Home | History | Annotate | Line # | Download | only in kern
uipc_socket2.c revision 1.44
      1 /*	$NetBSD: uipc_socket2.c,v 1.44 2002/07/03 21:36:58 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1988, 1990, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by the University of
     18  *	California, Berkeley and its contributors.
     19  * 4. Neither the name of the University nor the names of its contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33  * SUCH DAMAGE.
     34  *
     35  *	@(#)uipc_socket2.c	8.2 (Berkeley) 2/14/95
     36  */
     37 
     38 #include <sys/cdefs.h>
     39 __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.44 2002/07/03 21:36:58 thorpej Exp $");
     40 
     41 #include <sys/param.h>
     42 #include <sys/systm.h>
     43 #include <sys/proc.h>
     44 #include <sys/file.h>
     45 #include <sys/buf.h>
     46 #include <sys/malloc.h>
     47 #include <sys/mbuf.h>
     48 #include <sys/protosw.h>
     49 #include <sys/socket.h>
     50 #include <sys/socketvar.h>
     51 #include <sys/signalvar.h>
     52 
     53 /*
     54  * Primitive routines for operating on sockets and socket buffers
     55  */
     56 
     57 /* strings for sleep message: */
     58 const char	netcon[] = "netcon";
     59 const char	netcls[] = "netcls";
     60 const char	netio[] = "netio";
     61 const char	netlck[] = "netlck";
     62 
     63 /*
     64  * Procedures to manipulate state flags of socket
     65  * and do appropriate wakeups.  Normal sequence from the
     66  * active (originating) side is that soisconnecting() is
     67  * called during processing of connect() call,
     68  * resulting in an eventual call to soisconnected() if/when the
     69  * connection is established.  When the connection is torn down
     70  * soisdisconnecting() is called during processing of disconnect() call,
     71  * and soisdisconnected() is called when the connection to the peer
     72  * is totally severed.  The semantics of these routines are such that
     73  * connectionless protocols can call soisconnected() and soisdisconnected()
     74  * only, bypassing the in-progress calls when setting up a ``connection''
     75  * takes no time.
     76  *
     77  * From the passive side, a socket is created with
     78  * two queues of sockets: so_q0 for connections in progress
     79  * and so_q for connections already made and awaiting user acceptance.
     80  * As a protocol is preparing incoming connections, it creates a socket
     81  * structure queued on so_q0 by calling sonewconn().  When the connection
     82  * is established, soisconnected() is called, and transfers the
     83  * socket structure to so_q, making it available to accept().
     84  *
     85  * If a socket is closed with sockets on either
     86  * so_q0 or so_q, these sockets are dropped.
     87  *
     88  * If higher level protocols are implemented in
     89  * the kernel, the wakeups done here will sometimes
     90  * cause software-interrupt process scheduling.
     91  */
     92 
     93 void
     94 soisconnecting(struct socket *so)
     95 {
     96 
     97 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
     98 	so->so_state |= SS_ISCONNECTING;
     99 }
    100 
    101 void
    102 soisconnected(struct socket *so)
    103 {
    104 	struct socket	*head;
    105 
    106 	head = so->so_head;
    107 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
    108 	so->so_state |= SS_ISCONNECTED;
    109 	if (head && soqremque(so, 0)) {
    110 		soqinsque(head, so, 1);
    111 		sorwakeup(head);
    112 		wakeup((caddr_t)&head->so_timeo);
    113 	} else {
    114 		wakeup((caddr_t)&so->so_timeo);
    115 		sorwakeup(so);
    116 		sowwakeup(so);
    117 	}
    118 }
    119 
    120 void
    121 soisdisconnecting(struct socket *so)
    122 {
    123 
    124 	so->so_state &= ~SS_ISCONNECTING;
    125 	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
    126 	wakeup((caddr_t)&so->so_timeo);
    127 	sowwakeup(so);
    128 	sorwakeup(so);
    129 }
    130 
    131 void
    132 soisdisconnected(struct socket *so)
    133 {
    134 
    135 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
    136 	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
    137 	wakeup((caddr_t)&so->so_timeo);
    138 	sowwakeup(so);
    139 	sorwakeup(so);
    140 }
    141 
    142 /*
    143  * When an attempt at a new connection is noted on a socket
    144  * which accepts connections, sonewconn is called.  If the
    145  * connection is possible (subject to space constraints, etc.)
