uipc_socket2.c revision 1.4.4.1 1 /*
2 * Copyright (c) 1982, 1986, 1988, 1990 Regents of the University of California.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 * from: @(#)uipc_socket2.c 7.17 (Berkeley) 5/4/91
34 * $Id: uipc_socket2.c,v 1.4.4.1 1993/09/24 08:51:56 mycroft Exp $
35 */
36
37 #include "param.h"
38 #include "systm.h"
39 #include "proc.h"
40 #include "file.h"
41 #include "buf.h"
42 #include "malloc.h"
43 #include "select.h"
44 #include "mbuf.h"
45 #include "protosw.h"
46 #include "socket.h"
47 #include "socketvar.h"
48
49 #include "machine/cpu.h"
50
51 /*
52 * Primitive routines for operating on sockets and socket buffers
53 */
54
55 /* strings for sleep message: */
56 char netio[] = "netio";
57 char netcon[] = "netcon";
58 char netcls[] = "netcls";
59
60 u_long sb_max = SB_MAX; /* patchable */
61
62 /*
63 * Procedures to manipulate state flags of socket
64 * and do appropriate wakeups. Normal sequence from the
65 * active (originating) side is that soisconnecting() is
66 * called during processing of connect() call,
67 * resulting in an eventual call to soisconnected() if/when the
68 * connection is established. When the connection is torn down
69 * soisdisconnecting() is called during processing of disconnect() call,
70 * and soisdisconnected() is called when the connection to the peer
71 * is totally severed. The semantics of these routines are such that
72 * connectionless protocols can call soisconnected() and soisdisconnected()
73 * only, bypassing the in-progress calls when setting up a ``connection''
74 * takes no time.
75 *
76 * From the passive side, a socket is created with
77 * two queues of sockets: so_q0 for connections in progress
78 * and so_q for connections already made and awaiting user acceptance.
79 * As a protocol is preparing incoming connections, it creates a socket
80 * structure queued on so_q0 by calling sonewconn(). When the connection
81 * is established, soisconnected() is called, and transfers the
82 * socket structure to so_q, making it available to accept().
83 *
84 * If a socket is closed with sockets on either
85 * so_q0 or so_q, these sockets are dropped.
86 *
87 * If higher level protocols are implemented in
88 * the kernel, the wakeups done here will sometimes
89 * cause software-interrupt process scheduling.
90 */
91
92 soisconnecting(so)
93 register struct socket *so;
94 {
95
96 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
97 so->so_state |= SS_ISCONNECTING;
98 }
99
100 soisconnected(so)
101 register struct socket *so;
102 {
103 register struct socket *head = so->so_head;
104
105 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
106 so->so_state |= SS_ISCONNECTED;
107 if (head && soqremque(so, 0)) {
108 soqinsque(head, so, 1);
109 sorwakeup(head);
110 wakeup((caddr_t)&head->so_timeo);
111 } else {
112 wakeup((caddr_t)&so->so_timeo);
113 sorwakeup(so);
114 sowwakeup(so);
115 }
116 }
117
118 soisdisconnecting(so)
119 register struct socket *so;
120 {
121
122 so->so_state &= ~SS_ISCONNECTING;
123 so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
124 wakeup((caddr_t)&so->so_timeo);
125 sowwakeup(so);
126 sorwakeup(so);
127 }
128
129 soisdisconnected(so)
130 register struct socket *so;
131 {
132
133 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
134 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE);
135 wakeup((caddr_t)&so->so_timeo);
136 sowwakeup(so);
137 sorwakeup(so);
138 }
139
140 /*
141 * When an attempt at a new connection is noted on a socket
142 * which accepts connections, sonewconn is called. If the
143 * connection is possible (subject to space constraints, etc.)
144 * then we allocate a new structure, propoerly linked into the
145 * data structure of the original socket, and return this.
146 * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
147 *
148 * Currently, sonewconn() is defined as sonewconn1() in socketvar.h
149 * to catch calls that are missing the (new) second parameter.
