Home | History | Annotate | Line # | Download | only in kern
uipc_socket2.c revision 1.42
      1 /*	$NetBSD: uipc_socket2.c,v 1.42 2001/11/12 15:25:33 lukem Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1988, 1990, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by the University of
     18  *	California, Berkeley and its contributors.
     19  * 4. Neither the name of the University nor the names of its contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33  * SUCH DAMAGE.
     34  *
     35  *	@(#)uipc_socket2.c	8.2 (Berkeley) 2/14/95
     36  */
     37 
     38 #include <sys/cdefs.h>
     39 __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.42 2001/11/12 15:25:33 lukem Exp $");
     40 
     41 #include <sys/param.h>
     42 #include <sys/systm.h>
     43 #include <sys/proc.h>
     44 #include <sys/file.h>
     45 #include <sys/buf.h>
     46 #include <sys/malloc.h>
     47 #include <sys/mbuf.h>
     48 #include <sys/protosw.h>
     49 #include <sys/socket.h>
     50 #include <sys/socketvar.h>
     51 #include <sys/signalvar.h>
     52 
     53 /*
     54  * Primitive routines for operating on sockets and socket buffers
     55  */
     56 
     57 /* strings for sleep message: */
     58 const char	netcon[] = "netcon";
     59 const char	netcls[] = "netcls";
     60 const char	netio[] = "netio";
     61 const char	netlck[] = "netlck";
     62 
     63 /*
     64  * Procedures to manipulate state flags of socket
     65  * and do appropriate wakeups.  Normal sequence from the
     66  * active (originating) side is that soisconnecting() is
     67  * called during processing of connect() call,
     68  * resulting in an eventual call to soisconnected() if/when the
     69  * connection is established.  When the connection is torn down
     70  * soisdisconnecting() is called during processing of disconnect() call,
     71  * and soisdisconnected() is called when the connection to the peer
     72  * is totally severed.  The semantics of these routines are such that
     73  * connectionless protocols can call soisconnected() and soisdisconnected()
     74  * only, bypassing the in-progress calls when setting up a ``connection''
     75  * takes no time.
     76  *
     77  * From the passive side, a socket is created with
     78  * two queues of sockets: so_q0 for connections in progress
     79  * and so_q for connections already made and awaiting user acceptance.
     80  * As a protocol is preparing incoming connections, it creates a socket
     81  * structure queued on so_q0 by calling sonewconn().  When the connection
     82  * is established, soisconnected() is called, and transfers the
     83  * socket structure to so_q, making it available to accept().
     84  *
     85  * If a socket is closed with sockets on either
     86  * so_q0 or so_q, these sockets are dropped.
     87  *
     88  * If higher level protocols are implemented in
     89  * the kernel, the wakeups done here will sometimes
     90  * cause software-interrupt process scheduling.
     91  */
     92 
     93 void
     94 soisconnecting(struct socket *so)
     95 {
     96 
     97 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
     98 	so->so_state |= SS_ISCONNECTING;
     99 }
    100 
    101 void
    102 soisconnected(struct socket *so)
    103 {
    104 	struct socket	*head;
    105 
    106 	head = so->so_head;
    107 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
    108 	so->so_state |= SS_ISCONNECTED;
    109 	if (head && soqremque(so, 0)) {
    110 		soqinsque(head, so, 1);
    111 		sorwakeup(head);
    112 		wakeup((caddr_t)&head->so_timeo);
    113 	} else {
    114 		wakeup((caddr_t)&so->so_timeo);
    115 		sorwakeup(so);
    116 		sowwakeup(so);
    117 	}
    118 }
    119 
    120 void
    121 soisdisconnecting(struct socket *so)
    122 {
    123 
    124 	so->so_state &= ~SS_ISCONNECTING;
    125 	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
    126 	wakeup((caddr_t)&so->so_timeo);
    127 	sowwakeup(so);
    128 	sorwakeup(so);
    129 }
    130 
    131 void
    132 soisdisconnected(struct socket *so)
    133 {
    134 
    135 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
    136 	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
    137 	wakeup((caddr_t)&so->so_timeo);
    138 	sowwakeup(so);
    139 	sorwakeup(so);
    140 }
    141 
    142 /*
    143  * When an attempt at a new connection is noted on a socket
    144  * which accepts connections, sonewconn is called.  If the
    145  * connection is possible (subject to space constraints, etc.)