    146  * then we allocate a new structure, propoerly linked into the
    147  * data structure of the original socket, and return this.
    148  * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
    149  *
    150  * Currently, sonewconn() is defined as sonewconn1() in socketvar.h
    151  * to catch calls that are missing the (new) second parameter.
    152  */
    153 struct socket *
    154 sonewconn1(struct socket *head, int connstatus)
    155 {
    156 	struct socket	*so;
    157 	int		soqueue;
    158 
    159 	soqueue = connstatus ? 1 : 0;
    160 	if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
    161 		return ((struct socket *)0);
    162 	so = pool_get(&socket_pool, PR_NOWAIT);
    163 	if (so == NULL)
    164 		return (NULL);
    165 	memset((caddr_t)so, 0, sizeof(*so));
    166 	so->so_type = head->so_type;
    167 	so->so_options = head->so_options &~ SO_ACCEPTCONN;
    168 	so->so_linger = head->so_linger;
    169 	so->so_state = head->so_state | SS_NOFDREF;
    170 	so->so_proto = head->so_proto;
    171 	so->so_timeo = head->so_timeo;
    172 	so->so_pgid = head->so_pgid;
    173 	so->so_send = head->so_send;
    174 	so->so_receive = head->so_receive;
    175 	so->so_uid = head->so_uid;
    176 	(void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
    177 	soqinsque(head, so, soqueue);
    178 	if ((*so->so_proto->pr_usrreq)(so, PRU_ATTACH,
    179 	    (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
    180 	    (struct proc *)0)) {
    181 		(void) soqremque(so, soqueue);
    182 		pool_put(&socket_pool, so);
    183 		return (NULL);
    184 	}
    185 	if (connstatus) {
    186 		sorwakeup(head);
    187 		wakeup((caddr_t)&head->so_timeo);
    188 		so->so_state |= connstatus;
    189 	}
    190 	return (so);
    191 }
    192 
    193 void
    194 soqinsque(struct socket *head, struct socket *so, int q)
    195 {
    196 
    197 #ifdef DIAGNOSTIC
    198 	if (so->so_onq != NULL)
    199 		panic("soqinsque");
    200 #endif
    201 
    202 	so->so_head = head;
    203 	if (q == 0) {
    204 		head->so_q0len++;
    205 		so->so_onq = &head->so_q0;
    206 	} else {
    207 		head->so_qlen++;
    208 		so->so_onq = &head->so_q;
    209 	}
    210 	TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
    211 }
    212 
    213 int
    214 soqremque(struct socket *so, int q)
    215 {
    216 	struct socket	*head;
    217 
    218 	head = so->so_head;
    219 	if (q == 0) {
    220 		if (so->so_onq != &head->so_q0)
    221 			return (0);
    222 		head->so_q0len--;
    223 	} else {
    224 		if (so->so_onq != &head->so_q)
    225 			return (0);
    226 		head->so_qlen--;
    227 	}
    228 	TAILQ_REMOVE(so->so_onq, so, so_qe);
    229 	so->so_onq = NULL;
    230 	so->so_head = NULL;
    231 	return (1);
    232 }
    233 
    234 /*
    235  * Socantsendmore indicates that no more data will be sent on the
    236  * socket; it would normally be applied to a socket when the user
    237  * informs the system that no more data is to be sent, by the protocol
    238  * code (in case PRU_SHUTDOWN).  Socantrcvmore indicates that no more data
    239  * will be received, and will normally be applied to the socket by a
    240  * protocol when it detects that the peer will send no more data.
    241  * Data queued for reading in the socket may yet be read.
