uipc_socket2.c revision 1.40 1 /* $NetBSD: uipc_socket2.c,v 1.40 2001/07/27 19:27:49 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1988, 1990, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * @(#)uipc_socket2.c 8.2 (Berkeley) 2/14/95
36 */
37
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/proc.h>
41 #include <sys/file.h>
42 #include <sys/buf.h>
43 #include <sys/malloc.h>
44 #include <sys/mbuf.h>
45 #include <sys/protosw.h>
46 #include <sys/socket.h>
47 #include <sys/socketvar.h>
48 #include <sys/signalvar.h>
49
50 /*
51 * Primitive routines for operating on sockets and socket buffers
52 */
53
54 /* strings for sleep message: */
55 const char netio[] = "netio";
56 const char netcon[] = "netcon";
57 const char netcls[] = "netcls";
58
59 /*
60 * Procedures to manipulate state flags of socket
61 * and do appropriate wakeups. Normal sequence from the
62 * active (originating) side is that soisconnecting() is
63 * called during processing of connect() call,
64 * resulting in an eventual call to soisconnected() if/when the
65 * connection is established. When the connection is torn down
66 * soisdisconnecting() is called during processing of disconnect() call,
67 * and soisdisconnected() is called when the connection to the peer
68 * is totally severed. The semantics of these routines are such that
69 * connectionless protocols can call soisconnected() and soisdisconnected()
70 * only, bypassing the in-progress calls when setting up a ``connection''
71 * takes no time.
72 *
73 * From the passive side, a socket is created with
74 * two queues of sockets: so_q0 for connections in progress
75 * and so_q for connections already made and awaiting user acceptance.
76 * As a protocol is preparing incoming connections, it creates a socket
77 * structure queued on so_q0 by calling sonewconn(). When the connection
78 * is established, soisconnected() is called, and transfers the
79 * socket structure to so_q, making it available to accept().
80 *
81 * If a socket is closed with sockets on either
82 * so_q0 or so_q, these sockets are dropped.
83 *
84 * If higher level protocols are implemented in
85 * the kernel, the wakeups done here will sometimes
86 * cause software-interrupt process scheduling.
87 */
88
89 void
90 soisconnecting(struct socket *so)
91 {
92
93 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
94 so->so_state |= SS_ISCONNECTING;
95 }
96
97 void
98 soisconnected(struct socket *so)
99 {
100 struct socket *head;
101
102 head = so->so_head;
103 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
104 so->so_state |= SS_ISCONNECTED;
105 if (head && soqremque(so, 0)) {
106 soqinsque(head, so, 1);
107 sorwakeup(head);
108 wakeup((caddr_t)&head->so_timeo);
109 } else {
110 wakeup((caddr_t)&so->so_timeo);
111 sorwakeup(so);
112 sowwakeup(so);
113 }
114 }
115
116 void
117 soisdisconnecting(struct socket *so)
118 {
119
120 so->so_state &= ~SS_ISCONNECTING;
121 so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
122 wakeup((caddr_t)&so->so_timeo);
123 sowwakeup(so);
124 sorwakeup(so);
125 }
126
127 void
128 soisdisconnected(struct socket *so)
129 {
130
131 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
132 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
133 wakeup((caddr_t)&so->so_timeo);
134 sowwakeup(so);
135 sorwakeup(so);
136 }
137
138 /*
139 * When an attempt at a new connection is noted on a socket
140 * which accepts connections, sonewconn is called. If the
141 * connection is possible (subject to space constraints, etc.)
142 * then we allocate a new structure, propoerly linked into the
143 * data structure of the original socket, and return this.
144 * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
145 *
146 * Currently, sonewconn() is defined as sonewconn1() in socketvar.h
147 * to catch calls that are missing the (new) second parameter.