    146  * then we allocate a new structure, propoerly linked into the
    147  * data structure of the original socket, and return this.
    148  * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
    149  *
    150  * Currently, sonewconn() is defined as sonewconn1() in socketvar.h
    151  * to catch calls that are missing the (new) second parameter.
    152  */
    153 struct socket *
    154 sonewconn1(struct socket *head, int connstatus)
    155 {
    156 	struct socket	*so;
    157 	int		soqueue;
    158 
    159 	soqueue = connstatus ? 1 : 0;
    160 	if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
    161 		return ((struct socket *)0);
    162 	so = pool_get(&socket_pool, PR_NOWAIT);
    163 	if (so == NULL)
    164 		return (NULL);
    165 	memset((caddr_t)so, 0, sizeof(*so));
    166 	so->so_type = head->so_type;
    167 	so->so_options = head->so_options &~ SO_ACCEPTCONN;
    168 	so->so_linger = head->so_linger;
    169 	so->so_state = head->so_state | SS_NOFDREF;
    170 	so->so_proto = head->so_proto;
    171 	so->so_timeo = head->so_timeo;
    172 	so->so_pgid = head->so_pgid;
    173 	so->so_send = head->so_send;
    174 	so->so_receive = head->so_receive;
    175 	so->so_uid = head->so_uid;
    176 	(void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
    177 	soqinsque(head, so, soqueue);
    178 	if ((*so->so_proto->pr_usrreq)(so, PRU_ATTACH,
    179 	    (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
    180 	    (struct proc *)0)) {
    181 		(void) soqremque(so, soqueue);
    182 		pool_put(&socket_pool, so);
    183 		return (NULL);
    184 	}
    185 	if (connstatus) {
    186 		sorwakeup(head);
    187 		wakeup((caddr_t)&head->so_timeo);
    188 		so->so_state |= connstatus;
    189 	}
    190 	return (so);
    191 }
    192 
    193 void
    194 soqinsque(struct socket *head, struct socket *so, int q)
    195 {
    196 
    197 #ifdef DIAGNOSTIC
    198 	if (so->so_onq != NULL)
    199 		panic("soqinsque");
    200 #endif
    201 
    202 	so->so_head = head;
    203 	if (q == 0) {
    204 		head->so_q0len++;
    205 		so->so_onq = &head->so_q0;
    206 	} else {
    207 		head->so_qlen++;
    208 		so->so_onq = &head->so_q;
    209 	}
    210 	TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
    211 }
    212 
    213 int
    214 soqremque(struct socket *so, int q)
    215 {
    216 	struct socket	*head;
    217 
    218 	head = so->so_head;
    219 	if (q == 0) {
    220 		if (so->so_onq != &head->so_q0)
    221 			return (0);
    222 		head->so_q0len--;
    223 	} else {
    224 		if (so->so_onq != &head->so_q)
    225 			return (0);
    226 		head->so_qlen--;
    227 	}
    228 	TAILQ_REMOVE(so->so_onq, so, so_qe);
    229 	so->so_onq = NULL;
    230 	so->so_head = NULL;
    231 	return (1);
    232 }
    233 
    234 /*
    235  * Socantsendmore indicates that no more data will be sent on the
    236  * socket; it would normally be applied to a socket when the user
    237  * informs the system that no more data is to be sent, by the protocol
    238  * code (in case PRU_SHUTDOWN).  Socantrcvmore indicates that no more data
    239  * will be received, and will normally be applied to the socket by a
    240  * protocol when it detects that the peer will send no more data.
    241  * Data queued for reading in the socket may yet be read.