    242  */
    243 
    244 void
    245 socantsendmore(struct socket *so)
    246 {
    247 
    248 	so->so_state |= SS_CANTSENDMORE;
    249 	sowwakeup(so);
    250 }
    251 
    252 void
    253 socantrcvmore(struct socket *so)
    254 {
    255 
    256 	so->so_state |= SS_CANTRCVMORE;
    257 	sorwakeup(so);
    258 }
    259 
    260 /*
    261  * Wait for data to arrive at/drain from a socket buffer.
    262  */
    263 int
    264 sbwait(struct sockbuf *sb)
    265 {
    266 
    267 	sb->sb_flags |= SB_WAIT;
    268 	return (tsleep((caddr_t)&sb->sb_cc,
    269 	    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, netio,
    270 	    sb->sb_timeo));
    271 }
    272 
    273 /*
    274  * Lock a sockbuf already known to be locked;
    275  * return any error returned from sleep (EINTR).
    276  */
    277 int
    278 sb_lock(struct sockbuf *sb)
    279 {
    280 	int	error;
    281 
    282 	while (sb->sb_flags & SB_LOCK) {
    283 		sb->sb_flags |= SB_WANT;
    284 		error = tsleep((caddr_t)&sb->sb_flags,
    285 		    (sb->sb_flags & SB_NOINTR) ?  PSOCK : PSOCK|PCATCH,
    286 		    netlck, 0);
    287 		if (error)
    288 			return (error);
    289 	}
    290 	sb->sb_flags |= SB_LOCK;
    291 	return (0);
    292 }
    293 
    294 /*
    295  * Wakeup processes waiting on a socket buffer.
    296  * Do asynchronous notification via SIGIO
    297  * if the socket buffer has the SB_ASYNC flag set.
    298  */
    299 void
    300 sowakeup(struct socket *so, struct sockbuf *sb)
    301 {
    302 	struct proc	*p;
    303 
    304 	selwakeup(&sb->sb_sel);
    305 	sb->sb_flags &= ~SB_SEL;
    306 	if (sb->sb_flags & SB_WAIT) {
    307 		sb->sb_flags &= ~SB_WAIT;
    308 		wakeup((caddr_t)&sb->sb_cc);
    309 	}
    310 	if (sb->sb_flags & SB_ASYNC) {
    311 		if (so->so_pgid < 0)
    312 			gsignal(-so->so_pgid, SIGIO);
    313 		else if (so->so_pgid > 0 && (p = pfind(so->so_pgid)) != 0)
    314 			psignal(p, SIGIO);
    315 	}
    316 	if (sb->sb_flags & SB_UPCALL)
    317 		(*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT);
    318 }
    319 
    320 /*
    321  * Socket buffer (struct sockbuf) utility routines.
    322  *
    323  * Each socket contains two socket buffers: one for sending data and
    324  * one for receiving data.  Each buffer contains a queue of mbufs,
    325  * information about the number of mbufs and amount of data in the
    326  * queue, and other fields allowing poll() statements and notification
    327  * on data availability to be implemented.
    328  *
    329  * Data stored in a socket buffer is maintained as a list of records.
    330  * Each record is a list of mbufs chained together with the m_next
    331  * field.  Records are chained together with the m_nextpkt field. The upper
    332  * level routine soreceive() expects the following conventions to be
    333  * observed when placing information in the receive buffer:
    334  *
    335  * 1. If the protocol requires each message be preceded by the sender's
    336  *    name, then a record containing that name must be present before
    337  *    any associated data (mbuf's must be of type MT_SONAME).
    338  * 2. If the protocol supports the exchange of ``access rights'' (really
    339  *    just additional data associated with the message), and there are
    340  *    ``rights'' to be received, then a record containing this data
    341  *    should be present (mbuf's must be of type MT_CONTROL).
    342  * 3. If a name or rights record exists, then it must be followed by
    343  *    a data record, perhaps of zero length.
    344  *
    345  * Before using a new socket structure it is first necessary to reserve
    346  * buffer space to the socket, by calling sbreserve().  This should commit
    347  * some of the available buffer space in the system buffer pool for the
    348  * socket (currently, it does nothing but enforce limits).  The space
    349  * should be released by calling sbrelease() when the socket is destroyed.
