uipc_socket2.c revision 1.45 1 /* $NetBSD: uipc_socket2.c,v 1.45 2002/07/03 21:39:41 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1988, 1990, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * @(#)uipc_socket2.c 8.2 (Berkeley) 2/14/95
36 */
37
38 #include <sys/cdefs.h>
39 __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.45 2002/07/03 21:39:41 thorpej Exp $");
40
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/proc.h>
44 #include <sys/file.h>
45 #include <sys/buf.h>
46 #include <sys/malloc.h>
47 #include <sys/mbuf.h>
48 #include <sys/protosw.h>
49 #include <sys/socket.h>
50 #include <sys/socketvar.h>
51 #include <sys/signalvar.h>
52
53 /*
54 * Primitive routines for operating on sockets and socket buffers
55 */
56
57 /* strings for sleep message: */
58 const char netcon[] = "netcon";
59 const char netcls[] = "netcls";
60 const char netio[] = "netio";
61 const char netlck[] = "netlck";
62
63 /*
64 * Procedures to manipulate state flags of socket
65 * and do appropriate wakeups. Normal sequence from the
66 * active (originating) side is that soisconnecting() is
67 * called during processing of connect() call,
68 * resulting in an eventual call to soisconnected() if/when the
69 * connection is established. When the connection is torn down
70 * soisdisconnecting() is called during processing of disconnect() call,
71 * and soisdisconnected() is called when the connection to the peer
72 * is totally severed. The semantics of these routines are such that
73 * connectionless protocols can call soisconnected() and soisdisconnected()
74 * only, bypassing the in-progress calls when setting up a ``connection''
75 * takes no time.
76 *
77 * From the passive side, a socket is created with
78 * two queues of sockets: so_q0 for connections in progress
79 * and so_q for connections already made and awaiting user acceptance.
80 * As a protocol is preparing incoming connections, it creates a socket
81 * structure queued on so_q0 by calling sonewconn(). When the connection
82 * is established, soisconnected() is called, and transfers the
83 * socket structure to so_q, making it available to accept().
84 *
85 * If a socket is closed with sockets on either
86 * so_q0 or so_q, these sockets are dropped.
87 *
88 * If higher level protocols are implemented in
89 * the kernel, the wakeups done here will sometimes
90 * cause software-interrupt process scheduling.
91 */
92
93 void
94 soisconnecting(struct socket *so)
95 {
96
97 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
98 so->so_state |= SS_ISCONNECTING;
99 }
100
101 void
102 soisconnected(struct socket *so)
103 {
104 struct socket *head;
105
106 head = so->so_head;
107 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
108 so->so_state |= SS_ISCONNECTED;
109 if (head && soqremque(so, 0)) {
110 soqinsque(head, so, 1);
111 sorwakeup(head);
112 wakeup((caddr_t)&head->so_timeo);
113 } else {
114 wakeup((caddr_t)&so->so_timeo);
115 sorwakeup(so);
116 sowwakeup(so);
117 }
118 }
119
120 void
121 soisdisconnecting(struct socket *so)
122 {
123
124 so->so_state &= ~SS_ISCONNECTING;
125 so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
126 wakeup((caddr_t)&so->so_timeo);
127 sowwakeup(so);
128 sorwakeup(so);
129 }
130
131 void
132 soisdisconnected(struct socket *so)
133 {
134
135 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
136 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
137 wakeup((caddr_t)&so->so_timeo);
138 sowwakeup(so);
139 sorwakeup(so);
140 }
141
142 /*
143 * When an attempt at a new connection is noted on a socket
144 * which accepts connections, sonewconn is called. If the
145 * connection is possible (subject to space constraints, etc.)
146 * then we allocate a new structure, propoerly linked into the
147 * data structure of the original socket, and return this.
148 * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
149 *
150 * Currently, sonewconn() is defined as sonewconn1() in socketvar.h
151 * to catch calls that are missing the (new) second parameter.