    242  */
    243 
    244 void
    245 socantsendmore(struct socket *so)
    246 {
    247 
    248 	so->so_state |= SS_CANTSENDMORE;
    249 	sowwakeup(so);
    250 }
    251 
    252 void
    253 socantrcvmore(struct socket *so)
    254 {
    255 
    256 	so->so_state |= SS_CANTRCVMORE;
    257 	sorwakeup(so);
    258 }
    259 
    260 /*
    261  * Wait for data to arrive at/drain from a socket buffer.
    262  */
    263 int
    264 sbwait(struct sockbuf *sb)
    265 {
    266 
    267 	sb->sb_flags |= SB_WAIT;
    268 	return (tsleep((caddr_t)&sb->sb_cc,
    269 	    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, netio,
    270 	    sb->sb_timeo));
    271 }
    272 
    273 /*
    274  * Lock a sockbuf already known to be locked;
    275  * return any error returned from sleep (EINTR).
    276  */
    277 int
    278 sb_lock(struct sockbuf *sb)
    279 {
    280 	int	error;
    281 
    282 	while (sb->sb_flags & SB_LOCK) {
    283 		sb->sb_flags |= SB_WANT;
    284 		error = tsleep((caddr_t)&sb->sb_flags,
    285 		    (sb->sb_flags & SB_NOINTR) ?  PSOCK : PSOCK|PCATCH,
    286 		    netlck, 0);
    287 		if (error)
    288 			return (error);
    289 	}
    290 	sb->sb_flags |= SB_LOCK;
    291 	return (0);
    292 }
    293 
    294 /*
    295  * Wakeup processes waiting on a socket buffer.
    296  * Do asynchronous notification via SIGIO
    297  * if the socket buffer has the SB_ASYNC flag set.
    298  */
    299 void
    300 sowakeup(struct socket *so, struct sockbuf *sb)
    301 {
    302 	struct proc	*p;
    303 
    304 	selwakeup(&sb->sb_sel);
    305 	sb->sb_flags &= ~SB_SEL;
    306 	if (sb->sb_flags & SB_WAIT) {
    307 		sb->sb_flags &= ~SB_WAIT;
    308 		wakeup((caddr_t)&sb->sb_cc);
    309 	}
    310 	if (sb->sb_flags & SB_ASYNC) {
    311 		if (so->so_pgid < 0)
    312 			gsignal(-so->so_pgid, SIGIO);
    313 		else if (so->so_pgid > 0 && (p = pfind(so->so_pgid)) != 0)
    314 			psignal(p, SIGIO);
    315 	}
    316 	if (sb->sb_flags & SB_UPCALL)
    317 		(*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT);
    318 }
    319 
    320 /*
    321  * Socket buffer (struct sockbuf) utility routines.
    322  *
    323  * Each socket contains two socket buffers: one for sending data and
    324  * one for receiving data.  Each buffer contains a queue of mbufs,
    325  * information about the number of mbufs and amount of data in the
    326  * queue, and other fields allowing poll() statements and notification
    327  * on data availability to be implemented.
    328  *
    329  * Data stored in a socket buffer is maintained as a list of records.
    330  * Each record is a list of mbufs chained together with the m_next
    331  * field.  Records are chained together with the m_nextpkt field. The upper
    332  * level routine soreceive() expects the following conventions to be
    333  * observed when placing information in the receive buffer:
    334  *
    335  * 1. If the protocol requires each message be preceded by the sender's
    336  *    name, then a record containing that name must be present before
    337  *    any associated data (mbuf's must be of type MT_SONAME).
    338  * 2. If the protocol supports the exchange of ``access rights'' (really
    339  *    just additional data associated with the message), and there are
    340  *    ``rights'' to be received, then a record containing this data
    341  *    should be present (mbuf's must be of type MT_CONTROL).
    342  * 3. If a name or rights record exists, then it must be followed by
    343  *    a data record, perhaps of zero length.