148 */
149 struct socket *
150 sonewconn1(struct socket *head, int connstatus)
151 {
152 struct socket *so;
153 int soqueue;
154
155 soqueue = connstatus ? 1 : 0;
156 if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
157 return ((struct socket *)0);
158 so = pool_get(&socket_pool, PR_NOWAIT);
159 if (so == NULL)
160 return (NULL);
161 memset((caddr_t)so, 0, sizeof(*so));
162 so->so_type = head->so_type;
163 so->so_options = head->so_options &~ SO_ACCEPTCONN;
164 so->so_linger = head->so_linger;
165 so->so_state = head->so_state | SS_NOFDREF;
166 so->so_proto = head->so_proto;
167 so->so_timeo = head->so_timeo;
168 so->so_pgid = head->so_pgid;
169 so->so_send = head->so_send;
170 so->so_receive = head->so_receive;
171 so->so_uid = head->so_uid;
172 (void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
173 soqinsque(head, so, soqueue);
174 if ((*so->so_proto->pr_usrreq)(so, PRU_ATTACH,
175 (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
176 (struct proc *)0)) {
177 (void) soqremque(so, soqueue);
178 pool_put(&socket_pool, so);
179 return (NULL);
180 }
181 if (connstatus) {
182 sorwakeup(head);
183 wakeup((caddr_t)&head->so_timeo);
184 so->so_state |= connstatus;
185 }
186 return (so);
187 }
188
189 void
190 soqinsque(struct socket *head, struct socket *so, int q)
191 {
192
193 #ifdef DIAGNOSTIC
194 if (so->so_onq != NULL)
195 panic("soqinsque");
196 #endif
197
198 so->so_head = head;
199 if (q == 0) {
200 head->so_q0len++;
201 so->so_onq = &head->so_q0;
202 } else {
203 head->so_qlen++;
204 so->so_onq = &head->so_q;
205 }
206 TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
207 }
208
209 int
210 soqremque(struct socket *so, int q)
211 {
212 struct socket *head;
213
214 head = so->so_head;
215 if (q == 0) {
216 if (so->so_onq != &head->so_q0)
217 return (0);
218 head->so_q0len--;
219 } else {
220 if (so->so_onq != &head->so_q)
221 return (0);
222 head->so_qlen--;
223 }
224 TAILQ_REMOVE(so->so_onq, so, so_qe);
225 so->so_onq = NULL;
226 so->so_head = NULL;
227 return (1);
228 }
229
230 /*
231 * Socantsendmore indicates that no more data will be sent on the
232 * socket; it would normally be applied to a socket when the user
233 * informs the system that no more data is to be sent, by the protocol
234 * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data
235 * will be received, and will normally be applied to the socket by a
236 * protocol when it detects that the peer will send no more data.
237 * Data queued for reading in the socket may yet be read.
238 */
239
240 void
241 socantsendmore(struct socket *so)
242 {
243
244 so->so_state |= SS_CANTSENDMORE;
245 sowwakeup(so);
246 }
247
248 void
249 socantrcvmore(struct socket *so)
250 {
251
252 so->so_state |= SS_CANTRCVMORE;
253 sorwakeup(so);
254 }
255
256 /*
257 * Wait for data to arrive at/drain from a socket buffer.
258 */
259 int
260 sbwait(struct sockbuf *sb)
261 {
262
263 sb->sb_flags |= SB_WAIT;
264 return (tsleep((caddr_t)&sb->sb_cc,
265 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, netio,
266 sb->sb_timeo));
267 }
268
269 /*
270 * Lock a sockbuf already known to be locked;
271 * return any error returned from sleep (EINTR).
272 */
273 int
274 sb_lock(struct sockbuf *sb)
275 {
276 int error;
277
278 while (sb->sb_flags & SB_LOCK) {
279 sb->sb_flags |= SB_WANT;
280 error = tsleep((caddr_t)&sb->sb_flags,
281 (sb->sb_flags & SB_NOINTR) ?
282 PSOCK : PSOCK|PCATCH, netio, 0);
283 if (error)
284 return (error);
285 }
286 sb->sb_flags |= SB_LOCK;
287 return (0);
288 }
289
290 /*
291 * Wakeup processes waiting on a socket buffer.
