Home | History | Annotate | Line # | Download | only in kern
uipc_socket2.c revision 1.22
      1 /*	$NetBSD: uipc_socket2.c,v 1.22 1998/01/07 23:47:09 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1988, 1990, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by the University of
     18  *	California, Berkeley and its contributors.
     19  * 4. Neither the name of the University nor the names of its contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33  * SUCH DAMAGE.
     34  *
     35  *	@(#)uipc_socket2.c	8.1 (Berkeley) 6/10/93
     36  */
     37 
     38 #include <sys/param.h>
     39 #include <sys/systm.h>
     40 #include <sys/proc.h>
     41 #include <sys/file.h>
     42 #include <sys/buf.h>
     43 #include <sys/malloc.h>
     44 #include <sys/mbuf.h>
     45 #include <sys/protosw.h>
     46 #include <sys/socket.h>
     47 #include <sys/socketvar.h>
     48 #include <sys/signalvar.h>
     49 
     50 /*
     51  * Primitive routines for operating on sockets and socket buffers
     52  */
     53 
     54 /* strings for sleep message: */
     55 const char	netio[] = "netio";
     56 const char	netcon[] = "netcon";
     57 const char	netcls[] = "netcls";
     58 
     59 u_long	sb_max = SB_MAX;		/* patchable */
     60 
     61 /*
     62  * Procedures to manipulate state flags of socket
     63  * and do appropriate wakeups.  Normal sequence from the
     64  * active (originating) side is that soisconnecting() is
     65  * called during processing of connect() call,
     66  * resulting in an eventual call to soisconnected() if/when the
     67  * connection is established.  When the connection is torn down
     68  * soisdisconnecting() is called during processing of disconnect() call,
     69  * and soisdisconnected() is called when the connection to the peer
     70  * is totally severed.  The semantics of these routines are such that
     71  * connectionless protocols can call soisconnected() and soisdisconnected()
     72  * only, bypassing the in-progress calls when setting up a ``connection''
     73  * takes no time.
     74  *
     75  * From the passive side, a socket is created with
     76  * two queues of sockets: so_q0 for connections in progress
     77  * and so_q for connections already made and awaiting user acceptance.
     78  * As a protocol is preparing incoming connections, it creates a socket
     79  * structure queued on so_q0 by calling sonewconn().  When the connection
     80  * is established, soisconnected() is called, and transfers the
     81  * socket structure to so_q, making it available to accept().
     82  *
     83  * If a socket is closed with sockets on either
     84  * so_q0 or so_q, these sockets are dropped.
     85  *
     86  * If higher level protocols are implemented in
     87  * the kernel, the wakeups done here will sometimes
     88  * cause software-interrupt process scheduling.
     89  */
     90 
     91 void
     92 soisconnecting(so)
     93 	register struct socket *so;
     94 {
     95 
     96 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
     97 	so->so_state |= SS_ISCONNECTING;
     98 }
     99 
    100 void
    101 soisconnected(so)
    102 	register struct socket *so;
    103 {
    104 	register struct socket *head = so->so_head;
    105 
    106 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
    107 	so->so_state |= SS_ISCONNECTED;
    108 	if (head && soqremque(so, 0)) {
    109 		soqinsque(head, so, 1);
    110 		sorwakeup(head);
    111 		wakeup((caddr_t)&head->so_timeo);
    112 	} else {
    113 		wakeup((caddr_t)&so->so_timeo);
    114 		sorwakeup(so);
    115 		sowwakeup(so);
    116 	}
    117 }
    118 
    119 void
    120 soisdisconnecting(so)
    121 	register struct socket *so;
    122 {
    123 
    124 	so->so_state &= ~SS_ISCONNECTING;
    125 	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
    126 	wakeup((caddr_t)&so->so_timeo);
    127 	sowwakeup(so);
    128 	sorwakeup(so);
    129 }
    130 
    131 void
    132 soisdisconnected(so)
    133 	register struct socket *so;
    134 {
    135 
    136 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
    137 	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE);
    138 	wakeup((caddr_t)&so->so_timeo);
    139 	sowwakeup(so);
    140 	sorwakeup(so);
    141 }
    142 
    143 /*
    144  * When an attempt at a new connection is noted on a socket
    145  * which accepts connections, sonewconn is called.  If the
    146  * connection is possible (subject to space constraints, etc.)