    350  */
    351 
    352 int
    353 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
    354 {
    355 
    356 	if (sbreserve(&so->so_snd, sndcc) == 0)
    357 		goto bad;
    358 	if (sbreserve(&so->so_rcv, rcvcc) == 0)
    359 		goto bad2;
    360 	if (so->so_rcv.sb_lowat == 0)
    361 		so->so_rcv.sb_lowat = 1;
    362 	if (so->so_snd.sb_lowat == 0)
    363 		so->so_snd.sb_lowat = MCLBYTES;
    364 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
    365 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
    366 	return (0);
    367  bad2:
    368 	sbrelease(&so->so_snd);
    369  bad:
    370 	return (ENOBUFS);
    371 }
    372 
    373 /*
    374  * Allot mbufs to a sockbuf.
    375  * Attempt to scale mbmax so that mbcnt doesn't become limiting
    376  * if buffering efficiency is near the normal case.
    377  */
    378 int
    379 sbreserve(struct sockbuf *sb, u_long cc)
    380 {
    381 
    382 	if (cc == 0 ||
    383 	    (u_quad_t) cc > (u_quad_t) sb_max * MCLBYTES / (MSIZE + MCLBYTES))
    384 		return (0);
    385 	sb->sb_hiwat = cc;
    386 	sb->sb_mbmax = min(cc * 2, sb_max);
    387 	if (sb->sb_lowat > sb->sb_hiwat)
    388 		sb->sb_lowat = sb->sb_hiwat;
    389 	return (1);
    390 }
    391 
    392 /*
    393  * Free mbufs held by a socket, and reserved mbuf space.
    394  */
    395 void
    396 sbrelease(struct sockbuf *sb)
    397 {
    398 
    399 	sbflush(sb);
    400 	sb->sb_hiwat = sb->sb_mbmax = 0;
    401 }
    402 
    403 /*
    404  * Routines to add and remove
    405  * data from an mbuf queue.
    406  *
    407  * The routines sbappend() or sbappendrecord() are normally called to
    408  * append new mbufs to a socket buffer, after checking that adequate
    409  * space is available, comparing the function sbspace() with the amount
    410  * of data to be added.  sbappendrecord() differs from sbappend() in
    411  * that data supplied is treated as the beginning of a new record.
    412  * To place a sender's address, optional access rights, and data in a
    413  * socket receive buffer, sbappendaddr() should be used.  To place
    414  * access rights and data in a socket receive buffer, sbappendrights()
    415  * should be used.  In either case, the new data begins a new record.
    416  * Note that unlike sbappend() and sbappendrecord(), these routines check
    417  * for the caller that there will be enough space to store the data.
    418  * Each fails if there is not enough space, or if it cannot find mbufs
    419  * to store additional information in.
    420  *
    421  * Reliable protocols may use the socket send buffer to hold data
    422  * awaiting acknowledgement.  Data is normally copied from a socket
    423  * send buffer in a protocol with m_copy for output to a peer,
    424  * and then removing the data from the socket buffer with sbdrop()
    425  * or sbdroprecord() when the data is acknowledged by the peer.