292 * Do asynchronous notification via SIGIO
293 * if the socket buffer has the SB_ASYNC flag set.
294 */
295 void
296 sowakeup(struct socket *so, struct sockbuf *sb)
297 {
298 struct proc *p;
299
300 selwakeup(&sb->sb_sel);
301 sb->sb_flags &= ~SB_SEL;
302 if (sb->sb_flags & SB_WAIT) {
303 sb->sb_flags &= ~SB_WAIT;
304 wakeup((caddr_t)&sb->sb_cc);
305 }
306 if (sb->sb_flags & SB_ASYNC) {
307 if (so->so_pgid < 0)
308 gsignal(-so->so_pgid, SIGIO);
309 else if (so->so_pgid > 0 && (p = pfind(so->so_pgid)) != 0)
310 psignal(p, SIGIO);
311 }
312 if (sb->sb_flags & SB_UPCALL)
313 (*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT);
314 }
315
316 /*
317 * Socket buffer (struct sockbuf) utility routines.
318 *
319 * Each socket contains two socket buffers: one for sending data and
320 * one for receiving data. Each buffer contains a queue of mbufs,
321 * information about the number of mbufs and amount of data in the
322 * queue, and other fields allowing poll() statements and notification
323 * on data availability to be implemented.
324 *
325 * Data stored in a socket buffer is maintained as a list of records.
326 * Each record is a list of mbufs chained together with the m_next
327 * field. Records are chained together with the m_nextpkt field. The upper
328 * level routine soreceive() expects the following conventions to be
329 * observed when placing information in the receive buffer:
330 *
331 * 1. If the protocol requires each message be preceded by the sender's
332 * name, then a record containing that name must be present before
333 * any associated data (mbuf's must be of type MT_SONAME).
334 * 2. If the protocol supports the exchange of ``access rights'' (really
335 * just additional data associated with the message), and there are
336 * ``rights'' to be received, then a record containing this data
337 * should be present (mbuf's must be of type MT_CONTROL).
338 * 3. If a name or rights record exists, then it must be followed by
339 * a data record, perhaps of zero length.
340 *
341 * Before using a new socket structure it is first necessary to reserve
342 * buffer space to the socket, by calling sbreserve(). This should commit
343 * some of the available buffer space in the system buffer pool for the
344 * socket (currently, it does nothing but enforce limits). The space
345 * should be released by calling sbrelease() when the socket is destroyed.
346 */
347
348 int
349 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
350 {
351
352 if (sbreserve(&so->so_snd, sndcc) == 0)
353 goto bad;
354 if (sbreserve(&so->so_rcv, rcvcc) == 0)
355 goto bad2;
356 if (so->so_rcv.sb_lowat == 0)
357 so->so_rcv.sb_lowat = 1;
358 if (so->so_snd.sb_lowat == 0)
359 so->so_snd.sb_lowat = MCLBYTES;
360 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
361 so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
362 return (0);
363 bad2:
364 sbrelease(&so->so_snd);
365 bad:
366 return (ENOBUFS);
367 }
368
369 /*
370 * Allot mbufs to a sockbuf.
371 * Attempt to scale mbmax so that mbcnt doesn't become limiting
372 * if buffering efficiency is near the normal case.
373 */
374 int
375 sbreserve(struct sockbuf *sb, u_long cc)
376 {
377
378 if (cc == 0 ||
379 (u_quad_t) cc > (u_quad_t) sb_max * MCLBYTES / (MSIZE + MCLBYTES))
380 return (0);
381 sb->sb_hiwat = cc;
382 sb->sb_mbmax = min(cc * 2, sb_max);
383 if (sb->sb_lowat > sb->sb_hiwat)
384 sb->sb_lowat = sb->sb_hiwat;
385 return (1);
386 }
387
388 /*
389 * Free mbufs held by a socket, and reserved mbuf space.
390 */
391 void
392 sbrelease(struct sockbuf *sb)
393 {
394
395 sbflush(sb);
396 sb->sb_hiwat = sb->sb_mbmax = 0;
397 }
398
399 /*
400 * Routines to add and remove
401 * data from an mbuf queue.