    344  *
    345  * Before using a new socket structure it is first necessary to reserve
    346  * buffer space to the socket, by calling sbreserve().  This should commit
    347  * some of the available buffer space in the system buffer pool for the
    348  * socket (currently, it does nothing but enforce limits).  The space
    349  * should be released by calling sbrelease() when the socket is destroyed.
    350  */
    351 
    352 int
    353 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
    354 {
    355 
    356 	if (sbreserve(&so->so_snd, sndcc) == 0)
    357 		goto bad;
    358 	if (sbreserve(&so->so_rcv, rcvcc) == 0)
    359 		goto bad2;
    360 	if (so->so_rcv.sb_lowat == 0)
    361 		so->so_rcv.sb_lowat = 1;
    362 	if (so->so_snd.sb_lowat == 0)
    363 		so->so_snd.sb_lowat = MCLBYTES;
    364 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
    365 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
    366 	return (0);
    367  bad2:
    368 	sbrelease(&so->so_snd);
    369  bad:
    370 	return (ENOBUFS);
    371 }
    372 
    373 /*
    374  * Allot mbufs to a sockbuf.
    375  * Attempt to scale mbmax so that mbcnt doesn't become limiting
    376  * if buffering efficiency is near the normal case.
    377  */
    378 int
    379 sbreserve(struct sockbuf *sb, u_long cc)
    380 {
    381 
    382 	if (cc == 0 ||
    383 	    (u_quad_t) cc > (u_quad_t) sb_max * MCLBYTES / (MSIZE + MCLBYTES))
    384 		return (0);
    385 	sb->sb_hiwat = cc;
    386 	sb->sb_mbmax = min(cc * 2, sb_max);
    387 	if (sb->sb_lowat > sb->sb_hiwat)
    388 		sb->sb_lowat = sb->sb_hiwat;
    389 	return (1);
    390 }
    391 
    392 /*
    393  * Free mbufs held by a socket, and reserved mbuf space.
    394  */
    395 void
    396 sbrelease(struct sockbuf *sb)
    397 {
    398 
    399 	sbflush(sb);
    400 	sb->sb_hiwat = sb->sb_mbmax = 0;
    401 }
    402 
    403 /*
    404  * Routines to add and remove
    405  * data from an mbuf queue.
    406  *
    407  * The routines sbappend() or sbappendrecord() are normally called to
    408  * append new mbufs to a socket buffer, after checking that adequate
    409  * space is available, comparing the function sbspace() with the amount
    410  * of data to be added.  sbappendrecord() differs from sbappend() in
    411  * that data supplied is treated as the beginning of a new record.
    412  * To place a sender's address, optional access rights, and data in a
    413  * socket receive buffer, sbappendaddr() should be used.  To place
    414  * access rights and data in a socket receive buffer, sbappendrights()
    415  * should be used.  In either case, the new data begins a new record.
    416  * Note that unlike sbappend() and sbappendrecord(), these routines check
    417  * for the caller that there will be enough space to store the data.
    418  * Each fails if there is not enough space, or if it cannot find mbufs
    419  * to store additional information in.
    420  *
    421  * Reliable protocols may use the socket send buffer to hold data
    422  * awaiting acknowledgement.  Data is normally copied from a socket
    423  * send buffer in a protocol with m_copy for output to a peer,
    424  * and then removing the data from the socket buffer with sbdrop()
    425  * or sbdroprecord() when the data is acknowledged by the peer.
    426  */
    427 
    428 /*
    429  * Append mbuf chain m to the last record in the
    430  * socket buffer sb.  The additional space associated
    431  * the mbuf chain is recorded in sb.  Empty mbufs are
    432  * discarded and mbufs are compacted where possible.
