uipc_socket2.c revision 1.27 1 /* $NetBSD: uipc_socket2.c,v 1.27 1999/01/20 09:15:41 mycroft Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1988, 1990, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * @(#)uipc_socket2.c 8.2 (Berkeley) 2/14/95
36 */
37
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/proc.h>
41 #include <sys/file.h>
42 #include <sys/buf.h>
43 #include <sys/malloc.h>
44 #include <sys/mbuf.h>
45 #include <sys/protosw.h>
46 #include <sys/socket.h>
47 #include <sys/socketvar.h>
48 #include <sys/signalvar.h>
49
50 /*
51 * Primitive routines for operating on sockets and socket buffers
52 */
53
54 /* strings for sleep message: */
55 const char netio[] = "netio";
56 const char netcon[] = "netcon";
57 const char netcls[] = "netcls";
58
59 u_long sb_max = SB_MAX; /* patchable */
60
61 /*
62 * Procedures to manipulate state flags of socket
63 * and do appropriate wakeups. Normal sequence from the
64 * active (originating) side is that soisconnecting() is
65 * called during processing of connect() call,
66 * resulting in an eventual call to soisconnected() if/when the
67 * connection is established. When the connection is torn down
68 * soisdisconnecting() is called during processing of disconnect() call,
69 * and soisdisconnected() is called when the connection to the peer
70 * is totally severed. The semantics of these routines are such that
71 * connectionless protocols can call soisconnected() and soisdisconnected()
72 * only, bypassing the in-progress calls when setting up a ``connection''
73 * takes no time.
74 *
75 * From the passive side, a socket is created with
76 * two queues of sockets: so_q0 for connections in progress
77 * and so_q for connections already made and awaiting user acceptance.
78 * As a protocol is preparing incoming connections, it creates a socket
79 * structure queued on so_q0 by calling sonewconn(). When the connection
80 * is established, soisconnected() is called, and transfers the
81 * socket structure to so_q, making it available to accept().
82 *
83 * If a socket is closed with sockets on either
84 * so_q0 or so_q, these sockets are dropped.
85 *
86 * If higher level protocols are implemented in
87 * the kernel, the wakeups done here will sometimes
88 * cause software-interrupt process scheduling.
89 */
90
91 void
92 soisconnecting(so)
93 register struct socket *so;
94 {
95
96 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
97 so->so_state |= SS_ISCONNECTING;
98 }
99
100 void
101 soisconnected(so)
102 register struct socket *so;
103 {
104 register struct socket *head = so->so_head;
105
106 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
107 so->so_state |= SS_ISCONNECTED;
108 if (head && soqremque(so, 0)) {
109 soqinsque(head, so, 1);
110 sorwakeup(head);
111 wakeup((caddr_t)&head->so_timeo);
112 } else {
113 wakeup((caddr_t)&so->so_timeo);
114 sorwakeup(so);
115 sowwakeup(so);
116 }
117 }
118
119 void
120 soisdisconnecting(so)
121 register struct socket *so;
122 {
123
124 so->so_state &= ~SS_ISCONNECTING;
125 so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
126 wakeup((caddr_t)&so->so_timeo);
127 sowwakeup(so);
128 sorwakeup(so);
129 }
130
131 void
132 soisdisconnected(so)
133 register struct socket *so;
134 {
135
136 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
137 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
138 wakeup((caddr_t)&so->so_timeo);
139 sowwakeup(so);
140 sorwakeup(so);
141 }
142
143 /*
144 * When an attempt at a new connection is noted on a socket
145 * which accepts connections, sonewconn is called. If the
146 * connection is possible (subject to space constraints, etc.)
147 * then we allocate a new structure, propoerly linked into the
148 * data structure of the original socket, and return this.
149 * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
150 *
151 * Currently, sonewconn() is defined as sonewconn1() in socketvar.h
152 * to catch calls that are missing the (new) second parameter.