402 *
403 * The routines sbappend() or sbappendrecord() are normally called to
404 * append new mbufs to a socket buffer, after checking that adequate
405 * space is available, comparing the function sbspace() with the amount
406 * of data to be added. sbappendrecord() differs from sbappend() in
407 * that data supplied is treated as the beginning of a new record.
408 * To place a sender's address, optional access rights, and data in a
409 * socket receive buffer, sbappendaddr() should be used. To place
410 * access rights and data in a socket receive buffer, sbappendrights()
411 * should be used. In either case, the new data begins a new record.
412 * Note that unlike sbappend() and sbappendrecord(), these routines check
413 * for the caller that there will be enough space to store the data.
414 * Each fails if there is not enough space, or if it cannot find mbufs
415 * to store additional information in.
416 *
417 * Reliable protocols may use the socket send buffer to hold data
418 * awaiting acknowledgement. Data is normally copied from a socket
419 * send buffer in a protocol with m_copy for output to a peer,
420 * and then removing the data from the socket buffer with sbdrop()
421 * or sbdroprecord() when the data is acknowledged by the peer.
422 */
423
424 /*
425 * Append mbuf chain m to the last record in the
426 * socket buffer sb. The additional space associated
427 * the mbuf chain is recorded in sb. Empty mbufs are
428 * discarded and mbufs are compacted where possible.
429 */
430 void
431 sbappend(struct sockbuf *sb, struct mbuf *m)
432 {
433 struct mbuf *n;
434
435 if (m == 0)
436 return;
437 if ((n = sb->sb_mb) != NULL) {
438 while (n->m_nextpkt)
439 n = n->m_nextpkt;
440 do {
441 if (n->m_flags & M_EOR) {
442 sbappendrecord(sb, m); /* XXXXXX!!!! */
443 return;
444 }
445 } while (n->m_next && (n = n->m_next));
446 }
447 sbcompress(sb, m, n);
448 }
449
450 #ifdef SOCKBUF_DEBUG
451 void
452 sbcheck(struct sockbuf *sb)
453 {
454 struct mbuf *m;
455 int len, mbcnt;
456
457 len = 0;
458 mbcnt = 0;
459 for (m = sb->sb_mb; m; m = m->m_next) {
460 len += m->m_len;
461 mbcnt += MSIZE;
462 if (m->m_flags & M_EXT)
463 mbcnt += m->m_ext.ext_size;
464 if (m->m_nextpkt)
465 panic("sbcheck nextpkt");
466 }
467 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
468 printf("cc %d != %d || mbcnt %d != %d\n", len, sb->sb_cc,
469 mbcnt, sb->sb_mbcnt);
470 panic("sbcheck");
471 }
472 }
473 #endif
474
475 /*
476 * As above, except the mbuf chain
477 * begins a new record.
478 */
479 void
480 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
481 {
482 struct mbuf *m;
483
484 if (m0 == 0)
485 return;
486 if ((m = sb->sb_mb) != NULL)
487 while (m->m_nextpkt)
488 m = m->m_nextpkt;
489 /*
490 * Put the first mbuf on the queue.
491 * Note this permits zero length records.
492 */
493 sballoc(sb, m0);
494 if (m)
495 m->m_nextpkt = m0;
496 else
497 sb->sb_mb = m0;
498 m = m0->m_next;
499 m0->m_next = 0;
500 if (m && (m0->m_flags & M_EOR)) {
501 m0->m_flags &= ~M_EOR;
502 m->m_flags |= M_EOR;
503 }
504 sbcompress(sb, m, m0);
505 }
506
507 /*
508 * As above except that OOB data
509 * is inserted at the beginning of the sockbuf,
510 * but after any other OOB data.