152 */
153 struct socket *
154 sonewconn1(struct socket *head, int connstatus)
155 {
156 struct socket *so;
157 int soqueue;
158
159 soqueue = connstatus ? 1 : 0;
160 if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
161 return ((struct socket *)0);
162 so = pool_get(&socket_pool, PR_NOWAIT);
163 if (so == NULL)
164 return (NULL);
165 memset((caddr_t)so, 0, sizeof(*so));
166 so->so_type = head->so_type;
167 so->so_options = head->so_options &~ SO_ACCEPTCONN;
168 so->so_linger = head->so_linger;
169 so->so_state = head->so_state | SS_NOFDREF;
170 so->so_proto = head->so_proto;
171 so->so_timeo = head->so_timeo;
172 so->so_pgid = head->so_pgid;
173 so->so_send = head->so_send;
174 so->so_receive = head->so_receive;
175 so->so_uid = head->so_uid;
176 (void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
177 soqinsque(head, so, soqueue);
178 if ((*so->so_proto->pr_usrreq)(so, PRU_ATTACH,
179 (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
180 (struct proc *)0)) {
181 (void) soqremque(so, soqueue);
182 pool_put(&socket_pool, so);
183 return (NULL);
184 }
185 if (connstatus) {
186 sorwakeup(head);
187 wakeup((caddr_t)&head->so_timeo);
188 so->so_state |= connstatus;
189 }
190 return (so);
191 }
192
193 void
194 soqinsque(struct socket *head, struct socket *so, int q)
195 {
196
197 #ifdef DIAGNOSTIC
198 if (so->so_onq != NULL)
199 panic("soqinsque");
200 #endif
201
202 so->so_head = head;
203 if (q == 0) {
204 head->so_q0len++;
205 so->so_onq = &head->so_q0;
206 } else {
207 head->so_qlen++;
208 so->so_onq = &head->so_q;
209 }
210 TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
211 }
212
213 int
214 soqremque(struct socket *so, int q)
215 {
216 struct socket *head;
217
218 head = so->so_head;
219 if (q == 0) {
220 if (so->so_onq != &head->so_q0)
221 return (0);
222 head->so_q0len--;
223 } else {
224 if (so->so_onq != &head->so_q)
225 return (0);
226 head->so_qlen--;
227 }
228 TAILQ_REMOVE(so->so_onq, so, so_qe);
229 so->so_onq = NULL;
230 so->so_head = NULL;
231 return (1);
232 }
233
234 /*
235 * Socantsendmore indicates that no more data will be sent on the
236 * socket; it would normally be applied to a socket when the user
237 * informs the system that no more data is to be sent, by the protocol
238 * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data
239 * will be received, and will normally be applied to the socket by a
240 * protocol when it detects that the peer will send no more data.
241 * Data queued for reading in the socket may yet be read.
242 */
243
244 void
245 socantsendmore(struct socket *so)
246 {
247
248 so->so_state |= SS_CANTSENDMORE;
249 sowwakeup(so);
250 }
251
252 void
253 socantrcvmore(struct socket *so)
254 {
255
256 so->so_state |= SS_CANTRCVMORE;
257 sorwakeup(so);
258 }
259
260 /*
261 * Wait for data to arrive at/drain from a socket buffer.
262 */
263 int
264 sbwait(struct sockbuf *sb)
265 {
266
267 sb->sb_flags |= SB_WAIT;
268 return (tsleep((caddr_t)&sb->sb_cc,
269 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, netio,
270 sb->sb_timeo));
271 }
272
273 /*
274 * Lock a sockbuf already known to be locked;
275 * return any error returned from sleep (EINTR).
276 */
277 int
278 sb_lock(struct sockbuf *sb)
279 {
280 int error;
281
282 while (sb->sb_flags & SB_LOCK) {
283 sb->sb_flags |= SB_WANT;
284 error = tsleep((caddr_t)&sb->sb_flags,
285 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK|PCATCH,
286 netlck, 0);
287 if (error)
288 return (error);
289 }
290 sb->sb_flags |= SB_LOCK;
291 return (0);
292 }
293
294 /*
295 * Wakeup processes waiting on a socket buffer.
