Home | History | Annotate | Line # | Download | only in kern
uipc_socket2.c revision 1.41
      1 /*	$NetBSD: uipc_socket2.c,v 1.41 2001/08/05 08:25:39 enami Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1988, 1990, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by the University of
     18  *	California, Berkeley and its contributors.
     19  * 4. Neither the name of the University nor the names of its contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33  * SUCH DAMAGE.
     34  *
     35  *	@(#)uipc_socket2.c	8.2 (Berkeley) 2/14/95
     36  */
     37 
     38 #include <sys/param.h>
     39 #include <sys/systm.h>
     40 #include <sys/proc.h>
     41 #include <sys/file.h>
     42 #include <sys/buf.h>
     43 #include <sys/malloc.h>
     44 #include <sys/mbuf.h>
     45 #include <sys/protosw.h>
     46 #include <sys/socket.h>
     47 #include <sys/socketvar.h>
     48 #include <sys/signalvar.h>
     49 
     50 /*
     51  * Primitive routines for operating on sockets and socket buffers
     52  */
     53 
     54 /* strings for sleep message: */
     55 const char	netcon[] = "netcon";
     56 const char	netcls[] = "netcls";
     57 const char	netio[] = "netio";
     58 const char	netlck[] = "netlck";
     59 
     60 /*
     61  * Procedures to manipulate state flags of socket
     62  * and do appropriate wakeups.  Normal sequence from the
     63  * active (originating) side is that soisconnecting() is
     64  * called during processing of connect() call,
     65  * resulting in an eventual call to soisconnected() if/when the
     66  * connection is established.  When the connection is torn down
     67  * soisdisconnecting() is called during processing of disconnect() call,
     68  * and soisdisconnected() is called when the connection to the peer
     69  * is totally severed.  The semantics of these routines are such that
     70  * connectionless protocols can call soisconnected() and soisdisconnected()
     71  * only, bypassing the in-progress calls when setting up a ``connection''
     72  * takes no time.
     73  *
     74  * From the passive side, a socket is created with
     75  * two queues of sockets: so_q0 for connections in progress
     76  * and so_q for connections already made and awaiting user acceptance.
     77  * As a protocol is preparing incoming connections, it creates a socket
     78  * structure queued on so_q0 by calling sonewconn().  When the connection
     79  * is established, soisconnected() is called, and transfers the
     80  * socket structure to so_q, making it available to accept().
     81  *
     82  * If a socket is closed with sockets on either
     83  * so_q0 or so_q, these sockets are dropped.
     84  *
     85  * If higher level protocols are implemented in
     86  * the kernel, the wakeups done here will sometimes
     87  * cause software-interrupt process scheduling.
     88  */
     89 
     90 void
     91 soisconnecting(struct socket *so)
     92 {
     93 
     94 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
     95 	so->so_state |= SS_ISCONNECTING;
     96 }
     97 
     98 void
     99 soisconnected(struct socket *so)
    100 {
    101 	struct socket	*head;
    102 
    103 	head = so->so_head;
    104 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
    105 	so->so_state |= SS_ISCONNECTED;
    106 	if (head && soqremque(so, 0)) {
    107 		soqinsque(head, so, 1);
    108 		sorwakeup(head);
    109 		wakeup((caddr_t)&head->so_timeo);
    110 	} else {
    111 		wakeup((caddr_t)&so->so_timeo);
    112 		sorwakeup(so);
    113 		sowwakeup(so);
    114 	}
    115 }
    116 
    117 void
    118 soisdisconnecting(struct socket *so)
    119 {
    120 
    121 	so->so_state &= ~SS_ISCONNECTING;
    122 	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
    123 	wakeup((caddr_t)&so->so_timeo);
    124 	sowwakeup(so);
    125 	sorwakeup(so);
    126 }
    127 
    128 void
    129 soisdisconnected(struct socket *so)
    130 {
    131 
    132 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
    133 	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
    134 	wakeup((caddr_t)&so->so_timeo);
    135 	sowwakeup(so);
    136 	sorwakeup(so);
    137 }
    138 
    139 /*
    140  * When an attempt at a new connection is noted on a socket
    141  * which accepts connections, sonewconn is called.  If the
    142  * connection is possible (subject to space constraints, etc.)