    426  */
    427 
    428 #ifdef SOCKBUF_DEBUG
    429 void
    430 sblastrecordchk(struct sockbuf *sb, const char *where)
    431 {
    432 	struct mbuf *m = sb->sb_mb;
    433 
    434 	while (m && m->m_nextpkt)
    435 		m = m->m_nextpkt;
    436 
    437 	if (m != sb->sb_lastrecord) {
    438 		printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
    439 		    sb->sb_mb, sb->sb_lastrecord, m);
    440 		printf("packet chain:\n");
    441 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
    442 			printf("\t%p\n", m);
    443 		panic("sblastrecordchk from %s\n", where);
    444 	}
    445 }
    446 
    447 void
    448 sblastmbufchk(struct sockbuf *sb, const char *where)
    449 {
    450 	struct mbuf *m = sb->sb_mb;
    451 	struct mbuf *n;
    452 
    453 	while (m && m->m_nextpkt)
    454 		m = m->m_nextpkt;
    455 
    456 	while (m && m->m_next)
    457 		m = m->m_next;
    458 
    459 	if (m != sb->sb_mbtail) {
    460 		printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
    461 		    sb->sb_mb, sb->sb_mbtail, m);
    462 		printf("packet tree:\n");
    463 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
    464 			printf("\t");
    465 			for (n = m; n != NULL; n = n->m_next)
    466 				printf("%p ", n);
    467 			printf("\n");
    468 		}
    469 		panic("sblastmbufchk from %s", where);
    470 	}
    471 }
    472 #endif /* SOCKBUF_DEBUG */
    473 
    474 #define	SBLINKRECORD(sb, m0)						\
    475 do {									\
    476 	if ((sb)->sb_lastrecord != NULL)				\
    477 		(sb)->sb_lastrecord->m_nextpkt = (m0);			\
    478 	else								\
    479 		(sb)->sb_mb = (m0);					\
    480 	(sb)->sb_lastrecord = (m0);					\
    481 } while (/*CONSTCOND*/0)
    482 
    483 /*
    484  * Append mbuf chain m to the last record in the
    485  * socket buffer sb.  The additional space associated
    486  * the mbuf chain is recorded in sb.  Empty mbufs are
    487  * discarded and mbufs are compacted where possible.
    488  */
    489 void
    490 sbappend(struct sockbuf *sb, struct mbuf *m)
    491 {
    492 	struct mbuf	*n;
    493 
    494 	if (m == 0)
    495 		return;
    496 
    497 	SBLASTRECORDCHK(sb, "sbappend 1");
    498 
    499 	if ((n = sb->sb_lastrecord) != NULL) {
    500 		/*
    501 		 * XXX Would like to simply use sb_mbtail here, but
    502 		 * XXX I need to verify that I won't miss an EOR that
    503 		 * XXX way.
    504 		 */
    505 		do {
    506 			if (n->m_flags & M_EOR) {
    507 				sbappendrecord(sb, m); /* XXXXXX!!!! */
    508 				return;
    509 			}
    510 		} while (n->m_next && (n = n->m_next));
    511 	} else {
    512 		/*
    513 		 * If this is the first record in the socket buffer, it's
    514 		 * also the last record.
    515 		 */
    516 		sb->sb_lastrecord = m;
    517 	}
    518 	sbcompress(sb, m, n);
    519 	SBLASTRECORDCHK(sb, "sbappend 2");
    520 }
    521 
    522 /*
    523  * This version of sbappend() should only be used when the caller
    524  * absolutely knows that there will never be more than one record
    525  * in the socket buffer, that is, a stream protocol (such as TCP).
    526  */
    527 void
    528 sbappendstream(struct sockbuf *sb, struct mbuf *m)
    529 {
    530 
    531 	KDASSERT(m->m_nextpkt == NULL);
    532 	KASSERT(sb->sb_mb == sb->sb_lastrecord);
    533 
    534 	SBLASTMBUFCHK(sb, __func__);
    535 
    536 	sbcompress(sb, m, sb->sb_mbtail);
    537 
    538 	sb->sb_lastrecord = sb->sb_mb;
    539 	SBLASTRECORDCHK(sb, __func__);
    540 }
    541 
    542 #ifdef SOCKBUF_DEBUG
    543 void
    544 sbcheck(struct sockbuf *sb)
    545 {
    546 	struct mbuf	*m;
    547 	u_long		len, mbcnt;
    548 
    549 	len = 0;
    550 	mbcnt = 0;
    551 	for (m = sb->sb_mb; m; m = m->m_next) {
    552 		len += m->m_len;
    553 		mbcnt += MSIZE;
    554 		if (m->m_flags & M_EXT)
    555 			mbcnt += m->m_ext.ext_size;
    556 		if (m->m_nextpkt)
    557 			panic("sbcheck nextpkt");
    558 	}
    559 	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
    560 		printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
    561 		    mbcnt, sb->sb_mbcnt);
    562 		panic("sbcheck");
    563 	}
    564 }
    565 #endif
    566 
    567 /*
    568  * As above, except the mbuf chain
    569  * begins a new record.