296 * Do asynchronous notification via SIGIO
297 * if the socket buffer has the SB_ASYNC flag set.
298 */
299 void
300 sowakeup(struct socket *so, struct sockbuf *sb)
301 {
302 struct proc *p;
303
304 selwakeup(&sb->sb_sel);
305 sb->sb_flags &= ~SB_SEL;
306 if (sb->sb_flags & SB_WAIT) {
307 sb->sb_flags &= ~SB_WAIT;
308 wakeup((caddr_t)&sb->sb_cc);
309 }
310 if (sb->sb_flags & SB_ASYNC) {
311 if (so->so_pgid < 0)
312 gsignal(-so->so_pgid, SIGIO);
313 else if (so->so_pgid > 0 && (p = pfind(so->so_pgid)) != 0)
314 psignal(p, SIGIO);
315 }
316 if (sb->sb_flags & SB_UPCALL)
317 (*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT);
318 }
319
320 /*
321 * Socket buffer (struct sockbuf) utility routines.
322 *
323 * Each socket contains two socket buffers: one for sending data and
324 * one for receiving data. Each buffer contains a queue of mbufs,
325 * information about the number of mbufs and amount of data in the
326 * queue, and other fields allowing poll() statements and notification
327 * on data availability to be implemented.
328 *
329 * Data stored in a socket buffer is maintained as a list of records.
330 * Each record is a list of mbufs chained together with the m_next
331 * field. Records are chained together with the m_nextpkt field. The upper
332 * level routine soreceive() expects the following conventions to be
333 * observed when placing information in the receive buffer:
334 *
335 * 1. If the protocol requires each message be preceded by the sender's
336 * name, then a record containing that name must be present before
337 * any associated data (mbuf's must be of type MT_SONAME).
338 * 2. If the protocol supports the exchange of ``access rights'' (really
339 * just additional data associated with the message), and there are
340 * ``rights'' to be received, then a record containing this data
341 * should be present (mbuf's must be of type MT_CONTROL).
342 * 3. If a name or rights record exists, then it must be followed by
343 * a data record, perhaps of zero length.
344 *
345 * Before using a new socket structure it is first necessary to reserve
346 * buffer space to the socket, by calling sbreserve(). This should commit
347 * some of the available buffer space in the system buffer pool for the
348 * socket (currently, it does nothing but enforce limits). The space
349 * should be released by calling sbrelease() when the socket is destroyed.
350 */
351
352 int
353 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
354 {
355
356 if (sbreserve(&so->so_snd, sndcc) == 0)
357 goto bad;
358 if (sbreserve(&so->so_rcv, rcvcc) == 0)
359 goto bad2;
360 if (so->so_rcv.sb_lowat == 0)
361 so->so_rcv.sb_lowat = 1;
362 if (so->so_snd.sb_lowat == 0)
363 so->so_snd.sb_lowat = MCLBYTES;
364 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
365 so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
366 return (0);
367 bad2:
368 sbrelease(&so->so_snd);
369 bad:
370 return (ENOBUFS);
371 }
372
373 /*
374 * Allot mbufs to a sockbuf.
375 * Attempt to scale mbmax so that mbcnt doesn't become limiting
376 * if buffering efficiency is near the normal case.
377 */
378 int
379 sbreserve(struct sockbuf *sb, u_long cc)
380 {
381
382 if (cc == 0 ||
383 (u_quad_t) cc > (u_quad_t) sb_max * MCLBYTES / (MSIZE + MCLBYTES))
384 return (0);
385 sb->sb_hiwat = cc;
386 sb->sb_mbmax = min(cc * 2, sb_max);
387 if (sb->sb_lowat > sb->sb_hiwat)
388 sb->sb_lowat = sb->sb_hiwat;
389 return (1);
390 }
391
392 /*
393 * Free mbufs held by a socket, and reserved mbuf space.