    143  * then we allocate a new structure, propoerly linked into the
    144  * data structure of the original socket, and return this.
    145  * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
    146  *
    147  * Currently, sonewconn() is defined as sonewconn1() in socketvar.h
    148  * to catch calls that are missing the (new) second parameter.
    149  */
    150 struct socket *
    151 sonewconn1(struct socket *head, int connstatus)
    152 {
    153 	struct socket	*so;
    154 	int		soqueue;
    155 
    156 	soqueue = connstatus ? 1 : 0;
    157 	if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
    158 		return ((struct socket *)0);
    159 	so = pool_get(&socket_pool, PR_NOWAIT);
    160 	if (so == NULL)
    161 		return (NULL);
    162 	memset((caddr_t)so, 0, sizeof(*so));
    163 	so->so_type = head->so_type;
    164 	so->so_options = head->so_options &~ SO_ACCEPTCONN;
    165 	so->so_linger = head->so_linger;
    166 	so->so_state = head->so_state | SS_NOFDREF;
    167 	so->so_proto = head->so_proto;
    168 	so->so_timeo = head->so_timeo;
    169 	so->so_pgid = head->so_pgid;
    170 	so->so_send = head->so_send;
    171 	so->so_receive = head->so_receive;
    172 	so->so_uid = head->so_uid;
    173 	(void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
    174 	soqinsque(head, so, soqueue);
    175 	if ((*so->so_proto->pr_usrreq)(so, PRU_ATTACH,
    176 	    (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
    177 	    (struct proc *)0)) {
    178 		(void) soqremque(so, soqueue);
    179 		pool_put(&socket_pool, so);
    180 		return (NULL);
    181 	}
    182 	if (connstatus) {
    183 		sorwakeup(head);
    184 		wakeup((caddr_t)&head->so_timeo);
    185 		so->so_state |= connstatus;
    186 	}
    187 	return (so);
    188 }
    189 
    190 void
    191 soqinsque(struct socket *head, struct socket *so, int q)
    192 {
    193 
    194 #ifdef DIAGNOSTIC
    195 	if (so->so_onq != NULL)
    196 		panic("soqinsque");
    197 #endif
    198 
    199 	so->so_head = head;
    200 	if (q == 0) {
    201 		head->so_q0len++;
    202 		so->so_onq = &head->so_q0;
    203 	} else {
    204 		head->so_qlen++;
    205 		so->so_onq = &head->so_q;
    206 	}
    207 	TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
    208 }
    209 
    210 int
    211 soqremque(struct socket *so, int q)
    212 {
    213 	struct socket	*head;
    214 
    215 	head = so->so_head;
    216 	if (q == 0) {
    217 		if (so->so_onq != &head->so_q0)
    218 			return (0);
    219 		head->so_q0len--;
    220 	} else {
    221 		if (so->so_onq != &head->so_q)
    222 			return (0);
    223 		head->so_qlen--;
    224 	}
    225 	TAILQ_REMOVE(so->so_onq, so, so_qe);
    226 	so->so_onq = NULL;
    227 	so->so_head = NULL;
    228 	return (1);
    229 }
    230 
    231 /*
    232  * Socantsendmore indicates that no more data will be sent on the
    233  * socket; it would normally be applied to a socket when the user
    234  * informs the system that no more data is to be sent, by the protocol
    235  * code (in case PRU_SHUTDOWN).  Socantrcvmore indicates that no more data
    236  * will be received, and will normally be applied to the socket by a
    237  * protocol when it detects that the peer will send no more data.
    238  * Data queued for reading in the socket may yet be read.