153 */
154 struct socket *
155 sonewconn1(head, connstatus)
156 register struct socket *head;
157 int connstatus;
158 {
159 register struct socket *so;
160 int soqueue = connstatus ? 1 : 0;
161
162 if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
163 return ((struct socket *)0);
164 so = pool_get(&socket_pool, PR_NOWAIT);
165 if (so == NULL)
166 return (NULL);
167 memset((caddr_t)so, 0, sizeof(*so));
168 so->so_type = head->so_type;
169 so->so_options = head->so_options &~ SO_ACCEPTCONN;
170 so->so_linger = head->so_linger;
171 so->so_state = head->so_state | SS_NOFDREF;
172 so->so_proto = head->so_proto;
173 so->so_timeo = head->so_timeo;
174 so->so_pgid = head->so_pgid;
175 so->so_send = head->so_send;
176 so->so_receive = head->so_receive;
177 (void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
178 soqinsque(head, so, soqueue);
179 if ((*so->so_proto->pr_usrreq)(so, PRU_ATTACH,
180 (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
181 (struct proc *)0)) {
182 (void) soqremque(so, soqueue);
183 pool_put(&socket_pool, so);
184 return (NULL);
185 }
186 if (connstatus) {
187 sorwakeup(head);
188 wakeup((caddr_t)&head->so_timeo);
189 so->so_state |= connstatus;
190 }
191 return (so);
192 }
193
194 void
195 soqinsque(head, so, q)
196 register struct socket *head, *so;
197 int q;
198 {
199
200 #ifdef DIAGNOSTIC
201 if (so->so_onq != NULL)
202 panic("soqinsque");
203 #endif
204
205 so->so_head = head;
206 if (q == 0) {
207 head->so_q0len++;
208 so->so_onq = &head->so_q0;
209 } else {
210 head->so_qlen++;
211 so->so_onq = &head->so_q;
212 }
213 TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
214 }
215
216 int
217 soqremque(so, q)
218 register struct socket *so;
219 int q;
220 {
221 struct socket *head = so->so_head;
222
223 if (q == 0) {
224 if (so->so_onq != &head->so_q0)
225 return (0);
226 head->so_q0len--;
227 } else {
228 if (so->so_onq != &head->so_q)
229 return (0);
230 head->so_qlen--;
231 }
232 TAILQ_REMOVE(so->so_onq, so, so_qe);
233 so->so_onq = NULL;
234 so->so_head = NULL;
235 return (1);
236 }
237
238 /*
239 * Socantsendmore indicates that no more data will be sent on the
240 * socket; it would normally be applied to a socket when the user
241 * informs the system that no more data is to be sent, by the protocol
242 * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data
243 * will be received, and will normally be applied to the socket by a
244 * protocol when it detects that the peer will send no more data.
245 * Data queued for reading in the socket may yet be read.
246 */
247
248 void
249 socantsendmore(so)
250 struct socket *so;
251 {
252
253 so->so_state |= SS_CANTSENDMORE;
254 sowwakeup(so);
255 }
256
257 void
258 socantrcvmore(so)
259 struct socket *so;
260 {
261
262 so->so_state |= SS_CANTRCVMORE;
263 sorwakeup(so);
264 }
265
266 /*
267 * Wait for data to arrive at/drain from a socket buffer.
268 */
269 int
270 sbwait(sb)
271 struct sockbuf *sb;
272 {
273
274 sb->sb_flags |= SB_WAIT;
275 return (tsleep((caddr_t)&sb->sb_cc,
276 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, netio,
277 sb->sb_timeo));
278 }
279
280 /*
281 * Lock a sockbuf already known to be locked;
282 * return any error returned from sleep (EINTR).
283 */
284 int
285 sb_lock(sb)
286 register struct sockbuf *sb;
287 {
288 int error;
289
290 while (sb->sb_flags & SB_LOCK) {
291 sb->sb_flags |= SB_WANT;
292 error = tsleep((caddr_t)&sb->sb_flags,
293 (sb->sb_flags & SB_NOINTR) ?
294 PSOCK : PSOCK|PCATCH, netio, 0);
295 if (error)
296 return (error);
297 }
298 sb->sb_flags |= SB_LOCK;
299 return (0);
300 }
301
302 /*
303 * Wakeup processes waiting on a socket buffer.