150 */
151 struct socket *
152 sonewconn1(head, connstatus)
153 register struct socket *head;
154 int connstatus;
155 {
156 register struct socket *so;
157 int soqueue = connstatus ? 1 : 0;
158
159 if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
160 return ((struct socket *)0);
161 MALLOC(so, struct socket *, sizeof(*so), M_SOCKET, M_DONTWAIT);
162 if (so == NULL)
163 return ((struct socket *)0);
164 bzero((caddr_t)so, sizeof(*so));
165 so->so_type = head->so_type;
166 so->so_options = head->so_options &~ SO_ACCEPTCONN;
167 so->so_linger = head->so_linger;
168 so->so_state = head->so_state | SS_NOFDREF;
169 so->so_proto = head->so_proto;
170 so->so_timeo = head->so_timeo;
171 so->so_pgid = head->so_pgid;
172 (void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
173 soqinsque(head, so, soqueue);
174 if ((*so->so_proto->pr_usrreq)(so, PRU_ATTACH,
175 (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0)) {
176 (void) soqremque(so, soqueue);
177 (void) free((caddr_t)so, M_SOCKET);
178 return ((struct socket *)0);
179 }
180 if (connstatus) {
181 sorwakeup(head);
182 wakeup((caddr_t)&head->so_timeo);
183 so->so_state |= connstatus;
184 }
185 return (so);
186 }
187
188 soqinsque(head, so, q)
189 register struct socket *head, *so;
190 int q;
191 {
192
193 register struct socket **prev;
194 so->so_head = head;
195 if (q == 0) {
196 head->so_q0len++;
197 so->so_q0 = 0;
198 for (prev = &(head->so_q0); *prev; )
199 prev = &((*prev)->so_q0);
200 } else {
201 head->so_qlen++;
202 so->so_q = 0;
203 for (prev = &(head->so_q); *prev; )
204 prev = &((*prev)->so_q);
205 }
206 *prev = so;
207 }
208
209 soqremque(so, q)
210 register struct socket *so;
211 int q;
212 {
213 register struct socket *head, *prev, *next;
214
215 head = so->so_head;
216 prev = head;
217 for (;;) {
218 next = q ? prev->so_q : prev->so_q0;
219 if (next == so)
220 break;
221 if (next == 0)
222 return (0);
223 prev = next;
224 }
225 if (q == 0) {
226 prev->so_q0 = next->so_q0;
227 head->so_q0len--;
228 } else {
229 prev->so_q = next->so_q;
230 head->so_qlen--;
231 }
232 next->so_q0 = next->so_q = 0;
233 next->so_head = 0;
234 return (1);
235 }
236
237 /*
238 * Socantsendmore indicates that no more data will be sent on the
239 * socket; it would normally be applied to a socket when the user
240 * informs the system that no more data is to be sent, by the protocol
241 * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data
242 * will be received, and will normally be applied to the socket by a
243 * protocol when it detects that the peer will send no more data.
244 * Data queued for reading in the socket may yet be read.
245 */
246
247 void
248 socantsendmore(so)
249 struct socket *so;
250 {
251
252 so->so_state |= SS_CANTSENDMORE;
253 sowwakeup(so);
254 }
255
256 void
257 socantrcvmore(so)
258 struct socket *so;
259 {
260
261 so->so_state |= SS_CANTRCVMORE;
262 sorwakeup(so);
263 }
264
265 /*
266 * Socket select/wakeup routines.
267 */
268
269 /*
270 * Queue a process for a select on a socket buffer.
271 */
272 sbselqueue(sb, cp)
273 struct sockbuf *sb;
274 struct proc *cp;
275 {
276 selrecord(cp, &sb->sb_sel);
277 sb->sb_flags |= SB_SEL;
278 }
279
280 /*
281 * Wait for data to arrive at/drain from a socket buffer.