    433  */
    434 void
    435 sbappend(struct sockbuf *sb, struct mbuf *m)
    436 {
    437 	struct mbuf	*n;
    438 
    439 	if (m == 0)
    440 		return;
    441 	if ((n = sb->sb_mb) != NULL) {
    442 		while (n->m_nextpkt)
    443 			n = n->m_nextpkt;
    444 		do {
    445 			if (n->m_flags & M_EOR) {
    446 				sbappendrecord(sb, m); /* XXXXXX!!!! */
    447 				return;
    448 			}
    449 		} while (n->m_next && (n = n->m_next));
    450 	}
    451 	sbcompress(sb, m, n);
    452 }
    453 
    454 #ifdef SOCKBUF_DEBUG
    455 void
    456 sbcheck(struct sockbuf *sb)
    457 {
    458 	struct mbuf	*m;
    459 	int		len, mbcnt;
    460 
    461 	len = 0;
    462 	mbcnt = 0;
    463 	for (m = sb->sb_mb; m; m = m->m_next) {
    464 		len += m->m_len;
    465 		mbcnt += MSIZE;
    466 		if (m->m_flags & M_EXT)
    467 			mbcnt += m->m_ext.ext_size;
    468 		if (m->m_nextpkt)
    469 			panic("sbcheck nextpkt");
    470 	}
    471 	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
    472 		printf("cc %d != %d || mbcnt %d != %d\n", len, sb->sb_cc,
    473 		    mbcnt, sb->sb_mbcnt);
    474 		panic("sbcheck");
    475 	}
    476 }
    477 #endif
    478 
    479 /*
    480  * As above, except the mbuf chain
    481  * begins a new record.
    482  */
    483 void
    484 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
    485 {
    486 	struct mbuf	*m;
    487 
    488 	if (m0 == 0)
    489 		return;
    490 	if ((m = sb->sb_mb) != NULL)
    491 		while (m->m_nextpkt)
    492 			m = m->m_nextpkt;
    493 	/*
    494 	 * Put the first mbuf on the queue.
    495 	 * Note this permits zero length records.
    496 	 */
    497 	sballoc(sb, m0);
    498 	if (m)
    499 		m->m_nextpkt = m0;
    500 	else
    501 		sb->sb_mb = m0;
    502 	m = m0->m_next;
    503 	m0->m_next = 0;
    504 	if (m && (m0->m_flags & M_EOR)) {
    505 		m0->m_flags &= ~M_EOR;
    506 		m->m_flags |= M_EOR;
    507 	}
    508 	sbcompress(sb, m, m0);
    509 }
    510 
    511 /*
    512  * As above except that OOB data
    513  * is inserted at the beginning of the sockbuf,
    514  * but after any other OOB data.
    515  */
    516 void
    517 sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
    518 {
    519 	struct mbuf	*m, **mp;
    520 
    521 	if (m0 == 0)
    522 		return;
    523 	for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
    524 	    again:
    525 		switch (m->m_type) {
    526 
    527 		case MT_OOBDATA:
    528 			continue;		/* WANT next train */
    529 
    530 		case MT_CONTROL:
    531 			if ((m = m->m_next) != NULL)
    532 				goto again;	/* inspect THIS train further */
    533 		}
    534 		break;
    535 	}
    536 	/*
    537 	 * Put the first mbuf on the queue.
    538 	 * Note this permits zero length records.
    539 	 */
    540 	sballoc(sb, m0);
    541 	m0->m_nextpkt = *mp;
    542 	*mp = m0;
    543 	m = m0->m_next;
    544 	m0->m_next = 0;
    545 	if (m && (m0->m_flags & M_EOR)) {
    546 		m0->m_flags &= ~M_EOR;
    547 		m->m_flags |= M_EOR;
    548 	}
    549 	sbcompress(sb, m, m0);
    550 }
    551 
    552 /*
    553  * Append address and data, and optionally, control (ancillary) data
    554  * to the receive queue of a socket.  If present,
    555  * m0 must include a packet header with total length.
    556  * Returns 0 if no space in sockbuf or insufficient mbufs.