304 * Do asynchronous notification via SIGIO
305 * if the socket has the SS_ASYNC flag set.
306 */
307 void
308 sowakeup(so, sb)
309 register struct socket *so;
310 register struct sockbuf *sb;
311 {
312 struct proc *p;
313
314 selwakeup(&sb->sb_sel);
315 sb->sb_flags &= ~SB_SEL;
316 if (sb->sb_flags & SB_WAIT) {
317 sb->sb_flags &= ~SB_WAIT;
318 wakeup((caddr_t)&sb->sb_cc);
319 }
320 if (so->so_state & SS_ASYNC) {
321 if (so->so_pgid < 0)
322 gsignal(-so->so_pgid, SIGIO);
323 else if (so->so_pgid > 0 && (p = pfind(so->so_pgid)) != 0)
324 psignal(p, SIGIO);
325 }
326 if (sb->sb_flags & SB_UPCALL)
327 (*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT);
328 }
329
330 /*
331 * Socket buffer (struct sockbuf) utility routines.
332 *
333 * Each socket contains two socket buffers: one for sending data and
334 * one for receiving data. Each buffer contains a queue of mbufs,
335 * information about the number of mbufs and amount of data in the
336 * queue, and other fields allowing poll() statements and notification
337 * on data availability to be implemented.
338 *
339 * Data stored in a socket buffer is maintained as a list of records.
340 * Each record is a list of mbufs chained together with the m_next
341 * field. Records are chained together with the m_nextpkt field. The upper
342 * level routine soreceive() expects the following conventions to be
343 * observed when placing information in the receive buffer:
344 *
345 * 1. If the protocol requires each message be preceded by the sender's
346 * name, then a record containing that name must be present before
347 * any associated data (mbuf's must be of type MT_SONAME).
348 * 2. If the protocol supports the exchange of ``access rights'' (really
349 * just additional data associated with the message), and there are
350 * ``rights'' to be received, then a record containing this data
351 * should be present (mbuf's must be of type MT_CONTROL).
352 * 3. If a name or rights record exists, then it must be followed by
353 * a data record, perhaps of zero length.
354 *
355 * Before using a new socket structure it is first necessary to reserve
356 * buffer space to the socket, by calling sbreserve(). This should commit
357 * some of the available buffer space in the system buffer pool for the
358 * socket (currently, it does nothing but enforce limits). The space
359 * should be released by calling sbrelease() when the socket is destroyed.
360 */
361
362 int
363 soreserve(so, sndcc, rcvcc)
364 register struct socket *so;
365 u_long sndcc, rcvcc;
366 {
367
368 if (sbreserve(&so->so_snd, sndcc) == 0)
369 goto bad;
370 if (sbreserve(&so->so_rcv, rcvcc) == 0)
371 goto bad2;
372 if (so->so_rcv.sb_lowat == 0)
373 so->so_rcv.sb_lowat = 1;
374 if (so->so_snd.sb_lowat == 0)
375 so->so_snd.sb_lowat = MCLBYTES;
376 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
377 so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
378 return (0);
379 bad2:
380 sbrelease(&so->so_snd);
381 bad:
382 return (ENOBUFS);
383 }
384
385 /*
386 * Allot mbufs to a sockbuf.
387 * Attempt to scale mbmax so that mbcnt doesn't become limiting
388 * if buffering efficiency is near the normal case.
389 */
390 int
391 sbreserve(sb, cc)
392 struct sockbuf *sb;
393 u_long cc;
394 {
395
396 if (cc == 0 || cc > sb_max * MCLBYTES / (MSIZE + MCLBYTES))
397 return (0);
398 sb->sb_hiwat = cc;
399 sb->sb_mbmax = min(cc * 2, sb_max);
400 if (sb->sb_lowat > sb->sb_hiwat)
401 sb->sb_lowat = sb->sb_hiwat;
402 return (1);
403 }
404
405 /*
406 * Free mbufs held by a socket, and reserved mbuf space.