    147  * then we allocate a new structure, propoerly linked into the
    148  * data structure of the original socket, and return this.
    149  * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
    150  *
    151  * Currently, sonewconn() is defined as sonewconn1() in socketvar.h
    152  * to catch calls that are missing the (new) second parameter.
    153  */
    154 struct socket *
    155 sonewconn1(head, connstatus)
    156 	register struct socket *head;
    157 	int connstatus;
    158 {
    159 	register struct socket *so;
    160 	int soqueue = connstatus ? 1 : 0;
    161 
    162 	if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
    163 		return ((struct socket *)0);
    164 	MALLOC(so, struct socket *, sizeof(*so), M_SOCKET, M_DONTWAIT);
    165 	if (so == NULL)
    166 		return ((struct socket *)0);
    167 	bzero((caddr_t)so, sizeof(*so));
    168 	so->so_type = head->so_type;
    169 	so->so_options = head->so_options &~ SO_ACCEPTCONN;
    170 	so->so_linger = head->so_linger;
    171 	so->so_state = head->so_state | SS_NOFDREF;
    172 	so->so_proto = head->so_proto;
    173 	so->so_timeo = head->so_timeo;
    174 	so->so_pgid = head->so_pgid;
    175 	(void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
    176 	soqinsque(head, so, soqueue);
    177 	if ((*so->so_proto->pr_usrreq)(so, PRU_ATTACH,
    178 	    (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
    179 	    (struct proc *)0)) {
    180 		(void) soqremque(so, soqueue);
    181 		(void) free((caddr_t)so, M_SOCKET);
    182 		return ((struct socket *)0);
    183 	}
    184 	if (connstatus) {
    185 		sorwakeup(head);
    186 		wakeup((caddr_t)&head->so_timeo);
    187 		so->so_state |= connstatus;
    188 	}
    189 	return (so);
    190 }
    191 
    192 void
    193 soqinsque(head, so, q)
    194 	register struct socket *head, *so;
    195 	int q;
    196 {
    197 
    198 #ifdef DIAGNOSTIC
    199 	if (so->so_onq != NULL)
    200 		panic("soqinsque");
    201 #endif
    202 
    203 	so->so_head = head;
    204 	if (q == 0) {
    205 		head->so_q0len++;
    206 		so->so_onq = &head->so_q0;
    207 	} else {
    208 		head->so_qlen++;
    209 		so->so_onq = &head->so_q;
    210 	}
    211 	TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
    212 }
    213 
    214 int
    215 soqremque(so, q)
    216 	register struct socket *so;
    217 	int q;
    218 {
    219 	struct socket *head = so->so_head;
    220 
    221 	if (q == 0) {
    222 		if (so->so_onq != &head->so_q0)
    223 			return (0);
    224 		head->so_q0len--;
    225 	} else {
    226 		if (so->so_onq != &head->so_q)
    227 			return (0);
    228 		head->so_qlen--;
    229 	}
    230 	TAILQ_REMOVE(so->so_onq, so, so_qe);
    231 	so->so_onq = NULL;
    232 	so->so_head = NULL;
    233 	return (1);
    234 }
    235 
    236 /*
    237  * Socantsendmore indicates that no more data will be sent on the
    238  * socket; it would normally be applied to a socket when the user
    239  * informs the system that no more data is to be sent, by the protocol
    240  * code (in case PRU_SHUTDOWN).  Socantrcvmore indicates that no more data
    241  * will be received, and will normally be applied to the socket by a
    242  * protocol when it detects that the peer will send no more data.
    243  * Data queued for reading in the socket may yet be read.