    570  */
    571 void
    572 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
    573 {
    574 	struct mbuf	*m;
    575 
    576 	if (m0 == 0)
    577 		return;
    578 
    579 	/*
    580 	 * Put the first mbuf on the queue.
    581 	 * Note this permits zero length records.
    582 	 */
    583 	sballoc(sb, m0);
    584 	SBLASTRECORDCHK(sb, "sbappendrecord 1");
    585 	SBLINKRECORD(sb, m0);
    586 	m = m0->m_next;
    587 	m0->m_next = 0;
    588 	if (m && (m0->m_flags & M_EOR)) {
    589 		m0->m_flags &= ~M_EOR;
    590 		m->m_flags |= M_EOR;
    591 	}
    592 	sbcompress(sb, m, m0);
    593 	SBLASTRECORDCHK(sb, "sbappendrecord 2");
    594 }
    595 
    596 /*
    597  * As above except that OOB data
    598  * is inserted at the beginning of the sockbuf,
    599  * but after any other OOB data.
    600  */
    601 void
    602 sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
    603 {
    604 	struct mbuf	*m, **mp;
    605 
    606 	if (m0 == 0)
    607 		return;
    608 
    609 	SBLASTRECORDCHK(sb, "sbinsertoob 1");
    610 
    611 	for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
    612 	    again:
    613 		switch (m->m_type) {
    614 
    615 		case MT_OOBDATA:
    616 			continue;		/* WANT next train */
    617 
    618 		case MT_CONTROL:
    619 			if ((m = m->m_next) != NULL)
    620 				goto again;	/* inspect THIS train further */
    621 		}
    622 		break;
    623 	}
    624 	/*
    625 	 * Put the first mbuf on the queue.
    626 	 * Note this permits zero length records.
    627 	 */
    628 	sballoc(sb, m0);
    629 	m0->m_nextpkt = *mp;
    630 	if (*mp == NULL) {
    631 		/* m0 is actually the new tail */
    632 		sb->sb_lastrecord = m0;
    633 	}
    634 	*mp = m0;
    635 	m = m0->m_next;
    636 	m0->m_next = 0;
    637 	if (m && (m0->m_flags & M_EOR)) {
    638 		m0->m_flags &= ~M_EOR;
    639 		m->m_flags |= M_EOR;
    640 	}
    641 	sbcompress(sb, m, m0);
    642 	SBLASTRECORDCHK(sb, "sbinsertoob 2");
    643 }
    644 
    645 /*
    646  * Append address and data, and optionally, control (ancillary) data
    647  * to the receive queue of a socket.  If present,
    648  * m0 must include a packet header with total length.
    649  * Returns 0 if no space in sockbuf or insufficient mbufs.
    650  */
    651 int
    652 sbappendaddr(struct sockbuf *sb, struct sockaddr *asa, struct mbuf *m0,
    653 	struct mbuf *control)
    654 {
    655 	struct mbuf	*m, *n, *nlast;
    656 	int		space;
    657 
    658 	space = asa->sa_len;
    659 
    660 	if (m0 && (m0->m_flags & M_PKTHDR) == 0)
    661 		panic("sbappendaddr");
    662 	if (m0)
    663 		space += m0->m_pkthdr.len;
    664 	for (n = control; n; n = n->m_next) {
    665 		space += n->m_len;
    666 		if (n->m_next == 0)	/* keep pointer to last control buf */
    667 			break;
    668 	}
    669 	if (space > sbspace(sb))
    670 		return (0);
    671 	MGET(m, M_DONTWAIT, MT_SONAME);
    672 	if (m == 0)
    673 		return (0);
    674 	if (asa->sa_len > MLEN) {
    675 		MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
    676 		if ((m->m_flags & M_EXT) == 0) {
    677 			m_free(m);
    678 			return (0);
    679 		}
    680 	}
    681 	m->m_len = asa->sa_len;
    682 	memcpy(mtod(m, caddr_t), (caddr_t)asa, asa->sa_len);