282 */
283 sbwait(sb)
284 struct sockbuf *sb;
285 {
286
287 sb->sb_flags |= SB_WAIT;
288 return (tsleep((caddr_t)&sb->sb_cc,
289 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, netio,
290 sb->sb_timeo));
291 }
292
293 /*
294 * Lock a sockbuf already known to be locked;
295 * return any error returned from sleep (EINTR).
296 */
297 sb_lock(sb)
298 register struct sockbuf *sb;
299 {
300 int error;
301
302 while (sb->sb_flags & SB_LOCK) {
303 sb->sb_flags |= SB_WANT;
304 if (error = tsleep((caddr_t)&sb->sb_flags,
305 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK|PCATCH,
306 netio, 0))
307 return (error);
308 }
309 sb->sb_flags |= SB_LOCK;
310 return (0);
311 }
312
313 /*
314 * Wakeup processes waiting on a socket buffer.
315 * Do asynchronous notification via SIGIO
316 * if the socket has the SS_ASYNC flag set.
317 */
318 sowakeup(so, sb)
319 register struct socket *so;
320 register struct sockbuf *sb;
321 {
322 struct proc *p;
323
324 selwakeup(&sb->sb_sel);
325 sb->sb_flags &= ~SB_SEL;
326 if (sb->sb_flags & SB_WAIT) {
327 sb->sb_flags &= ~SB_WAIT;
328 wakeup((caddr_t)&sb->sb_cc);
329 }
330 if (so->so_state & SS_ASYNC) {
331 if (so->so_pgid < 0)
332 gsignal(-so->so_pgid, SIGIO);
333 else if (so->so_pgid > 0 && (p = pfind(so->so_pgid)) != 0)
334 psignal(p, SIGIO);
335 }
336 }
337
338 /*
339 * Socket buffer (struct sockbuf) utility routines.
340 *
341 * Each socket contains two socket buffers: one for sending data and
342 * one for receiving data. Each buffer contains a queue of mbufs,
343 * information about the number of mbufs and amount of data in the
344 * queue, and other fields allowing select() statements and notification
345 * on data availability to be implemented.
346 *
347 * Data stored in a socket buffer is maintained as a list of records.
348 * Each record is a list of mbufs chained together with the m_next
349 * field. Records are chained together with the m_nextpkt field. The upper
350 * level routine soreceive() expects the following conventions to be
351 * observed when placing information in the receive buffer:
352 *
353 * 1. If the protocol requires each message be preceded by the sender's
354 * name, then a record containing that name must be present before
355 * any associated data (mbuf's must be of type MT_SONAME).
356 * 2. If the protocol supports the exchange of ``access rights'' (really
357 * just additional data associated with the message), and there are
358 * ``rights'' to be received, then a record containing this data
359 * should be present (mbuf's must be of type MT_RIGHTS).
360 * 3. If a name or rights record exists, then it must be followed by
361 * a data record, perhaps of zero length.
362 *
363 * Before using a new socket structure it is first necessary to reserve
364 * buffer space to the socket, by calling sbreserve(). This should commit
365 * some of the available buffer space in the system buffer pool for the
366 * socket (currently, it does nothing but enforce limits). The space
367 * should be released by calling sbrelease() when the socket is destroyed.
368 */
369
370 soreserve(so, sndcc, rcvcc)
371 register struct socket *so;
372 u_long sndcc, rcvcc;
373 {
374
375 if (sbreserve(&so->so_snd, sndcc) == 0)
376 goto bad;
377 if (sbreserve(&so->so_rcv, rcvcc) == 0)
378 goto bad2;
379 if (so->so_rcv.sb_lowat == 0)
380 so->so_rcv.sb_lowat = 1;
381 if (so->so_snd.sb_lowat == 0)
382 so->so_snd.sb_lowat = MCLBYTES;
383 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
384 so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
385 return (0);
386 bad2:
387 sbrelease(&so->so_snd);
388 bad:
389 return (ENOBUFS);
390 }
391
392 /*
393 * Allot mbufs to a sockbuf.