    244  */
    245 
    246 void
    247 socantsendmore(so)
    248 	struct socket *so;
    249 {
    250 
    251 	so->so_state |= SS_CANTSENDMORE;
    252 	sowwakeup(so);
    253 }
    254 
    255 void
    256 socantrcvmore(so)
    257 	struct socket *so;
    258 {
    259 
    260 	so->so_state |= SS_CANTRCVMORE;
    261 	sorwakeup(so);
    262 }
    263 
    264 /*
    265  * Wait for data to arrive at/drain from a socket buffer.
    266  */
    267 int
    268 sbwait(sb)
    269 	struct sockbuf *sb;
    270 {
    271 
    272 	sb->sb_flags |= SB_WAIT;
    273 	return (tsleep((caddr_t)&sb->sb_cc,
    274 	    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, netio,
    275 	    sb->sb_timeo));
    276 }
    277 
    278 /*
    279  * Lock a sockbuf already known to be locked;
    280  * return any error returned from sleep (EINTR).
    281  */
    282 int
    283 sb_lock(sb)
    284 	register struct sockbuf *sb;
    285 {
    286 	int error;
    287 
    288 	while (sb->sb_flags & SB_LOCK) {
    289 		sb->sb_flags |= SB_WANT;
    290 		error = tsleep((caddr_t)&sb->sb_flags,
    291 			       (sb->sb_flags & SB_NOINTR) ?
    292 					PSOCK : PSOCK|PCATCH, netio, 0);
    293 		if (error)
    294 			return (error);
    295 	}
    296 	sb->sb_flags |= SB_LOCK;
    297 	return (0);
    298 }
    299 
    300 /*
    301  * Wakeup processes waiting on a socket buffer.
    302  * Do asynchronous notification via SIGIO
    303  * if the socket has the SS_ASYNC flag set.
    304  */
    305 void
    306 sowakeup(so, sb)
    307 	register struct socket *so;
    308 	register struct sockbuf *sb;
    309 {
    310 	struct proc *p;
    311 
    312 	selwakeup(&sb->sb_sel);
    313 	sb->sb_flags &= ~SB_SEL;
    314 	if (sb->sb_flags & SB_WAIT) {
    315 		sb->sb_flags &= ~SB_WAIT;
    316 		wakeup((caddr_t)&sb->sb_cc);
    317 	}
    318 	if (so->so_state & SS_ASYNC) {
    319 		if (so->so_pgid < 0)
    320 			gsignal(-so->so_pgid, SIGIO);
    321 		else if (so->so_pgid > 0 && (p = pfind(so->so_pgid)) != 0)
    322 			psignal(p, SIGIO);
    323 	}
    324 }
    325 
    326 /*
    327  * Socket buffer (struct sockbuf) utility routines.
    328  *
    329  * Each socket contains two socket buffers: one for sending data and
    330  * one for receiving data.  Each buffer contains a queue of mbufs,
    331  * information about the number of mbufs and amount of data in the
    332  * queue, and other fields allowing poll() statements and notification
    333  * on data availability to be implemented.
    334  *
    335  * Data stored in a socket buffer is maintained as a list of records.
    336  * Each record is a list of mbufs chained together with the m_next
    337  * field.  Records are chained together with the m_nextpkt field. The upper
    338  * level routine soreceive() expects the following conventions to be
    339  * observed when placing information in the receive buffer:
    340  *
    341  * 1. If the protocol requires each message be preceded by the sender's
    342  *    name, then a record containing that name must be present before
    343  *    any associated data (mbuf's must be of type MT_SONAME).
    344  * 2. If the protocol supports the exchange of ``access rights'' (really
    345  *    just additional data associated with the message), and there are
    346  *    ``rights'' to be received, then a record containing this data
    347  *    should be present (mbuf's must be of type MT_CONTROL).
    348  * 3. If a name or rights record exists, then it must be followed by
    349  *    a data record, perhaps of zero length.