    557  */
    558 int
    559 sbappendaddr(struct sockbuf *sb, struct sockaddr *asa, struct mbuf *m0,
    560 	struct mbuf *control)
    561 {
    562 	struct mbuf	*m, *n;
    563 	int		space;
    564 
    565 	space = asa->sa_len;
    566 
    567 	if (m0 && (m0->m_flags & M_PKTHDR) == 0)
    568 		panic("sbappendaddr");
    569 	if (m0)
    570 		space += m0->m_pkthdr.len;
    571 	for (n = control; n; n = n->m_next) {
    572 		space += n->m_len;
    573 		if (n->m_next == 0)	/* keep pointer to last control buf */
    574 			break;
    575 	}
    576 	if (space > sbspace(sb))
    577 		return (0);
    578 	MGET(m, M_DONTWAIT, MT_SONAME);
    579 	if (m == 0)
    580 		return (0);
    581 	if (asa->sa_len > MLEN) {
    582 		MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
    583 		if ((m->m_flags & M_EXT) == 0) {
    584 			m_free(m);
    585 			return (0);
    586 		}
    587 	}
    588 	m->m_len = asa->sa_len;
    589 	memcpy(mtod(m, caddr_t), (caddr_t)asa, asa->sa_len);
    590 	if (n)
    591 		n->m_next = m0;		/* concatenate data to control */
    592 	else
    593 		control = m0;
    594 	m->m_next = control;
    595 	for (n = m; n; n = n->m_next)
    596 		sballoc(sb, n);
    597 	if ((n = sb->sb_mb) != NULL) {
    598 		while (n->m_nextpkt)
    599 			n = n->m_nextpkt;
    600 		n->m_nextpkt = m;
    601 	} else
    602 		sb->sb_mb = m;
    603 	return (1);
    604 }
    605 
    606 int
    607 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
    608 {
    609 	struct mbuf	*m, *n;
    610 	int		space;
    611 
    612 	space = 0;
    613 	if (control == 0)
    614 		panic("sbappendcontrol");
    615 	for (m = control; ; m = m->m_next) {
    616 		space += m->m_len;
    617 		if (m->m_next == 0)
    618 			break;
    619 	}
    620 	n = m;			/* save pointer to last control buffer */
    621 	for (m = m0; m; m = m->m_next)
    622 		space += m->m_len;
    623 	if (space > sbspace(sb))
    624 		return (0);
    625 	n->m_next = m0;			/* concatenate data to control */
    626 	for (m = control; m; m = m->m_next)
    627 		sballoc(sb, m);
    628 	if ((n = sb->sb_mb) != NULL) {
    629 		while (n->m_nextpkt)
    630 			n = n->m_nextpkt;
    631 		n->m_nextpkt = control;
    632 	} else
    633 		sb->sb_mb = control;
    634 	return (1);
    635 }
    636 
    637 /*
    638  * Compress mbuf chain m into the socket
    639  * buffer sb following mbuf n.  If n
    640  * is null, the buffer is presumed empty.
    641  */
    642 void
    643 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
    644 {
    645 	int		eor;
    646 	struct mbuf	*o;
    647 
    648 	eor = 0;
    649 	while (m) {
    650 		eor |= m->m_flags & M_EOR;
    651 		if (m->m_len == 0 &&
    652 		    (eor == 0 ||
    653 		     (((o = m->m_next) || (o = n)) &&
    654 		      o->m_type == m->m_type))) {
    655 			m = m_free(m);
    656 			continue;
    657 		}
    658 		if (n && (n->m_flags & M_EOR) == 0 &&
    659 		    /* M_TRAILINGSPACE() checks buffer writeability */
    660 		    m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
    661 		    m->m_len <= M_TRAILINGSPACE(n) &&
    662 		    n->m_type == m->m_type) {
    663 			memcpy(mtod(n, caddr_t) + n->m_len, mtod(m, caddr_t),
    664 			    (unsigned)m->m_len);
    665 			n->m_len += m->m_len;
    666 			sb->sb_cc += m->m_len;
    667 			m = m_free(m);
    668 			continue;
    669 		}
    670 		if (n)
    671 			n->m_next = m;
    672 		else
    673 			sb->sb_mb = m;
    674 		sballoc(sb, m);
    675 		n = m;
    676 		m->m_flags &= ~M_EOR;
    677 		m = m->m_next;
    678 		n->m_next = 0;
    679 	}
    680 	if (eor) {
    681 		if (n)
    682 			n->m_flags |= eor;
    683 		else
    684 			printf("semi-panic: sbcompress\n");
    685 	}
    686 }
    687 
    688 /*
    689  * Free all mbufs in a sockbuf.