394 * Attempt to scale mbmax so that mbcnt doesn't become limiting
395 * if buffering efficiency is near the normal case.
396 */
397 sbreserve(sb, cc)
398 struct sockbuf *sb;
399 u_long cc;
400 {
401
402 if (cc > sb_max * MCLBYTES / (MSIZE + MCLBYTES))
403 return (0);
404 sb->sb_hiwat = cc;
405 sb->sb_mbmax = min(cc * 2, sb_max);
406 if (sb->sb_lowat > sb->sb_hiwat)
407 sb->sb_lowat = sb->sb_hiwat;
408 return (1);
409 }
410
411 /*
412 * Free mbufs held by a socket, and reserved mbuf space.
413 */
414 sbrelease(sb)
415 struct sockbuf *sb;
416 {
417
418 sbflush(sb);
419 sb->sb_hiwat = sb->sb_mbmax = 0;
420 }
421
422 /*
423 * Routines to add and remove
424 * data from an mbuf queue.
425 *
426 * The routines sbappend() or sbappendrecord() are normally called to
427 * append new mbufs to a socket buffer, after checking that adequate
428 * space is available, comparing the function sbspace() with the amount
429 * of data to be added. sbappendrecord() differs from sbappend() in
430 * that data supplied is treated as the beginning of a new record.
431 * To place a sender's address, optional access rights, and data in a
432 * socket receive buffer, sbappendaddr() should be used. To place
433 * access rights and data in a socket receive buffer, sbappendrights()
434 * should be used. In either case, the new data begins a new record.
435 * Note that unlike sbappend() and sbappendrecord(), these routines check
436 * for the caller that there will be enough space to store the data.
437 * Each fails if there is not enough space, or if it cannot find mbufs
438 * to store additional information in.
439 *
440 * Reliable protocols may use the socket send buffer to hold data
441 * awaiting acknowledgement. Data is normally copied from a socket
442 * send buffer in a protocol with m_copy for output to a peer,
443 * and then removing the data from the socket buffer with sbdrop()
444 * or sbdroprecord() when the data is acknowledged by the peer.
445 */
446
447 /*
448 * Append mbuf chain m to the last record in the
449 * socket buffer sb. The additional space associated
450 * the mbuf chain is recorded in sb. Empty mbufs are
451 * discarded and mbufs are compacted where possible.
452 */
453 sbappend(sb, m)
454 struct sockbuf *sb;
455 struct mbuf *m;
456 {
457 register struct mbuf *n;
458
459 if (m == 0)
460 return;
461 if (n = sb->sb_mb) {
462 while (n->m_nextpkt)
463 n = n->m_nextpkt;
464 do {
465 if (n->m_flags & M_EOR) {
466 sbappendrecord(sb, m); /* XXXXXX!!!! */
467 return;
468 }
469 } while (n->m_next && (n = n->m_next));
470 }
471 sbcompress(sb, m, n);
472 }
473
474 #ifdef SOCKBUF_DEBUG
475 sbcheck(sb)
476 register struct sockbuf *sb;
477 {
478 register struct mbuf *m;
479 register int len = 0, mbcnt = 0;
480
481 for (m = sb->sb_mb; m; m = m->m_next) {
482 len += m->m_len;
483 mbcnt += MSIZE;
484 if (m->m_flags & M_EXT)
485 mbcnt += m->m_ext.ext_size;
486 if (m->m_nextpkt)
487 panic("sbcheck nextpkt");
488 }
489 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
490 printf("cc %d != %d || mbcnt %d != %d\n", len, sb->sb_cc,
491 mbcnt, sb->sb_mbcnt);
492 panic("sbcheck");
493 }
494 }
495 #endif
496
497 /*
498 * As above, except the mbuf chain
499 * begins a new record.
500 */
501 sbappendrecord(sb, m0)
502 register struct sockbuf *sb;
503 register struct mbuf *m0;
504 {
505 register struct mbuf *m;
506
507 if (m0 == 0)
508 return;
509 if (m = sb->sb_mb)
510 while (m->m_nextpkt)
511 m = m->m_nextpkt;
512 /*
513 * Put the first mbuf on the queue.