511 */
512 void
513 sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
514 {
515 struct mbuf *m, **mp;
516
517 if (m0 == 0)
518 return;
519 for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
520 again:
521 switch (m->m_type) {
522
523 case MT_OOBDATA:
524 continue; /* WANT next train */
525
526 case MT_CONTROL:
527 if ((m = m->m_next) != NULL)
528 goto again; /* inspect THIS train further */
529 }
530 break;
531 }
532 /*
533 * Put the first mbuf on the queue.
534 * Note this permits zero length records.
535 */
536 sballoc(sb, m0);
537 m0->m_nextpkt = *mp;
538 *mp = m0;
539 m = m0->m_next;
540 m0->m_next = 0;
541 if (m && (m0->m_flags & M_EOR)) {
542 m0->m_flags &= ~M_EOR;
543 m->m_flags |= M_EOR;
544 }
545 sbcompress(sb, m, m0);
546 }
547
548 /*
549 * Append address and data, and optionally, control (ancillary) data
550 * to the receive queue of a socket. If present,
551 * m0 must include a packet header with total length.
552 * Returns 0 if no space in sockbuf or insufficient mbufs.
553 */
554 int
555 sbappendaddr(struct sockbuf *sb, struct sockaddr *asa, struct mbuf *m0,
556 struct mbuf *control)
557 {
558 struct mbuf *m, *n;
559 int space;
560
561 space = asa->sa_len;
562
563 if (m0 && (m0->m_flags & M_PKTHDR) == 0)
564 panic("sbappendaddr");
565 if (m0)
566 space += m0->m_pkthdr.len;
567 for (n = control; n; n = n->m_next) {
568 space += n->m_len;
569 if (n->m_next == 0) /* keep pointer to last control buf */
570 break;
571 }
572 if (space > sbspace(sb))
573 return (0);
574 MGET(m, M_DONTWAIT, MT_SONAME);
575 if (m == 0)
576 return (0);
577 if (asa->sa_len > MLEN) {
578 MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
579 if ((m->m_flags & M_EXT) == 0) {
580 m_free(m);
581 return (0);
582 }
583 }
584 m->m_len = asa->sa_len;
585 memcpy(mtod(m, caddr_t), (caddr_t)asa, asa->sa_len);
586 if (n)
587 n->m_next = m0; /* concatenate data to control */
588 else
589 control = m0;
590 m->m_next = control;
591 for (n = m; n; n = n->m_next)
592 sballoc(sb, n);
593 if ((n = sb->sb_mb) != NULL) {
594 while (n->m_nextpkt)
595 n = n->m_nextpkt;
596 n->m_nextpkt = m;
597 } else
598 sb->sb_mb = m;
599 return (1);
600 }
601
602 int
603 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
604 {
605 struct mbuf *m, *n;
606 int space;
607
608 space = 0;
609 if (control == 0)
610 panic("sbappendcontrol");
611 for (m = control; ; m = m->m_next) {
612 space += m->m_len;
613 if (m->m_next == 0)
614 break;
615 }
616 n = m; /* save pointer to last control buffer */
617 for (m = m0; m; m = m->m_next)
618 space += m->m_len;
619 if (space > sbspace(sb))
620 return (0);
621 n->m_next = m0; /* concatenate data to control */
622 for (m = control; m; m = m->m_next)
623 sballoc(sb, m);
624 if ((n = sb->sb_mb) != NULL) {
625 while (n->m_nextpkt)
626 n = n->m_nextpkt;
627 n->m_nextpkt = control;
628 } else
629 sb->sb_mb = control;
630 return (1);
631 }
632
633 /*
634 * Compress mbuf chain m into the socket
635 * buffer sb following mbuf n. If n
636 * is null, the buffer is presumed empty.