    350  *
    351  * Before using a new socket structure it is first necessary to reserve
    352  * buffer space to the socket, by calling sbreserve().  This should commit
    353  * some of the available buffer space in the system buffer pool for the
    354  * socket (currently, it does nothing but enforce limits).  The space
    355  * should be released by calling sbrelease() when the socket is destroyed.
    356  */
    357 
    358 int
    359 soreserve(so, sndcc, rcvcc)
    360 	register struct socket *so;
    361 	u_long sndcc, rcvcc;
    362 {
    363 
    364 	if (sbreserve(&so->so_snd, sndcc) == 0)
    365 		goto bad;
    366 	if (sbreserve(&so->so_rcv, rcvcc) == 0)
    367 		goto bad2;
    368 	if (so->so_rcv.sb_lowat == 0)
    369 		so->so_rcv.sb_lowat = 1;
    370 	if (so->so_snd.sb_lowat == 0)
    371 		so->so_snd.sb_lowat = MCLBYTES;
    372 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
    373 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
    374 	return (0);
    375 bad2:
    376 	sbrelease(&so->so_snd);
    377 bad:
    378 	return (ENOBUFS);
    379 }
    380 
    381 /*
    382  * Allot mbufs to a sockbuf.
    383  * Attempt to scale mbmax so that mbcnt doesn't become limiting
    384  * if buffering efficiency is near the normal case.
    385  */
    386 int
    387 sbreserve(sb, cc)
    388 	struct sockbuf *sb;
    389 	u_long cc;
    390 {
    391 
    392 	if (cc == 0 || cc > sb_max * MCLBYTES / (MSIZE + MCLBYTES))
    393 		return (0);
    394 	sb->sb_hiwat = cc;
    395 	sb->sb_mbmax = min(cc * 2, sb_max);
    396 	if (sb->sb_lowat > sb->sb_hiwat)
    397 		sb->sb_lowat = sb->sb_hiwat;
    398 	return (1);
    399 }
    400 
    401 /*
    402  * Free mbufs held by a socket, and reserved mbuf space.
    403  */
    404 void
    405 sbrelease(sb)
    406 	struct sockbuf *sb;
    407 {
    408 
    409 	sbflush(sb);
    410 	sb->sb_hiwat = sb->sb_mbmax = 0;
    411 }
    412 
    413 /*
    414  * Routines to add and remove
    415  * data from an mbuf queue.
    416  *
    417  * The routines sbappend() or sbappendrecord() are normally called to
    418  * append new mbufs to a socket buffer, after checking that adequate
    419  * space is available, comparing the function sbspace() with the amount
    420  * of data to be added.  sbappendrecord() differs from sbappend() in
    421  * that data supplied is treated as the beginning of a new record.
    422  * To place a sender's address, optional access rights, and data in a
    423  * socket receive buffer, sbappendaddr() should be used.  To place
    424  * access rights and data in a socket receive buffer, sbappendrights()
    425  * should be used.  In either case, the new data begins a new record.
    426  * Note that unlike sbappend() and sbappendrecord(), these routines check
    427  * for the caller that there will be enough space to store the data.
    428  * Each fails if there is not enough space, or if it cannot find mbufs
    429  * to store additional information in.
    430  *
    431  * Reliable protocols may use the socket send buffer to hold data
    432  * awaiting acknowledgement.  Data is normally copied from a socket
    433  * send buffer in a protocol with m_copy for output to a peer,
    434  * and then removing the data from the socket buffer with sbdrop()
    435  * or sbdroprecord() when the data is acknowledged by the peer.
    436  */
    437 
    438 /*
    439  * Append mbuf chain m to the last record in the
    440  * socket buffer sb.  The additional space associated
    441  * the mbuf chain is recorded in sb.  Empty mbufs are
    442  * discarded and mbufs are compacted where possible.