    239  */
    240 
    241 void
    242 socantsendmore(struct socket *so)
    243 {
    244 
    245 	so->so_state |= SS_CANTSENDMORE;
    246 	sowwakeup(so);
    247 }
    248 
    249 void
    250 socantrcvmore(struct socket *so)
    251 {
    252 
    253 	so->so_state |= SS_CANTRCVMORE;
    254 	sorwakeup(so);
    255 }
    256 
    257 /*
    258  * Wait for data to arrive at/drain from a socket buffer.
    259  */
    260 int
    261 sbwait(struct sockbuf *sb)
    262 {
    263 
    264 	sb->sb_flags |= SB_WAIT;
    265 	return (tsleep((caddr_t)&sb->sb_cc,
    266 	    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, netio,
    267 	    sb->sb_timeo));
    268 }
    269 
    270 /*
    271  * Lock a sockbuf already known to be locked;
    272  * return any error returned from sleep (EINTR).
    273  */
    274 int
    275 sb_lock(struct sockbuf *sb)
    276 {
    277 	int	error;
    278 
    279 	while (sb->sb_flags & SB_LOCK) {
    280 		sb->sb_flags |= SB_WANT;
    281 		error = tsleep((caddr_t)&sb->sb_flags,
    282 		    (sb->sb_flags & SB_NOINTR) ?  PSOCK : PSOCK|PCATCH,
    283 		    netlck, 0);
    284 		if (error)
    285 			return (error);
    286 	}
    287 	sb->sb_flags |= SB_LOCK;
    288 	return (0);
    289 }
    290 
    291 /*
    292  * Wakeup processes waiting on a socket buffer.
    293  * Do asynchronous notification via SIGIO
    294  * if the socket buffer has the SB_ASYNC flag set.
    295  */
    296 void
    297 sowakeup(struct socket *so, struct sockbuf *sb)
    298 {
    299 	struct proc	*p;
    300 
    301 	selwakeup(&sb->sb_sel);
    302 	sb->sb_flags &= ~SB_SEL;
    303 	if (sb->sb_flags & SB_WAIT) {
    304 		sb->sb_flags &= ~SB_WAIT;
    305 		wakeup((caddr_t)&sb->sb_cc);
    306 	}
    307 	if (sb->sb_flags & SB_ASYNC) {
    308 		if (so->so_pgid < 0)
    309 			gsignal(-so->so_pgid, SIGIO);
    310 		else if (so->so_pgid > 0 && (p = pfind(so->so_pgid)) != 0)
    311 			psignal(p, SIGIO);
    312 	}
    313 	if (sb->sb_flags & SB_UPCALL)
    314 		(*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT);
    315 }
    316 
    317 /*
    318  * Socket buffer (struct sockbuf) utility routines.
    319  *
    320  * Each socket contains two socket buffers: one for sending data and
    321  * one for receiving data.  Each buffer contains a queue of mbufs,
    322  * information about the number of mbufs and amount of data in the
    323  * queue, and other fields allowing poll() statements and notification
    324  * on data availability to be implemented.
    325  *
    326  * Data stored in a socket buffer is maintained as a list of records.
    327  * Each record is a list of mbufs chained together with the m_next
    328  * field.  Records are chained together with the m_nextpkt field. The upper
    329  * level routine soreceive() expects the following conventions to be
    330  * observed when placing information in the receive buffer:
    331  *
    332  * 1. If the protocol requires each message be preceded by the sender's
    333  *    name, then a record containing that name must be present before
    334  *    any associated data (mbuf's must be of type MT_SONAME).
    335  * 2. If the protocol supports the exchange of ``access rights'' (really
    336  *    just additional data associated with the message), and there are
    337  *    ``rights'' to be received, then a record containing this data
    338  *    should be present (mbuf's must be of type MT_CONTROL).
    339  * 3. If a name or rights record exists, then it must be followed by
    340  *    a data record, perhaps of zero length.