394 */
395 void
396 sbrelease(struct sockbuf *sb)
397 {
398
399 sbflush(sb);
400 sb->sb_hiwat = sb->sb_mbmax = 0;
401 }
402
403 /*
404 * Routines to add and remove
405 * data from an mbuf queue.
406 *
407 * The routines sbappend() or sbappendrecord() are normally called to
408 * append new mbufs to a socket buffer, after checking that adequate
409 * space is available, comparing the function sbspace() with the amount
410 * of data to be added. sbappendrecord() differs from sbappend() in
411 * that data supplied is treated as the beginning of a new record.
412 * To place a sender's address, optional access rights, and data in a
413 * socket receive buffer, sbappendaddr() should be used. To place
414 * access rights and data in a socket receive buffer, sbappendrights()
415 * should be used. In either case, the new data begins a new record.
416 * Note that unlike sbappend() and sbappendrecord(), these routines check
417 * for the caller that there will be enough space to store the data.
418 * Each fails if there is not enough space, or if it cannot find mbufs
419 * to store additional information in.
420 *
421 * Reliable protocols may use the socket send buffer to hold data
422 * awaiting acknowledgement. Data is normally copied from a socket
423 * send buffer in a protocol with m_copy for output to a peer,
424 * and then removing the data from the socket buffer with sbdrop()
425 * or sbdroprecord() when the data is acknowledged by the peer.
426 */
427
428 #ifdef SOCKBUF_DEBUG
429 void
430 sblastrecordchk(struct sockbuf *sb, const char *where)
431 {
432 struct mbuf *m = sb->sb_mb;
433
434 while (m && m->m_nextpkt)
435 m = m->m_nextpkt;
436
437 if (m != sb->sb_lastrecord) {
438 printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
439 sb->sb_mb, sb->sb_lastrecord, m);
440 printf("packet chain:\n");
441 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
442 printf("\t%p\n", m);
443 panic("sblastrecordchk from %s\n", where);
444 }
445 }
446
447 void
448 sblastmbufchk(struct sockbuf *sb, const char *where)
449 {
450 struct mbuf *m = sb->sb_mb;
451 struct mbuf *n;
452
453 while (m && m->m_nextpkt)
454 m = m->m_nextpkt;
455
456 while (m && m->m_next)
457 m = m->m_next;
458
459 if (m != sb->sb_mbtail) {
460 printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
461 sb->sb_mb, sb->sb_mbtail, m);
462 printf("packet tree:\n");
463 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
464 printf("\t");
465 for (n = m; n != NULL; n = n->m_next)
466 printf("%p ", n);
467 printf("\n");
468 }
469 panic("sblastmbufchk from %s", where);
470 }
471 }
472 #endif /* SOCKBUF_DEBUG */
473
474 #define SBLINKRECORD(sb, m0) \
475 do { \
476 if ((sb)->sb_lastrecord != NULL) \
477 (sb)->sb_lastrecord->m_nextpkt = (m0); \
478 else \
479 (sb)->sb_mb = (m0); \
480 (sb)->sb_lastrecord = (m0); \
481 } while (/*CONSTCOND*/0)
482
483 /*
484 * Append mbuf chain m to the last record in the
485 * socket buffer sb. The additional space associated
486 * the mbuf chain is recorded in sb. Empty mbufs are
487 * discarded and mbufs are compacted where possible.
488 */
489 void
490 sbappend(struct sockbuf *sb, struct mbuf *m)
491 {
492 struct mbuf *n;
493
494 if (m == 0)
495 return;
496
497 SBLASTRECORDCHK(sb, "sbappend 1");
498
499 if ((n = sb->sb_lastrecord) != NULL) {
500 /*
501 * XXX Would like to simply use sb_mbtail here, but
502 * XXX I need to verify that I won't miss an EOR that
503 * XXX way.
504 */
505 do {
506 if (n->m_flags & M_EOR) {
507 sbappendrecord(sb, m); /* XXXXXX!!!! */
508 return;
509 }
510 } while (n->m_next && (n = n->m_next));
511 } else {
512 /*
513 * If this is the first record in the socket buffer, it's
514 * also the last record.