407 */
408 void
409 sbrelease(sb)
410 struct sockbuf *sb;
411 {
412
413 sbflush(sb);
414 sb->sb_hiwat = sb->sb_mbmax = 0;
415 }
416
417 /*
418 * Routines to add and remove
419 * data from an mbuf queue.
420 *
421 * The routines sbappend() or sbappendrecord() are normally called to
422 * append new mbufs to a socket buffer, after checking that adequate
423 * space is available, comparing the function sbspace() with the amount
424 * of data to be added. sbappendrecord() differs from sbappend() in
425 * that data supplied is treated as the beginning of a new record.
426 * To place a sender's address, optional access rights, and data in a
427 * socket receive buffer, sbappendaddr() should be used. To place
428 * access rights and data in a socket receive buffer, sbappendrights()
429 * should be used. In either case, the new data begins a new record.
430 * Note that unlike sbappend() and sbappendrecord(), these routines check
431 * for the caller that there will be enough space to store the data.
432 * Each fails if there is not enough space, or if it cannot find mbufs
433 * to store additional information in.
434 *
435 * Reliable protocols may use the socket send buffer to hold data
436 * awaiting acknowledgement. Data is normally copied from a socket
437 * send buffer in a protocol with m_copy for output to a peer,
438 * and then removing the data from the socket buffer with sbdrop()
439 * or sbdroprecord() when the data is acknowledged by the peer.
440 */
441
442 /*
443 * Append mbuf chain m to the last record in the
444 * socket buffer sb. The additional space associated
445 * the mbuf chain is recorded in sb. Empty mbufs are
446 * discarded and mbufs are compacted where possible.
447 */
448 void
449 sbappend(sb, m)
450 struct sockbuf *sb;
451 struct mbuf *m;
452 {
453 register struct mbuf *n;
454
455 if (m == 0)
456 return;
457 if ((n = sb->sb_mb) != NULL) {
458 while (n->m_nextpkt)
459 n = n->m_nextpkt;
460 do {
461 if (n->m_flags & M_EOR) {
462 sbappendrecord(sb, m); /* XXXXXX!!!! */
463 return;
464 }
465 } while (n->m_next && (n = n->m_next));
466 }
467 sbcompress(sb, m, n);
468 }
469
470 #ifdef SOCKBUF_DEBUG
471 void
472 sbcheck(sb)
473 register struct sockbuf *sb;
474 {
475 register struct mbuf *m;
476 register int len = 0, mbcnt = 0;
477
478 for (m = sb->sb_mb; m; m = m->m_next) {
479 len += m->m_len;
480 mbcnt += MSIZE;
481 if (m->m_flags & M_EXT)
482 mbcnt += m->m_ext.ext_size;
483 if (m->m_nextpkt)
484 panic("sbcheck nextpkt");
485 }
486 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
487 printf("cc %d != %d || mbcnt %d != %d\n", len, sb->sb_cc,
488 mbcnt, sb->sb_mbcnt);
489 panic("sbcheck");
490 }
491 }
492 #endif
493
494 /*
495 * As above, except the mbuf chain
496 * begins a new record.
497 */
498 void
499 sbappendrecord(sb, m0)
500 register struct sockbuf *sb;
501 register struct mbuf *m0;
502 {
503 register struct mbuf *m;
504
505 if (m0 == 0)
506 return;
507 if ((m = sb->sb_mb) != NULL)
508 while (m->m_nextpkt)
509 m = m->m_nextpkt;
510 /*
511 * Put the first mbuf on the queue.
512 * Note this permits zero length records.
513 */
514 sballoc(sb, m0);
515 if (m)
516 m->m_nextpkt = m0;
517 else
518 sb->sb_mb = m0;
519 m = m0->m_next;
520 m0->m_next = 0;
521 if (m && (m0->m_flags & M_EOR)) {
522 m0->m_flags &= ~M_EOR;
523 m->m_flags |= M_EOR;
524 }
525 sbcompress(sb, m, m0);
526 }
527
528 /*
529 * As above except that OOB data
530 * is inserted at the beginning of the sockbuf,
531 * but after any other OOB data.