    341  *
    342  * Before using a new socket structure it is first necessary to reserve
    343  * buffer space to the socket, by calling sbreserve().  This should commit
    344  * some of the available buffer space in the system buffer pool for the
    345  * socket (currently, it does nothing but enforce limits).  The space
    346  * should be released by calling sbrelease() when the socket is destroyed.
    347  */
    348 
    349 int
    350 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
    351 {
    352 
    353 	if (sbreserve(&so->so_snd, sndcc) == 0)
    354 		goto bad;
    355 	if (sbreserve(&so->so_rcv, rcvcc) == 0)
    356 		goto bad2;
    357 	if (so->so_rcv.sb_lowat == 0)
    358 		so->so_rcv.sb_lowat = 1;
    359 	if (so->so_snd.sb_lowat == 0)
    360 		so->so_snd.sb_lowat = MCLBYTES;
    361 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
    362 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
    363 	return (0);
    364  bad2:
    365 	sbrelease(&so->so_snd);
    366  bad:
    367 	return (ENOBUFS);
    368 }
    369 
    370 /*
    371  * Allot mbufs to a sockbuf.
    372  * Attempt to scale mbmax so that mbcnt doesn't become limiting
    373  * if buffering efficiency is near the normal case.
    374  */
    375 int
    376 sbreserve(struct sockbuf *sb, u_long cc)
    377 {
    378 
    379 	if (cc == 0 ||
    380 	    (u_quad_t) cc > (u_quad_t) sb_max * MCLBYTES / (MSIZE + MCLBYTES))
    381 		return (0);
    382 	sb->sb_hiwat = cc;
    383 	sb->sb_mbmax = min(cc * 2, sb_max);
    384 	if (sb->sb_lowat > sb->sb_hiwat)
    385 		sb->sb_lowat = sb->sb_hiwat;
    386 	return (1);
    387 }
    388 
    389 /*
    390  * Free mbufs held by a socket, and reserved mbuf space.
    391  */
    392 void
    393 sbrelease(struct sockbuf *sb)
    394 {
    395 
    396 	sbflush(sb);
    397 	sb->sb_hiwat = sb->sb_mbmax = 0;
    398 }
    399 
    400 /*
    401  * Routines to add and remove
    402  * data from an mbuf queue.
    403  *
    404  * The routines sbappend() or sbappendrecord() are normally called to
    405  * append new mbufs to a socket buffer, after checking that adequate
    406  * space is available, comparing the function sbspace() with the amount
    407  * of data to be added.  sbappendrecord() differs from sbappend() in
    408  * that data supplied is treated as the beginning of a new record.
    409  * To place a sender's address, optional access rights, and data in a
    410  * socket receive buffer, sbappendaddr() should be used.  To place
    411  * access rights and data in a socket receive buffer, sbappendrights()
    412  * should be used.  In either case, the new data begins a new record.
    413  * Note that unlike sbappend() and sbappendrecord(), these routines check
    414  * for the caller that there will be enough space to store the data.
    415  * Each fails if there is not enough space, or if it cannot find mbufs
    416  * to store additional information in.
    417  *
    418  * Reliable protocols may use the socket send buffer to hold data
    419  * awaiting acknowledgement.  Data is normally copied from a socket
    420  * send buffer in a protocol with m_copy for output to a peer,
    421  * and then removing the data from the socket buffer with sbdrop()
    422  * or sbdroprecord() when the data is acknowledged by the peer.
    423  */
    424 
    425 /*
    426  * Append mbuf chain m to the last record in the
    427  * socket buffer sb.  The additional space associated
    428  * the mbuf chain is recorded in sb.  Empty mbufs are
    429  * discarded and mbufs are compacted where possible.