637 */
638 void
639 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
640 {
641 int eor;
642 struct mbuf *o;
643
644 eor = 0;
645 while (m) {
646 eor |= m->m_flags & M_EOR;
647 if (m->m_len == 0 &&
648 (eor == 0 ||
649 (((o = m->m_next) || (o = n)) &&
650 o->m_type == m->m_type))) {
651 m = m_free(m);
652 continue;
653 }
654 if (n && (n->m_flags & M_EOR) == 0 &&
655 /* M_TRAILINGSPACE() checks buffer writeability */
656 m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
657 m->m_len <= M_TRAILINGSPACE(n) &&
658 n->m_type == m->m_type) {
659 memcpy(mtod(n, caddr_t) + n->m_len, mtod(m, caddr_t),
660 (unsigned)m->m_len);
661 n->m_len += m->m_len;
662 sb->sb_cc += m->m_len;
663 m = m_free(m);
664 continue;
665 }
666 if (n)
667 n->m_next = m;
668 else
669 sb->sb_mb = m;
670 sballoc(sb, m);
671 n = m;
672 m->m_flags &= ~M_EOR;
673 m = m->m_next;
674 n->m_next = 0;
675 }
676 if (eor) {
677 if (n)
678 n->m_flags |= eor;
679 else
680 printf("semi-panic: sbcompress\n");
681 }
682 }
683
684 /*
685 * Free all mbufs in a sockbuf.
686 * Check that all resources are reclaimed.
687 */
688 void
689 sbflush(struct sockbuf *sb)
690 {
691
692 if (sb->sb_flags & SB_LOCK)
693 panic("sbflush");
694 while (sb->sb_mbcnt)
695 sbdrop(sb, (int)sb->sb_cc);
696 if (sb->sb_cc || sb->sb_mb)
697 panic("sbflush 2");
698 }
699
700 /*
701 * Drop data from (the front of) a sockbuf.
702 */
703 void
704 sbdrop(struct sockbuf *sb, int len)
705 {
706 struct mbuf *m, *mn, *next;
707
708 next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
709 while (len > 0) {
710 if (m == 0) {
711 if (next == 0)
712 panic("sbdrop");
713 m = next;
714 next = m->m_nextpkt;
715 continue;
716 }
717 if (m->m_len > len) {
718 m->m_len -= len;
719 m->m_data += len;
720 sb->sb_cc -= len;
721 break;
722 }
723 len -= m->m_len;
724 sbfree(sb, m);
725 MFREE(m, mn);
726 m = mn;
727 }
728 while (m && m->m_len == 0) {
729 sbfree(sb, m);
730 MFREE(m, mn);
731 m = mn;
732 }
733 if (m) {
734 sb->sb_mb = m;
735 m->m_nextpkt = next;
736 } else
737 sb->sb_mb = next;
738 }
739
740 /*
741 * Drop a record off the front of a sockbuf
742 * and move the next record to the front.
743 */
744 void
745 sbdroprecord(struct sockbuf *sb)
746 {
747 struct mbuf *m, *mn;
748
749 m = sb->sb_mb;
750 if (m) {
751 sb->sb_mb = m->m_nextpkt;
752 do {
753 sbfree(sb, m);
754 MFREE(m, mn);
755 } while ((m = mn) != NULL);
756 }
757 }
758
759 /*
760 * Create a "control" mbuf containing the specified data
761 * with the specified type for presentation on a socket buffer.
762 */
763 struct mbuf *
764 sbcreatecontrol(caddr_t p, int size, int type, int level)
765 {
766 struct cmsghdr *cp;
767 struct mbuf *m;
768
769 if (CMSG_SPACE(size) > MCLBYTES) {
770 printf("sbcreatecontrol: message too large %d\n", size);
771 return NULL;
772 }
773
774 if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
775 return ((struct mbuf *) NULL);
776 if (CMSG_SPACE(size) > MLEN) {
777 MCLGET(m, M_DONTWAIT);
778 if ((m->m_flags & M_EXT) == 0) {
779 m_free(m);
780 return NULL;
781 }
782 }
783 cp = mtod(m, struct cmsghdr *);
784 memcpy(CMSG_DATA(cp), p, size);
785 m->m_len = CMSG_SPACE(size);
786 cp->cmsg_len = CMSG_LEN(size);
787 cp->cmsg_level = level;
788 cp->cmsg_type = type;
789 return (m);
790 }
791