514 * Note this permits zero length records.
515 */
516 sballoc(sb, m0);
517 if (m)
518 m->m_nextpkt = m0;
519 else
520 sb->sb_mb = m0;
521 m = m0->m_next;
522 m0->m_next = 0;
523 if (m && (m0->m_flags & M_EOR)) {
524 m0->m_flags &= ~M_EOR;
525 m->m_flags |= M_EOR;
526 }
527 sbcompress(sb, m, m0);
528 }
529
530 /*
531 * As above except that OOB data
532 * is inserted at the beginning of the sockbuf,
533 * but after any other OOB data.
534 */
535 sbinsertoob(sb, m0)
536 register struct sockbuf *sb;
537 register struct mbuf *m0;
538 {
539 register struct mbuf *m;
540 register struct mbuf **mp;
541
542 if (m0 == 0)
543 return;
544 for (mp = &sb->sb_mb; m = *mp; mp = &((*mp)->m_nextpkt)) {
545 again:
546 switch (m->m_type) {
547
548 case MT_OOBDATA:
549 continue; /* WANT next train */
550
551 case MT_CONTROL:
552 if (m = m->m_next)
553 goto again; /* inspect THIS train further */
554 }
555 break;
556 }
557 /*
558 * Put the first mbuf on the queue.
559 * Note this permits zero length records.
560 */
561 sballoc(sb, m0);
562 m0->m_nextpkt = *mp;
563 *mp = m0;
564 m = m0->m_next;
565 m0->m_next = 0;
566 if (m && (m0->m_flags & M_EOR)) {
567 m0->m_flags &= ~M_EOR;
568 m->m_flags |= M_EOR;
569 }
570 sbcompress(sb, m, m0);
571 }
572
573 /*
574 * Append address and data, and optionally, control (ancillary) data
575 * to the receive queue of a socket. If present,
576 * m0 must include a packet header with total length.
577 * Returns 0 if no space in sockbuf or insufficient mbufs.
578 */
579 sbappendaddr(sb, asa, m0, control)
580 register struct sockbuf *sb;
581 struct sockaddr *asa;
582 struct mbuf *m0, *control;
583 {
584 register struct mbuf *m, *n;
585 int space = asa->sa_len;
586
587 if (m0 && (m0->m_flags & M_PKTHDR) == 0)
588 panic("sbappendaddr");
589 if (m0)
590 space += m0->m_pkthdr.len;
591 for (n = control; n; n = n->m_next) {
592 space += n->m_len;
593 if (n->m_next == 0) /* keep pointer to last control buf */
594 break;
595 }
596 if (space > sbspace(sb))
597 return (0);
598 if (asa->sa_len > MLEN)
599 return (0);
600 MGET(m, M_DONTWAIT, MT_SONAME);
601 if (m == 0)
602 return (0);
603 m->m_len = asa->sa_len;
604 bcopy((caddr_t)asa, mtod(m, caddr_t), asa->sa_len);
605 if (n)
606 n->m_next = m0; /* concatenate data to control */
607 else
608 control = m0;
609 m->m_next = control;
610 for (n = m; n; n = n->m_next)
611 sballoc(sb, n);
612 if (n = sb->sb_mb) {
613 while (n->m_nextpkt)
614 n = n->m_nextpkt;
615 n->m_nextpkt = m;
616 } else
617 sb->sb_mb = m;
618 return (1);
619 }
620
621 sbappendcontrol(sb, m0, control)
622 struct sockbuf *sb;
623 struct mbuf *control, *m0;
624 {
625 register struct mbuf *m, *n;
626 int space = 0;
627
628 if (control == 0)
629 panic("sbappendcontrol");
630 for (m = control; ; m = m->m_next) {
631 space += m->m_len;
632 if (m->m_next == 0)
633 break;
634 }
635 n = m; /* save pointer to last control buffer */
636 for (m = m0; m; m = m->m_next)
637 space += m->m_len;
638 if (space > sbspace(sb))
639 return (0);
640 n->m_next = m0; /* concatenate data to control */
641 for (m = control; m; m = m->m_next)
642 sballoc(sb, m);
643 if (n = sb->sb_mb) {
644 while (n->m_nextpkt)
645 n = n->m_nextpkt;
646 n->m_nextpkt = control;
647 } else
648 sb->sb_mb = control;
649 return (1);
650 }
651
652 /*
653 * Compress mbuf chain m into the socket
654 * buffer sb following mbuf n. If n
655 * is null, the buffer is presumed empty.