532 */
533 void
534 sbinsertoob(sb, m0)
535 register struct sockbuf *sb;
536 register struct mbuf *m0;
537 {
538 register struct mbuf *m;
539 register struct mbuf **mp;
540
541 if (m0 == 0)
542 return;
543 for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
544 again:
545 switch (m->m_type) {
546
547 case MT_OOBDATA:
548 continue; /* WANT next train */
549
550 case MT_CONTROL:
551 if ((m = m->m_next) != NULL)
552 goto again; /* inspect THIS train further */
553 }
554 break;
555 }
556 /*
557 * Put the first mbuf on the queue.
558 * Note this permits zero length records.
559 */
560 sballoc(sb, m0);
561 m0->m_nextpkt = *mp;
562 *mp = m0;
563 m = m0->m_next;
564 m0->m_next = 0;
565 if (m && (m0->m_flags & M_EOR)) {
566 m0->m_flags &= ~M_EOR;
567 m->m_flags |= M_EOR;
568 }
569 sbcompress(sb, m, m0);
570 }
571
572 /*
573 * Append address and data, and optionally, control (ancillary) data
574 * to the receive queue of a socket. If present,
575 * m0 must include a packet header with total length.
576 * Returns 0 if no space in sockbuf or insufficient mbufs.
577 */
578 int
579 sbappendaddr(sb, asa, m0, control)
580 register struct sockbuf *sb;
581 struct sockaddr *asa;
582 struct mbuf *m0, *control;
583 {
584 register struct mbuf *m, *n;
585 int space = asa->sa_len;
586
587 if (m0 && (m0->m_flags & M_PKTHDR) == 0)
588 panic("sbappendaddr");
589 if (m0)
590 space += m0->m_pkthdr.len;
591 for (n = control; n; n = n->m_next) {
592 space += n->m_len;
593 if (n->m_next == 0) /* keep pointer to last control buf */
594 break;
595 }
596 if (space > sbspace(sb))
597 return (0);
598 MGET(m, M_DONTWAIT, MT_SONAME);
599 if (m == 0)
600 return (0);
601 if (asa->sa_len > MLEN) {
602 MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
603 if ((m->m_flags & M_EXT) == 0) {
604 m_free(m);
605 return (0);
606 }
607 }
608 m->m_len = asa->sa_len;
609 memcpy(mtod(m, caddr_t), (caddr_t)asa, asa->sa_len);
610 if (n)
611 n->m_next = m0; /* concatenate data to control */
612 else
613 control = m0;
614 m->m_next = control;
615 for (n = m; n; n = n->m_next)
616 sballoc(sb, n);
617 if ((n = sb->sb_mb) != NULL) {
618 while (n->m_nextpkt)
619 n = n->m_nextpkt;
620 n->m_nextpkt = m;
621 } else
622 sb->sb_mb = m;
623 return (1);
624 }
625
626 int
627 sbappendcontrol(sb, m0, control)
628 struct sockbuf *sb;
629 struct mbuf *m0, *control;
630 {
631 register struct mbuf *m, *n;
632 int space = 0;
633
634 if (control == 0)
635 panic("sbappendcontrol");
636 for (m = control; ; m = m->m_next) {
637 space += m->m_len;
638 if (m->m_next == 0)
639 break;
640 }
641 n = m; /* save pointer to last control buffer */
642 for (m = m0; m; m = m->m_next)
643 space += m->m_len;
644 if (space > sbspace(sb))
645 return (0);
646 n->m_next = m0; /* concatenate data to control */
647 for (m = control; m; m = m->m_next)
648 sballoc(sb, m);
649 if ((n = sb->sb_mb) != NULL) {
650 while (n->m_nextpkt)
651 n = n->m_nextpkt;
652 n->m_nextpkt = control;
653 } else
654 sb->sb_mb = control;
655 return (1);
656 }
657
658 /*
659 * Compress mbuf chain m into the socket
660 * buffer sb following mbuf n. If n
661 * is null, the buffer is presumed empty.