    683 	if (n)
    684 		n->m_next = m0;		/* concatenate data to control */
    685 	else
    686 		control = m0;
    687 	m->m_next = control;
    688 
    689 	SBLASTRECORDCHK(sb, "sbappendaddr 1");
    690 
    691 	for (n = m; n->m_next != NULL; n = n->m_next)
    692 		sballoc(sb, n);
    693 	sballoc(sb, n);
    694 	nlast = n;
    695 	SBLINKRECORD(sb, m);
    696 
    697 	sb->sb_mbtail = nlast;
    698 	SBLASTMBUFCHK(sb, "sbappendaddr");
    699 
    700 	SBLASTRECORDCHK(sb, "sbappendaddr 2");
    701 
    702 	return (1);
    703 }
    704 
    705 int
    706 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
    707 {
    708 	struct mbuf	*m, *mlast, *n;
    709 	int		space;
    710 
    711 	space = 0;
    712 	if (control == 0)
    713 		panic("sbappendcontrol");
    714 	for (m = control; ; m = m->m_next) {
    715 		space += m->m_len;
    716 		if (m->m_next == 0)
    717 			break;
    718 	}
    719 	n = m;			/* save pointer to last control buffer */
    720 	for (m = m0; m; m = m->m_next)
    721 		space += m->m_len;
    722 	if (space > sbspace(sb))
    723 		return (0);
    724 	n->m_next = m0;			/* concatenate data to control */
    725 
    726 	SBLASTRECORDCHK(sb, "sbappendcontrol 1");
    727 
    728 	for (m = control; m->m_next != NULL; m = m->m_next)
    729 		sballoc(sb, m);
    730 	sballoc(sb, m);
    731 	mlast = m;
    732 	SBLINKRECORD(sb, control);
    733 
    734 	sb->sb_mbtail = mlast;
    735 	SBLASTMBUFCHK(sb, "sbappendcontrol");
    736 
    737 	SBLASTRECORDCHK(sb, "sbappendcontrol 2");
    738 
    739 	return (1);
    740 }
    741 
    742 /*
    743  * Compress mbuf chain m into the socket
    744  * buffer sb following mbuf n.  If n
    745  * is null, the buffer is presumed empty.
    746  */
    747 void
    748 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
    749 {
    750 	int		eor;
    751 	struct mbuf	*o;
    752 
    753 	eor = 0;
    754 	while (m) {
    755 		eor |= m->m_flags & M_EOR;
    756 		if (m->m_len == 0 &&
    757 		    (eor == 0 ||
    758 		     (((o = m->m_next) || (o = n)) &&
    759 		      o->m_type == m->m_type))) {
    760 			m = m_free(m);
    761 			continue;
    762 		}
    763 		if (n && (n->m_flags & M_EOR) == 0 &&
    764 		    /* M_TRAILINGSPACE() checks buffer writeability */
    765 		    m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
    766 		    m->m_len <= M_TRAILINGSPACE(n) &&
    767 		    n->m_type == m->m_type) {
    768 			memcpy(mtod(n, caddr_t) + n->m_len, mtod(m, caddr_t),
    769 			    (unsigned)m->m_len);
    770 			n->m_len += m->m_len;
    771 			sb->sb_cc += m->m_len;
    772 			m = m_free(m);
    773 			continue;
    774 		}
    775 		if (n)
    776 			n->m_next = m;
    777 		else
    778 			sb->sb_mb = m;
    779 		sb->sb_mbtail = m;
    780 		sballoc(sb, m);
    781 		n = m;
    782 		m->m_flags &= ~M_EOR;
    783 		m = m->m_next;
    784 		n->m_next = 0;
    785 	}
    786 	if (eor) {
    787 		if (n)
    788 			n->m_flags |= eor;
    789 		else
    790 			printf("semi-panic: sbcompress\n");
    791 	}
    792 	SBLASTMBUFCHK(sb, __func__);
    793 }
    794 
    795 /*
    796  * Free all mbufs in a sockbuf.
    797  * Check that all resources are reclaimed.