515 */
516 sb->sb_lastrecord = m;
517 }
518 sbcompress(sb, m, n);
519 SBLASTRECORDCHK(sb, "sbappend 2");
520 }
521
522 /*
523 * This version of sbappend() should only be used when the caller
524 * absolutely knows that there will never be more than one record
525 * in the socket buffer, that is, a stream protocol (such as TCP).
526 */
527 void
528 sbappendstream(struct sockbuf *sb, struct mbuf *m)
529 {
530
531 KDASSERT(m->m_nextpkt == NULL);
532 KASSERT(sb->sb_mb == sb->sb_lastrecord);
533
534 SBLASTMBUFCHK(sb, __func__);
535
536 sbcompress(sb, m, sb->sb_mbtail);
537
538 sb->sb_lastrecord = sb->sb_mb;
539 SBLASTRECORDCHK(sb, __func__);
540 }
541
542 #ifdef SOCKBUF_DEBUG
543 void
544 sbcheck(struct sockbuf *sb)
545 {
546 struct mbuf *m;
547 u_long len, mbcnt;
548
549 len = 0;
550 mbcnt = 0;
551 for (m = sb->sb_mb; m; m = m->m_next) {
552 len += m->m_len;
553 mbcnt += MSIZE;
554 if (m->m_flags & M_EXT)
555 mbcnt += m->m_ext.ext_size;
556 if (m->m_nextpkt)
557 panic("sbcheck nextpkt");
558 }
559 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
560 printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
561 mbcnt, sb->sb_mbcnt);
562 panic("sbcheck");
563 }
564 }
565 #endif
566
567 /*
568 * As above, except the mbuf chain
569 * begins a new record.
570 */
571 void
572 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
573 {
574 struct mbuf *m;
575
576 if (m0 == 0)
577 return;
578
579 /*
580 * Put the first mbuf on the queue.
581 * Note this permits zero length records.
582 */
583 sballoc(sb, m0);
584 SBLASTRECORDCHK(sb, "sbappendrecord 1");
585 SBLINKRECORD(sb, m0);
586 m = m0->m_next;
587 m0->m_next = 0;
588 if (m && (m0->m_flags & M_EOR)) {
589 m0->m_flags &= ~M_EOR;
590 m->m_flags |= M_EOR;
591 }
592 sbcompress(sb, m, m0);
593 SBLASTRECORDCHK(sb, "sbappendrecord 2");
594 }
595
596 /*
597 * As above except that OOB data
598 * is inserted at the beginning of the sockbuf,
599 * but after any other OOB data.
600 */
601 void
602 sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
603 {
604 struct mbuf *m, **mp;
605
606 if (m0 == 0)
607 return;
608
609 SBLASTRECORDCHK(sb, "sbinsertoob 1");
610
611 for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
612 again:
613 switch (m->m_type) {
614
615 case MT_OOBDATA:
616 continue; /* WANT next train */
617
618 case MT_CONTROL:
619 if ((m = m->m_next) != NULL)
620 goto again; /* inspect THIS train further */
621 }
622 break;
623 }
624 /*
625 * Put the first mbuf on the queue.
626 * Note this permits zero length records.
627 */
628 sballoc(sb, m0);
629 m0->m_nextpkt = *mp;
630 if (*mp == NULL) {
631 /* m0 is actually the new tail */
632 sb->sb_lastrecord = m0;
633 }
634 *mp = m0;
635 m = m0->m_next;
636 m0->m_next = 0;
637 if (m && (m0->m_flags & M_EOR)) {
638 m0->m_flags &= ~M_EOR;
639 m->m_flags |= M_EOR;
640 }
641 sbcompress(sb, m, m0);
642 SBLASTRECORDCHK(sb, "sbinsertoob 2");
643 }
644
645 /*
646 * Append address and data, and optionally, control (ancillary) data
647 * to the receive queue of a socket. If present,
648 * m0 must include a packet header with total length.