662 */
663 void
664 sbcompress(sb, m, n)
665 register struct sockbuf *sb;
666 register struct mbuf *m, *n;
667 {
668 register int eor = 0;
669 register struct mbuf *o;
670
671 while (m) {
672 eor |= m->m_flags & M_EOR;
673 if (m->m_len == 0 &&
674 (eor == 0 ||
675 (((o = m->m_next) || (o = n)) &&
676 o->m_type == m->m_type))) {
677 m = m_free(m);
678 continue;
679 }
680 if (n && (n->m_flags & (M_EXT | M_EOR)) == 0 &&
681 (n->m_data + n->m_len + m->m_len) < &n->m_dat[MLEN] &&
682 n->m_type == m->m_type) {
683 memcpy(mtod(n, caddr_t) + n->m_len, mtod(m, caddr_t),
684 (unsigned)m->m_len);
685 n->m_len += m->m_len;
686 sb->sb_cc += m->m_len;
687 m = m_free(m);
688 continue;
689 }
690 if (n)
691 n->m_next = m;
692 else
693 sb->sb_mb = m;
694 sballoc(sb, m);
695 n = m;
696 m->m_flags &= ~M_EOR;
697 m = m->m_next;
698 n->m_next = 0;
699 }
700 if (eor) {
701 if (n)
702 n->m_flags |= eor;
703 else
704 printf("semi-panic: sbcompress\n");
705 }
706 }
707
708 /*
709 * Free all mbufs in a sockbuf.
710 * Check that all resources are reclaimed.
711 */
712 void
713 sbflush(sb)
714 register struct sockbuf *sb;
715 {
716
717 if (sb->sb_flags & SB_LOCK)
718 panic("sbflush");
719 while (sb->sb_mbcnt)
720 sbdrop(sb, (int)sb->sb_cc);
721 if (sb->sb_cc || sb->sb_mb)
722 panic("sbflush 2");
723 }
724
725 /*
726 * Drop data from (the front of) a sockbuf.
727 */
728 void
729 sbdrop(sb, len)
730 register struct sockbuf *sb;
731 register int len;
732 {
733 register struct mbuf *m, *mn;
734 struct mbuf *next;
735
736 next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
737 while (len > 0) {
738 if (m == 0) {
739 if (next == 0)
740 panic("sbdrop");
741 m = next;
742 next = m->m_nextpkt;
743 continue;
744 }
745 if (m->m_len > len) {
746 m->m_len -= len;
747 m->m_data += len;
748 sb->sb_cc -= len;
749 break;
750 }
751 len -= m->m_len;
752 sbfree(sb, m);
753 MFREE(m, mn);
754 m = mn;
755 }
756 while (m && m->m_len == 0) {
757 sbfree(sb, m);
758 MFREE(m, mn);
759 m = mn;
760 }
761 if (m) {
762 sb->sb_mb = m;
763 m->m_nextpkt = next;
764 } else
765 sb->sb_mb = next;
766 }
767
768 /*
769 * Drop a record off the front of a sockbuf
770 * and move the next record to the front.
771 */
772 void
773 sbdroprecord(sb)
774 register struct sockbuf *sb;
775 {
776 register struct mbuf *m, *mn;
777
778 m = sb->sb_mb;
779 if (m) {
780 sb->sb_mb = m->m_nextpkt;
781 do {
782 sbfree(sb, m);
783 MFREE(m, mn);
784 } while ((m = mn) != NULL);
785 }
786 }
787
788 /*
789 * Create a "control" mbuf containing the specified data
790 * with the specified type for presentation on a socket buffer.
791 */
792 struct mbuf *
793 sbcreatecontrol(p, size, type, level)
794 caddr_t p;
795 register int size;
796 int type, level;
797 {
798 register struct cmsghdr *cp;
799 struct mbuf *m;
800
801 if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
802 return ((struct mbuf *) NULL);
803 cp = mtod(m, struct cmsghdr *);
804 memcpy(CMSG_DATA(cp), p, size);
805 size += sizeof(*cp);
806 m->m_len = size;
807 cp->cmsg_len = size;
808 cp->cmsg_level = level;
809 cp->cmsg_type = type;
810 return (m);
811 }
812