656 */
657 sbcompress(sb, m, n)
658 register struct sockbuf *sb;
659 register struct mbuf *m, *n;
660 {
661 register int eor = 0;
662 register struct mbuf *o;
663
664 while (m) {
665 eor |= m->m_flags & M_EOR;
666 if (m->m_len == 0 &&
667 (eor == 0 ||
668 (((o = m->m_next) || (o = n)) &&
669 o->m_type == m->m_type))) {
670 m = m_free(m);
671 continue;
672 }
673 if (n && (n->m_flags & (M_EXT | M_EOR)) == 0 &&
674 (n->m_data + n->m_len + m->m_len) < &n->m_dat[MLEN] &&
675 n->m_type == m->m_type) {
676 bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len,
677 (unsigned)m->m_len);
678 n->m_len += m->m_len;
679 sb->sb_cc += m->m_len;
680 m = m_free(m);
681 continue;
682 }
683 if (n)
684 n->m_next = m;
685 else
686 sb->sb_mb = m;
687 sballoc(sb, m);
688 n = m;
689 m->m_flags &= ~M_EOR;
690 m = m->m_next;
691 n->m_next = 0;
692 }
693 if (eor) {
694 if (n)
695 n->m_flags |= eor;
696 else
697 printf("semi-panic: sbcompress\n");
698 }
699 }
700
701 /*
702 * Free all mbufs in a sockbuf.
703 * Check that all resources are reclaimed.
704 */
705 sbflush(sb)
706 register struct sockbuf *sb;
707 {
708
709 if (sb->sb_flags & SB_LOCK)
710 panic("sbflush");
711 while (sb->sb_mbcnt)
712 sbdrop(sb, (int)sb->sb_cc);
713 if (sb->sb_cc || sb->sb_mb)
714 panic("sbflush 2");
715 }
716
717 /*
718 * Drop data from (the front of) a sockbuf.
719 */
720 sbdrop(sb, len)
721 register struct sockbuf *sb;
722 register int len;
723 {
724 register struct mbuf *m, *mn;
725 struct mbuf *next;
726
727 next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
728 while (len > 0) {
729 if (m == 0) {
730 if (next == 0)
731 panic("sbdrop");
732 m = next;
733 next = m->m_nextpkt;
734 continue;
735 }
736 if (m->m_len > len) {
737 m->m_len -= len;
738 m->m_data += len;
739 sb->sb_cc -= len;
740 break;
741 }
742 len -= m->m_len;
743 sbfree(sb, m);
744 MFREE(m, mn);
745 m = mn;
746 }
747 while (m && m->m_len == 0) {
748 sbfree(sb, m);
749 MFREE(m, mn);
750 m = mn;
751 }
752 if (m) {
753 sb->sb_mb = m;
754 m->m_nextpkt = next;
755 } else
756 sb->sb_mb = next;
757 }
758
759 /*
760 * Drop a record off the front of a sockbuf
761 * and move the next record to the front.
762 */
763 sbdroprecord(sb)
764 register struct sockbuf *sb;
765 {
766 register struct mbuf *m, *mn;
767
768 m = sb->sb_mb;
769 if (m) {
770 sb->sb_mb = m->m_nextpkt;
771 do {
772 sbfree(sb, m);
773 MFREE(m, mn);
774 } while (m = mn);
775 }
776 }
777