    430  */
    431 void
    432 sbappend(struct sockbuf *sb, struct mbuf *m)
    433 {
    434 	struct mbuf	*n;
    435 
    436 	if (m == 0)
    437 		return;
    438 	if ((n = sb->sb_mb) != NULL) {
    439 		while (n->m_nextpkt)
    440 			n = n->m_nextpkt;
    441 		do {
    442 			if (n->m_flags & M_EOR) {
    443 				sbappendrecord(sb, m); /* XXXXXX!!!! */
    444 				return;
    445 			}
    446 		} while (n->m_next && (n = n->m_next));
    447 	}
    448 	sbcompress(sb, m, n);
    449 }
    450 
    451 #ifdef SOCKBUF_DEBUG
    452 void
    453 sbcheck(struct sockbuf *sb)
    454 {
    455 	struct mbuf	*m;
    456 	int		len, mbcnt;
    457 
    458 	len = 0;
    459 	mbcnt = 0;
    460 	for (m = sb->sb_mb; m; m = m->m_next) {
    461 		len += m->m_len;
    462 		mbcnt += MSIZE;
    463 		if (m->m_flags & M_EXT)
    464 			mbcnt += m->m_ext.ext_size;
    465 		if (m->m_nextpkt)
    466 			panic("sbcheck nextpkt");
    467 	}
    468 	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
    469 		printf("cc %d != %d || mbcnt %d != %d\n", len, sb->sb_cc,
    470 		    mbcnt, sb->sb_mbcnt);
    471 		panic("sbcheck");
    472 	}
    473 }
    474 #endif
    475 
    476 /*
    477  * As above, except the mbuf chain
    478  * begins a new record.
    479  */
    480 void
    481 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
    482 {
    483 	struct mbuf	*m;
    484 
    485 	if (m0 == 0)
    486 		return;
    487 	if ((m = sb->sb_mb) != NULL)
    488 		while (m->m_nextpkt)
    489 			m = m->m_nextpkt;
    490 	/*
    491 	 * Put the first mbuf on the queue.
    492 	 * Note this permits zero length records.
    493 	 */
    494 	sballoc(sb, m0);
    495 	if (m)
    496 		m->m_nextpkt = m0;
    497 	else
    498 		sb->sb_mb = m0;
    499 	m = m0->m_next;
    500 	m0->m_next = 0;
    501 	if (m && (m0->m_flags & M_EOR)) {
    502 		m0->m_flags &= ~M_EOR;
    503 		m->m_flags |= M_EOR;
    504 	}
    505 	sbcompress(sb, m, m0);
    506 }
    507 
    508 /*
    509  * As above except that OOB data
    510  * is inserted at the beginning of the sockbuf,
    511  * but after any other OOB data.
    512  */
    513 void
    514 sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
    515 {
    516 	struct mbuf	*m, **mp;
    517 
    518 	if (m0 == 0)
    519 		return;
    520 	for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
    521 	    again:
    522 		switch (m->m_type) {
    523 
    524 		case MT_OOBDATA:
    525 			continue;		/* WANT next train */
    526 
    527 		case MT_CONTROL:
    528 			if ((m = m->m_next) != NULL)
    529 				goto again;	/* inspect THIS train further */
    530 		}
    531 		break;
    532 	}
    533 	/*
    534 	 * Put the first mbuf on the queue.
    535 	 * Note this permits zero length records.
    536 	 */
    537 	sballoc(sb, m0);
    538 	m0->m_nextpkt = *mp;
    539 	*mp = m0;
    540 	m = m0->m_next;
    541 	m0->m_next = 0;
    542 	if (m && (m0->m_flags & M_EOR)) {
    543 		m0->m_flags &= ~M_EOR;
    544 		m->m_flags |= M_EOR;
    545 	}
    546 	sbcompress(sb, m, m0);
    547 }
    548 
    549 /*
    550  * Append address and data, and optionally, control (ancillary) data
    551  * to the receive queue of a socket.  If present,
    552  * m0 must include a packet header with total length.
    553  * Returns 0 if no space in sockbuf or insufficient mbufs.
