompress(sb, m, m0);
538 }
539
540 /*
541 * As above except that OOB data
542 * is inserted at the beginning of the sockbuf,
543 * but after any other OOB data.
544 */
545 sbinsertoob(sb, m0)
546 register struct sockbuf *sb;
547 register struct mbuf *m0;
548 {
549 register struct mbuf *m;
550 register struct mbuf **mp;
551
552 if (m0 == 0)
553 return;
554 for (mp = &sb->sb_mb; m = *mp; mp = &((*mp)->m_nextpkt)) {
555 again:
556 switch (m->m_type) {
557
558 case MT_OOBDATA:
559 continue; /* WANT next train */
560
561 case MT_CONTROL:
562 if (m = m->m_next)
563 goto again; /* inspect THIS train further */
564 }
565 break;
566 }
567 /*
568 * Put the first mbuf on the queue.
569 * Note this permits zero length records.
570 */
571 sballoc(sb, m0);
572 m0->m_nextpkt = *mp;
573 *mp = m0;
574 m = m0->m_next;
575 m0->m_next = 0;
576 if (m && (m0->m_flags & M_EOR)) {
577 m0->m_flags &= ~M_EOR;
578 m->m_flags |= M_EOR;
579 }
580 sbcompress(sb, m, m0);
581 }
582
583 /*
584 * Append address and data, and optionally, control (ancillary) data
585 * to the receive queue of a socket. If present,
586 * m0 must include a packet header with total length.
587 * Returns 0 if no space in sockbuf or insufficient mbufs.
588 */
589 sbappendaddr(sb, asa, m0, control)
590 register struct sockbuf *sb;
591 struct sockaddr *asa;
592 struct mbuf *m0, *control;
593 {
594 register struct mbuf *m, *n;
595 int space = asa->sa_len;
596
597 if (m0 && (m0->m_flags & M_PKTHDR) == 0)
598 panic("sbappendaddr");
599 if (m0)
600 space += m0->m_pkthdr.len;
601 for (n = control; n; n = n->m_next) {
602 space += n->m_len;
603 if (n->m_next == 0) /* keep pointer to last control buf */
604 break;
605 }
606 if (space > sbspace(sb))
607 return (0);
608 if (asa->sa_len > MLEN)
609 return (0);
610 MGET(m, M_DONTWAIT, MT_SONAME);
611 if (m == 0)
612 return (0);
613 m->m_len = asa->sa_len;
614 bcopy((caddr_t)asa, mtod(m, caddr_t), asa->sa_len);
615 if (n)
616 n->m_next = m0; /* concatenate data to control */
617 else
618 control = m0;
619 m->m_next = control;
620 for (n = m; n; n = n->m_next)
621 sballoc(sb, n);
622 if (n = sb->sb_mb) {
623 while (n->m_nextpkt)
624 n = n->m_nextpkt;
625 n->m_nextpkt = m;
626 } else
627 sb->sb_mb = m;
628 return (1);
629 }
630
631 sbappendcontrol(sb, m0, control)
632 struct sockbuf *sb;
633 struct mbuf *control, *m0;
634 {
635 register struct mbuf *m, *n;
636 int space = 0;
637
638 if (control == 0)
639 panic("sbappendcontrol");
640 for (m = control; ; m = m->m_next) {
641 space += m->m_len;
642 if (m->m_next == 0)
643 break;
644 }
645 n = m; /* save pointer to last control buffer */
646 for (m = m0; m; m = m->m_next)
647 space += m->m_len;
648 if (space > sbspace(sb))
649 return (0);
650 n->m_next = m0; /* concatenate data to control */
651 for (m = control; m; m = m->m_next)
652 sballoc(sb, m);
653 if (n = sb->sb_mb) {
654 while (n->m_nextpkt)
655 n = n->m_nextpkt;
656 n->m_nextpkt = control;
657 } else
658 sb->sb_mb = control;
659 return (1);
660 }
661
662 /*
663 * Compress mbuf chain m into the socket
664 * buffer sb following mbuf n. If n
665 * is null, the buffer is presumed empty.
666 */
667 sbcompress(sb, m, n)
668 register struct sockbuf *sb;
669 register struct mbuf *m, *n;
670 {
671 register int eor = 0;
672 register struct mbuf *o;
673
674 while (m) {
675 eor |= m->m_flags & M_EOR;
676 if (m->m_len == 0 &&
677 (eor == 0 ||
678 (((o = m->m_next) || (o = n)) &&
679 o->m_type == m->m_type))) {
680 m = m_free(m);
681 continue;
682 }
683 if (n && (n->m_flags & (M_EXT | M_EOR)) == 0 &&
684 (n->m_data + n->m_len + m->m_len) < &n->m_dat[MLEN] &&
685 n->m_type == m->m_type) {
686 bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len,
687 (unsigned)m->m_len);
688 n->m_len += m->m_len;
689 sb->sb_cc += m->m_len;
690 m = m_free(m);
691 continue;
692 }
693 if (n)
694 n->m_next = m;
695 else
696 sb->sb_mb = m;
697 sballoc(sb, m);
698 n = m;
699 m->m_flags &= ~M_EOR;
700 m = m->m_next;
701 n->m_next = 0;
702 }
703 if (eor) {
704 if (n)
705 n->m_flags |= eor;
706 else
707 printf("semi-panic: sbcompress\n");
708 }
709 }
710
711 /*
712 * Free all mbufs in a sockbuf.
713 * Check that all resources are reclaimed.
714 */
715 sbflush(sb)
716 register struct sockbuf *sb;
717 {
718
719 if (sb->sb_flags & SB_LOCK)
720 panic("sbflush");
721 while (sb->sb_mbcnt)
722 sbdrop(sb, (int)sb->sb_cc);
723 if (sb->sb_cc || sb->sb_mb)
724 panic("sbflush 2");
725 }
726
727 /*
728 * Drop data from (the front of) a sockbuf.
729 */
730 sbdrop(sb, len)
731 register struct sockbuf *sb;
732 register int len;
733 {
734 register struct mbuf *m, *mn;
735 struct mbuf *next;
736
737 next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
738 while (len > 0) {
739 if (m == 0) {
740 if (next == 0)
741 panic("sbdrop");
742 m = next;
743 next = m->m_nextpkt;
744 continue;
745 }
746 if (m->m_len > len) {
747 m->m_len -= len;
748 m->m_data += len;
749 sb->sb_cc -= len;
750 break;
751 }
752 len -= m->m_len;
753 sbfree(sb, m);
754 MFREE(m, mn);
755 m = mn;
756 }
757 while (m && m->m_len == 0) {
758 sbfree(sb, m);
759 MFREE(m, mn);
760 m = mn;
761 }
762 if (m) {
763 sb->sb_mb = m;
764 m->m_nextpkt = next;
765 } else
766 sb->sb_mb = next;
767 }
768
769 /*
770 * Drop a record off the front of a sockbuf
771 * and move the next record to the front.
772 */
773 sbdroprecord(sb)
774 register struct sockbuf *sb;
775 {
776 register struct mbuf *m, *mn;
777
778 m = sb->sb_mb;
779 if (m) {
780 sb->sb_mb = m->m_nextpkt;
781 do {
782 sbfree(sb, m);
783 MFREE(m, mn);
784 } while (m = mn);
785 }
786 }
787