    690  * Check that all resources are reclaimed.
    691  */
    692 void
    693 sbflush(struct sockbuf *sb)
    694 {
    695 
    696 	if (sb->sb_flags & SB_LOCK)
    697 		panic("sbflush");
    698 	while (sb->sb_mbcnt)
    699 		sbdrop(sb, (int)sb->sb_cc);
    700 	if (sb->sb_cc || sb->sb_mb)
    701 		panic("sbflush 2");
    702 }
    703 
    704 /*
    705  * Drop data from (the front of) a sockbuf.
    706  */
    707 void
    708 sbdrop(struct sockbuf *sb, int len)
    709 {
    710 	struct mbuf	*m, *mn, *next;
    711 
    712 	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
    713 	while (len > 0) {
    714 		if (m == 0) {
    715 			if (next == 0)
    716 				panic("sbdrop");
    717 			m = next;
    718 			next = m->m_nextpkt;
    719 			continue;
    720 		}
    721 		if (m->m_len > len) {
    722 			m->m_len -= len;
    723 			m->m_data += len;
    724 			sb->sb_cc -= len;
    725 			break;
    726 		}
    727 		len -= m->m_len;
    728 		sbfree(sb, m);
    729 		MFREE(m, mn);
    730 		m = mn;
    731 	}
    732 	while (m && m->m_len == 0) {
    733 		sbfree(sb, m);
    734 		MFREE(m, mn);
    735 		m = mn;
    736 	}
    737 	if (m) {
    738 		sb->sb_mb = m;
    739 		m->m_nextpkt = next;
    740 	} else
    741 		sb->sb_mb = next;
    742 }
    743 
    744 /*
    745  * Drop a record off the front of a sockbuf
    746  * and move the next record to the front.
    747  */
    748 void
    749 sbdroprecord(struct sockbuf *sb)
    750 {
    751 	struct mbuf	*m, *mn;
    752 
    753 	m = sb->sb_mb;
    754 	if (m) {
    755 		sb->sb_mb = m->m_nextpkt;
    756 		do {
    757 			sbfree(sb, m);
    758 			MFREE(m, mn);
    759 		} while ((m = mn) != NULL);
    760 	}
    761 }
    762 
    763 /*
    764  * Create a "control" mbuf containing the specified data
    765  * with the specified type for presentation on a socket buffer.
    766  */
    767 struct mbuf *
    768 sbcreatecontrol(caddr_t p, int size, int type, int level)
    769 {
    770 	struct cmsghdr	*cp;
    771 	struct mbuf	*m;
    772 
    773 	if (CMSG_SPACE(size) > MCLBYTES) {
    774 		printf("sbcreatecontrol: message too large %d\n", size);
    775 		return NULL;
    776 	}
    777 
    778 	if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
    779 		return ((struct mbuf *) NULL);
    780 	if (CMSG_SPACE(size) > MLEN) {
    781 		MCLGET(m, M_DONTWAIT);
    782 		if ((m->m_flags & M_EXT) == 0) {
    783 			m_free(m);
    784 			return NULL;
    785 		}
    786 	}
    787 	cp = mtod(m, struct cmsghdr *);
    788 	memcpy(CMSG_DATA(cp), p, size);
    789 	m->m_len = CMSG_SPACE(size);
    790 	cp->cmsg_len = CMSG_LEN(size);
    791 	cp->cmsg_level = level;
    792 	cp->cmsg_type = type;
    793 	return (m);
    794 }
    795