    554  */
    555 int
    556 sbappendaddr(struct sockbuf *sb, struct sockaddr *asa, struct mbuf *m0,
    557 	struct mbuf *control)
    558 {
    559 	struct mbuf	*m, *n;
    560 	int		space;
    561 
    562 	space = asa->sa_len;
    563 
    564 	if (m0 && (m0->m_flags & M_PKTHDR) == 0)
    565 		panic("sbappendaddr");
    566 	if (m0)
    567 		space += m0->m_pkthdr.len;
    568 	for (n = control; n; n = n->m_next) {
    569 		space += n->m_len;
    570 		if (n->m_next == 0)	/* keep pointer to last control buf */
    571 			break;
    572 	}
    573 	if (space > sbspace(sb))
    574 		return (0);
    575 	MGET(m, M_DONTWAIT, MT_SONAME);
    576 	if (m == 0)
    577 		return (0);
    578 	if (asa->sa_len > MLEN) {
    579 		MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
    580 		if ((m->m_flags & M_EXT) == 0) {
    581 			m_free(m);
    582 			return (0);
    583 		}
    584 	}
    585 	m->m_len = asa->sa_len;
    586 	memcpy(mtod(m, caddr_t), (caddr_t)asa, asa->sa_len);
    587 	if (n)
    588 		n->m_next = m0;		/* concatenate data to control */
    589 	else
    590 		control = m0;
    591 	m->m_next = control;
    592 	for (n = m; n; n = n->m_next)
    593 		sballoc(sb, n);
    594 	if ((n = sb->sb_mb) != NULL) {
    595 		while (n->m_nextpkt)
    596 			n = n->m_nextpkt;
    597 		n->m_nextpkt = m;
    598 	} else
    599 		sb->sb_mb = m;
    600 	return (1);
    601 }
    602 
    603 int
    604 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
    605 {
    606 	struct mbuf	*m, *n;
    607 	int		space;
    608 
    609 	space = 0;
    610 	if (control == 0)
    611 		panic("sbappendcontrol");
    612 	for (m = control; ; m = m->m_next) {
    613 		space += m->m_len;
    614 		if (m->m_next == 0)
    615 			break;
    616 	}
    617 	n = m;			/* save pointer to last control buffer */
    618 	for (m = m0; m; m = m->m_next)
    619 		space += m->m_len;
    620 	if (space > sbspace(sb))
    621 		return (0);
    622 	n->m_next = m0;			/* concatenate data to control */
    623 	for (m = control; m; m = m->m_next)
    624 		sballoc(sb, m);
    625 	if ((n = sb->sb_mb) != NULL) {
    626 		while (n->m_nextpkt)
    627 			n = n->m_nextpkt;
    628 		n->m_nextpkt = control;
    629 	} else
    630 		sb->sb_mb = control;
    631 	return (1);
    632 }
    633 
    634 /*
    635  * Compress mbuf chain m into the socket
    636  * buffer sb following mbuf n.  If n
    637  * is null, the buffer is presumed empty.
    638  */
    639 void
    640 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
    641 {
    642 	int		eor;
    643 	struct mbuf	*o;
    644 
    645 	eor = 0;
    646 	while (m) {
    647 		eor |= m->m_flags & M_EOR;
    648 		if (m->m_len == 0 &&
    649 		    (eor == 0 ||
    650 		     (((o = m->m_next) || (o = n)) &&
    651 		      o->m_type == m->m_type))) {
    652 			m = m_free(m);
    653 			continue;
    654 		}
    655 		if (n && (n->m_flags & M_EOR) == 0 &&
    656 		    /* M_TRAILINGSPACE() checks buffer writeability */
    657 		    m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
    658 		    m->m_len <= M_TRAILINGSPACE(n) &&
    659 		    n->m_type == m->m_type) {
    660 			memcpy(mtod(n, caddr_t) + n->m_len, mtod(m, caddr_t),
    661 			    (unsigned)m->m_len);
    662 			n->m_len += m->m_len;
    663 			sb->sb_cc += m->m_len;
    664 			m = m_free(m);
    665 			continue;
    666 		}
    667 		if (n)
    668 			n->m_next = m;
    669 		else
    670 			sb->sb_mb = m;
    671 		sballoc(sb, m);
    672 		n = m;
    673 		m->m_flags &= ~M_EOR;
    674 		m = m->m_next;
    675 		n->m_next = 0;
    676 	}
    677 	if (eor) {
    678 		if (n)
    679 			n->m_flags |= eor;
    680 		else
    681 			printf("semi-panic: sbcompress\n");
    682 	}
    683 }
    684 
    685 /*
    686  * Free all mbufs in a sockbuf.