    443  */
    444 void
    445 sbappend(sb, m)
    446 	struct sockbuf *sb;
    447 	struct mbuf *m;
    448 {
    449 	register struct mbuf *n;
    450 
    451 	if (m == 0)
    452 		return;
    453 	if ((n = sb->sb_mb) != NULL) {
    454 		while (n->m_nextpkt)
    455 			n = n->m_nextpkt;
    456 		do {
    457 			if (n->m_flags & M_EOR) {
    458 				sbappendrecord(sb, m); /* XXXXXX!!!! */
    459 				return;
    460 			}
    461 		} while (n->m_next && (n = n->m_next));
    462 	}
    463 	sbcompress(sb, m, n);
    464 }
    465 
    466 #ifdef SOCKBUF_DEBUG
    467 void
    468 sbcheck(sb)
    469 	register struct sockbuf *sb;
    470 {
    471 	register struct mbuf *m;
    472 	register int len = 0, mbcnt = 0;
    473 
    474 	for (m = sb->sb_mb; m; m = m->m_next) {
    475 		len += m->m_len;
    476 		mbcnt += MSIZE;
    477 		if (m->m_flags & M_EXT)
    478 			mbcnt += m->m_ext.ext_size;
    479 		if (m->m_nextpkt)
    480 			panic("sbcheck nextpkt");
    481 	}
    482 	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
    483 		printf("cc %d != %d || mbcnt %d != %d\n", len, sb->sb_cc,
    484 		    mbcnt, sb->sb_mbcnt);
    485 		panic("sbcheck");
    486 	}
    487 }
    488 #endif
    489 
    490 /*
    491  * As above, except the mbuf chain
    492  * begins a new record.
    493  */
    494 void
    495 sbappendrecord(sb, m0)
    496 	register struct sockbuf *sb;
    497 	register struct mbuf *m0;
    498 {
    499 	register struct mbuf *m;
    500 
    501 	if (m0 == 0)
    502 		return;
    503 	if ((m = sb->sb_mb) != NULL)
    504 		while (m->m_nextpkt)
    505 			m = m->m_nextpkt;
    506 	/*
    507 	 * Put the first mbuf on the queue.
    508 	 * Note this permits zero length records.
    509 	 */
    510 	sballoc(sb, m0);
    511 	if (m)
    512 		m->m_nextpkt = m0;
    513 	else
    514 		sb->sb_mb = m0;
    515 	m = m0->m_next;
    516 	m0->m_next = 0;
    517 	if (m && (m0->m_flags & M_EOR)) {
    518 		m0->m_flags &= ~M_EOR;
    519 		m->m_flags |= M_EOR;
    520 	}
    521 	sbcompress(sb, m, m0);
    522 }
    523 
    524 /*
    525  * As above except that OOB data
    526  * is inserted at the beginning of the sockbuf,
    527  * but after any other OOB data.
    528  */
    529 void
    530 sbinsertoob(sb, m0)
    531 	register struct sockbuf *sb;
    532 	register struct mbuf *m0;
    533 {
    534 	register struct mbuf *m;
    535 	register struct mbuf **mp;
    536 
    537 	if (m0 == 0)
    538 		return;
    539 	for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
    540 	    again:
    541 		switch (m->m_type) {
    542 
    543 		case MT_OOBDATA:
    544 			continue;		/* WANT next train */
    545 
    546 		case MT_CONTROL:
    547 			if ((m = m->m_next) != NULL)
    548 				goto again;	/* inspect THIS train further */
    549 		}
    550 		break;
    551 	}
    552 	/*
    553 	 * Put the first mbuf on the queue.
    554 	 * Note this permits zero length records.
    555 	 */
    556 	sballoc(sb, m0);
    557 	m0->m_nextpkt = *mp;
    558 	*mp = m0;
    559 	m = m0->m_next;
    560 	m0->m_next = 0;
    561 	if (m && (m0->m_flags & M_EOR)) {
    562 		m0->m_flags &= ~M_EOR;
    563 		m->m_flags |= M_EOR;
    564 	}
    565 	sbcompress(sb, m, m0);
    566 }
    567 
    568 /*
    569  * Append address and data, and optionally, control (ancillary) data
    570  * to the receive queue of a socket.  If present,
    571  * m0 must include a packet header with total length.