    798  */
    799 void
    800 sbflush(struct sockbuf *sb)
    801 {
    802 
    803 	KASSERT((sb->sb_flags & SB_LOCK) == 0);
    804 
    805 	while (sb->sb_mbcnt)
    806 		sbdrop(sb, (int)sb->sb_cc);
    807 
    808 	KASSERT(sb->sb_cc == 0);
    809 	KASSERT(sb->sb_mb == NULL);
    810 	KASSERT(sb->sb_mbtail == NULL);
    811 	KASSERT(sb->sb_lastrecord == NULL);
    812 }
    813 
    814 /*
    815  * Drop data from (the front of) a sockbuf.
    816  */
    817 void
    818 sbdrop(struct sockbuf *sb, int len)
    819 {
    820 	struct mbuf	*m, *mn, *next;
    821 
    822 	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
    823 	while (len > 0) {
    824 		if (m == 0) {
    825 			if (next == 0)
    826 				panic("sbdrop");
    827 			m = next;
    828 			next = m->m_nextpkt;
    829 			continue;
    830 		}
    831 		if (m->m_len > len) {
    832 			m->m_len -= len;
    833 			m->m_data += len;
    834 			sb->sb_cc -= len;
    835 			break;
    836 		}
    837 		len -= m->m_len;
    838 		sbfree(sb, m);
    839 		MFREE(m, mn);
    840 		m = mn;
    841 	}
    842 	while (m && m->m_len == 0) {
    843 		sbfree(sb, m);
    844 		MFREE(m, mn);
    845 		m = mn;
    846 	}
    847 	if (m) {
    848 		sb->sb_mb = m;
    849 		m->m_nextpkt = next;
    850 	} else
    851 		sb->sb_mb = next;
    852 	/*
    853 	 * First part is an inline SB_UPDATE_TAIL().  Second part
    854 	 * makes sure sb_lastrecord is up-to-date if we dropped
    855 	 * part of the last record.
    856 	 */
    857 	m = sb->sb_mb;
    858 	if (m == NULL) {
    859 		sb->sb_mbtail = NULL;
    860 		sb->sb_lastrecord = NULL;
    861 	} else if (m->m_nextpkt == NULL)
    862 		sb->sb_lastrecord = m;
    863 }
    864 
    865 /*
    866  * Drop a record off the front of a sockbuf
    867  * and move the next record to the front.
    868  */
    869 void
    870 sbdroprecord(struct sockbuf *sb)
    871 {
    872 	struct mbuf	*m, *mn;
    873 
    874 	m = sb->sb_mb;
    875 	if (m) {
    876 		sb->sb_mb = m->m_nextpkt;
    877 		do {
    878 			sbfree(sb, m);
    879 			MFREE(m, mn);
    880 		} while ((m = mn) != NULL);
    881 	}
    882 	SB_UPDATE_TAIL(sb);
    883 }
    884 
    885 /*
    886  * Create a "control" mbuf containing the specified data
    887  * with the specified type for presentation on a socket buffer.
    888  */
    889 struct mbuf *
    890 sbcreatecontrol(caddr_t p, int size, int type, int level)
    891 {
    892 	struct cmsghdr	*cp;
    893 	struct mbuf	*m;
    894 
    895 	if (CMSG_SPACE(size) > MCLBYTES) {
    896 		printf("sbcreatecontrol: message too large %d\n", size);
    897 		return NULL;
    898 	}
    899 
    900 	if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
    901 		return ((struct mbuf *) NULL);
    902 	if (CMSG_SPACE(size) > MLEN) {
    903 		MCLGET(m, M_DONTWAIT);
    904 		if ((m->m_flags & M_EXT) == 0) {
    905 			m_free(m);
    906 			return NULL;
    907 		}
    908 	}
    909 	cp = mtod(m, struct cmsghdr *);
    910 	memcpy(CMSG_DATA(cp), p, size);
    911 	m->m_len = CMSG_SPACE(size);
    912 	cp->cmsg_len = CMSG_LEN(size);
    913 	cp->cmsg_level = level;
    914 	cp->cmsg_type = type;
    915 	return (m);
    916 }
    917