    687  * Check that all resources are reclaimed.
    688  */
    689 void
    690 sbflush(struct sockbuf *sb)
    691 {
    692 
    693 	if (sb->sb_flags & SB_LOCK)
    694 		panic("sbflush");
    695 	while (sb->sb_mbcnt)
    696 		sbdrop(sb, (int)sb->sb_cc);
    697 	if (sb->sb_cc || sb->sb_mb)
    698 		panic("sbflush 2");
    699 }
    700 
    701 /*
    702  * Drop data from (the front of) a sockbuf.
    703  */
    704 void
    705 sbdrop(struct sockbuf *sb, int len)
    706 {
    707 	struct mbuf	*m, *mn, *next;
    708 
    709 	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
    710 	while (len > 0) {
    711 		if (m == 0) {
    712 			if (next == 0)
    713 				panic("sbdrop");
    714 			m = next;
    715 			next = m->m_nextpkt;
    716 			continue;
    717 		}
    718 		if (m->m_len > len) {
    719 			m->m_len -= len;
    720 			m->m_data += len;
    721 			sb->sb_cc -= len;
    722 			break;
    723 		}
    724 		len -= m->m_len;
    725 		sbfree(sb, m);
    726 		MFREE(m, mn);
    727 		m = mn;
    728 	}
    729 	while (m && m->m_len == 0) {
    730 		sbfree(sb, m);
    731 		MFREE(m, mn);
    732 		m = mn;
    733 	}
    734 	if (m) {
    735 		sb->sb_mb = m;
    736 		m->m_nextpkt = next;
    737 	} else
    738 		sb->sb_mb = next;
    739 }
    740 
    741 /*
    742  * Drop a record off the front of a sockbuf
    743  * and move the next record to the front.
    744  */
    745 void
    746 sbdroprecord(struct sockbuf *sb)
    747 {
    748 	struct mbuf	*m, *mn;
    749 
    750 	m = sb->sb_mb;
    751 	if (m) {
    752 		sb->sb_mb = m->m_nextpkt;
    753 		do {
    754 			sbfree(sb, m);
    755 			MFREE(m, mn);
    756 		} while ((m = mn) != NULL);
    757 	}
    758 }
    759 
    760 /*
    761  * Create a "control" mbuf containing the specified data
    762  * with the specified type for presentation on a socket buffer.
    763  */
    764 struct mbuf *
    765 sbcreatecontrol(caddr_t p, int size, int type, int level)
    766 {
    767 	struct cmsghdr	*cp;
    768 	struct mbuf	*m;
    769 
    770 	if (CMSG_SPACE(size) > MCLBYTES) {
    771 		printf("sbcreatecontrol: message too large %d\n", size);
    772 		return NULL;
    773 	}
    774 
    775 	if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
    776 		return ((struct mbuf *) NULL);
    777 	if (CMSG_SPACE(size) > MLEN) {
    778 		MCLGET(m, M_DONTWAIT);
    779 		if ((m->m_flags & M_EXT) == 0) {
    780 			m_free(m);
    781 			return NULL;
    782 		}
    783 	}
    784 	cp = mtod(m, struct cmsghdr *);
    785 	memcpy(CMSG_DATA(cp), p, size);
    786 	m->m_len = CMSG_SPACE(size);
    787 	cp->cmsg_len = CMSG_LEN(size);
    788 	cp->cmsg_level = level;
    789 	cp->cmsg_type = type;
    790 	return (m);
    791 }
    792