    572  * Returns 0 if no space in sockbuf or insufficient mbufs.
    573  */
    574 int
    575 sbappendaddr(sb, asa, m0, control)
    576 	register struct sockbuf *sb;
    577 	struct sockaddr *asa;
    578 	struct mbuf *m0, *control;
    579 {
    580 	register struct mbuf *m, *n;
    581 	int space = asa->sa_len;
    582 
    583 if (m0 && (m0->m_flags & M_PKTHDR) == 0)
    584 panic("sbappendaddr");
    585 	if (m0)
    586 		space += m0->m_pkthdr.len;
    587 	for (n = control; n; n = n->m_next) {
    588 		space += n->m_len;
    589 		if (n->m_next == 0)	/* keep pointer to last control buf */
    590 			break;
    591 	}
    592 	if (space > sbspace(sb))
    593 		return (0);
    594 	MGET(m, M_DONTWAIT, MT_SONAME);
    595 	if (m == 0)
    596 		return (0);
    597 	if (asa->sa_len > MLEN) {
    598 		MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
    599 		if ((m->m_flags & M_EXT) == 0) {
    600 			m_free(m);
    601 			return (0);
    602 		}
    603 	}
    604 	m->m_len = asa->sa_len;
    605 	bcopy((caddr_t)asa, mtod(m, caddr_t), asa->sa_len);
    606 	if (n)
    607 		n->m_next = m0;		/* concatenate data to control */
    608 	else
    609 		control = m0;
    610 	m->m_next = control;
    611 	for (n = m; n; n = n->m_next)
    612 		sballoc(sb, n);
    613 	if ((n = sb->sb_mb) != NULL) {
    614 		while (n->m_nextpkt)
    615 			n = n->m_nextpkt;
    616 		n->m_nextpkt = m;
    617 	} else
    618 		sb->sb_mb = m;
    619 	return (1);
    620 }
    621 
    622 int
    623 sbappendcontrol(sb, m0, control)
    624 	struct sockbuf *sb;
    625 	struct mbuf *m0, *control;
    626 {
    627 	register struct mbuf *m, *n;
    628 	int space = 0;
    629 
    630 	if (control == 0)
    631 		panic("sbappendcontrol");
    632 	for (m = control; ; m = m->m_next) {
    633 		space += m->m_len;
    634 		if (m->m_next == 0)
    635 			break;
    636 	}
    637 	n = m;			/* save pointer to last control buffer */
    638 	for (m = m0; m; m = m->m_next)
    639 		space += m->m_len;
    640 	if (space > sbspace(sb))
    641 		return (0);
    642 	n->m_next = m0;			/* concatenate data to control */
    643 	for (m = control; m; m = m->m_next)
    644 		sballoc(sb, m);
    645 	if ((n = sb->sb_mb) != NULL) {
    646 		while (n->m_nextpkt)
    647 			n = n->m_nextpkt;
    648 		n->m_nextpkt = control;
    649 	} else
    650 		sb->sb_mb = control;
    651 	return (1);
    652 }
    653 
    654 /*
    655  * Compress mbuf chain m into the socket
    656  * buffer sb following mbuf n.  If n
    657  * is null, the buffer is presumed empty.
    658  */
    659 void
    660 sbcompress(sb, m, n)
    661 	register struct sockbuf *sb;
    662 	register struct mbuf *m, *n;
    663 {
    664 	register int eor = 0;
    665 	register struct mbuf *o;
    666 
    667 	while (m) {
    668 		eor |= m->m_flags & M_EOR;
    669 		if (m->m_len == 0 &&
    670 		    (eor == 0 ||
    671 		     (((o = m->m_next) || (o = n)) &&
    672 		      o->m_type == m->m_type))) {
    673 			m = m_free(m);
    674 			continue;
    675 		}
    676 		if (n && (n->m_flags & (M_EXT | M_EOR)) == 0 &&
    677 		    (n->m_data + n->m_len + m->m_len) < &n->m_dat[MLEN] &&
    678 		    n->m_type == m->m_type) {
    679 			bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len,
    680 			    (unsigned)m->m_len);
    681 			n->m_len += m->m_len;
    682 			sb->sb_cc += m->m_len;
    683 			m = m_free(m);
    684 			continue;
    685 		}
    686 		if (n)
    687 			n->m_next = m;
    688 		else
    689 			sb->sb_mb = m;
    690 		sballoc(sb, m);
    691 		n = m;
    692 		m->m_flags &= ~M_EOR;
    693 		m = m->m_next;
    694 		n->m_next = 0;
    695 	}
    696 	if (eor) {
    697 		if (n)
    698 			n->m_flags |= eor;
    699 		else
    700 			printf("semi-panic: sbcompress\n");
    701 	}
    702 }
    703 
    704 /*
    705  * Free all mbufs in a sockbuf.
    706  * Check that all resources are reclaimed.
    707  */
    708 void
    709 sbflush(sb)
    710 	register struct sockbuf *sb;
    711 {
    712 
    713 	if (sb->sb_flags & SB_LOCK)
    714 		panic("sbflush");
    715 	while (sb->sb_mbcnt)
    716 		sbdrop(sb, (int)sb->sb_cc);
    717 	if (sb->sb_cc || sb->sb_mb)
    718 		panic("sbflush 2");
    719 }
    720 
    721 /*
    722  * Drop data from (the front of) a sockbuf.
    723  */
    724 void
    725 sbdrop(sb, len)
    726 	register struct sockbuf *sb;
    727 	register int len;
    728 {
    729 	register struct mbuf *m, *mn;
    730 	struct mbuf *next;
    731 
    732 	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
    733 	while (len > 0) {
    734 		if (m == 0) {
    735 			if (next == 0)
    736 				panic("sbdrop");
    737 			m = next;
    738 			next = m->m_nextpkt;
    739 			continue;
    740 		}
    741 		if (m->m_len > len) {
    742 			m->m_len -= len;
    743 			m->m_data += len;
    744 			sb->sb_cc -= len;
    745 			break;
    746 		}
    747 		len -= m->m_len;
    748 		sbfree(sb, m);
    749 		MFREE(m, mn);
    750 		m = mn;
    751 	}
    752 	while (m && m->m_len == 0) {
    753 		sbfree(sb, m);
    754 		MFREE(m, mn);
    755 		m = mn;
    756 	}
    757 	if (m) {
    758 		sb->sb_mb = m;
    759 		m->m_nextpkt = next;
    760 	} else
    761 		sb->sb_mb = next;
    762 }
    763 
    764 /*
    765  * Drop a record off the front of a sockbuf
    766  * and move the next record to the front.
    767  */
    768 void
    769 sbdroprecord(sb)
    770 	register struct sockbuf *sb;
    771 {
    772 	register struct mbuf *m, *mn;
    773 
    774 	m = sb->sb_mb;
    775 	if (m) {
    776 		sb->sb_mb = m->m_nextpkt;
    777 		do {
    778 			sbfree(sb, m);
    779 			MFREE(m, mn);
    780 		} while ((m = mn) != NULL);
    781 	}
    782 }
    783 
    784 /*
    785  * Create a "control" mbuf containing the specified data
    786  * with the specified type for presentation on a socket buffer.
    787  */
    788 struct mbuf *
    789 sbcreatecontrol(p, size, type, level)
    790 	caddr_t p;
    791 	register int size;
    792 	int type, level;
    793 {
    794 	register struct cmsghdr *cp;
    795 	struct mbuf *m;
    796 
    797 	if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
    798 		return ((struct mbuf *) NULL);
    799 	cp = mtod(m, struct cmsghdr *);
    800 	bcopy(p, CMSG_DATA(cp), size);
    801 	size += sizeof(*cp);
    802 	m->m_len = size;
    803 	cp->cmsg_len = size;
    804 	cp->cmsg_level = level;
    805 	cp->cmsg_type = type;
    806 	return (m);
    807 }
    808