649 * Returns 0 if no space in sockbuf or insufficient mbufs.
650 */
651 int
652 sbappendaddr(struct sockbuf *sb, struct sockaddr *asa, struct mbuf *m0,
653 struct mbuf *control)
654 {
655 struct mbuf *m, *n, *nlast;
656 int space;
657
658 space = asa->sa_len;
659
660 if (m0 && (m0->m_flags & M_PKTHDR) == 0)
661 panic("sbappendaddr");
662 if (m0)
663 space += m0->m_pkthdr.len;
664 for (n = control; n; n = n->m_next) {
665 space += n->m_len;
666 if (n->m_next == 0) /* keep pointer to last control buf */
667 break;
668 }
669 if (space > sbspace(sb))
670 return (0);
671 MGET(m, M_DONTWAIT, MT_SONAME);
672 if (m == 0)
673 return (0);
674 if (asa->sa_len > MLEN) {
675 MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
676 if ((m->m_flags & M_EXT) == 0) {
677 m_free(m);
678 return (0);
679 }
680 }
681 m->m_len = asa->sa_len;
682 memcpy(mtod(m, caddr_t), (caddr_t)asa, asa->sa_len);
683 if (n)
684 n->m_next = m0; /* concatenate data to control */
685 else
686 control = m0;
687 m->m_next = control;
688
689 SBLASTRECORDCHK(sb, "sbappendaddr 1");
690
691 for (n = m; n->m_next != NULL; n = n->m_next)
692 sballoc(sb, n);
693 sballoc(sb, n);
694 nlast = n;
695 SBLINKRECORD(sb, m);
696
697 sb->sb_mbtail = nlast;
698 SBLASTMBUFCHK(sb, "sbappendaddr");
699
700 SBLASTRECORDCHK(sb, "sbappendaddr 2");
701
702 return (1);
703 }
704
705 int
706 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
707 {
708 struct mbuf *m, *mlast, *n;
709 int space;
710
711 space = 0;
712 if (control == 0)
713 panic("sbappendcontrol");
714 for (m = control; ; m = m->m_next) {
715 space += m->m_len;
716 if (m->m_next == 0)
717 break;
718 }
719 n = m; /* save pointer to last control buffer */
720 for (m = m0; m; m = m->m_next)
721 space += m->m_len;
722 if (space > sbspace(sb))
723 return (0);
724 n->m_next = m0; /* concatenate data to control */
725
726 SBLASTRECORDCHK(sb, "sbappendcontrol 1");
727
728 for (m = control; m->m_next != NULL; m = m->m_next)
729 sballoc(sb, m);
730 sballoc(sb, m);
731 mlast = m;
732 SBLINKRECORD(sb, control);
733
734 sb->sb_mbtail = mlast;
735 SBLASTMBUFCHK(sb, "sbappendcontrol");
736
737 SBLASTRECORDCHK(sb, "sbappendcontrol 2");
738
739 return (1);
740 }
741
742 /*
743 * Compress mbuf chain m into the socket
744 * buffer sb following mbuf n. If n
745 * is null, the buffer is presumed empty.
746 */
747 void
748 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
749 {
750 int eor;
751 struct mbuf *o;
752
753 eor = 0;
754 while (m) {
755 eor |= m->m_flags & M_EOR;
756 if (m->m_len == 0 &&
757 (eor == 0 ||
758 (((o = m->m_next) || (o = n)) &&
759 o->m_type == m->m_type))) {
760 m = m_free(m);
761 continue;
762 }
763 if (n && (n->m_flags & M_EOR) == 0 &&
764 /* M_TRAILINGSPACE() checks buffer writeability */
765 m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
766 m->m_len <= M_TRAILINGSPACE(n) &&
767 n->m_type == m->m_type) {
768 memcpy(mtod(n, caddr_t) + n->m_len, mtod(m, caddr_t),
769 (unsigned)m->m_len);
770 n->m_len += m->m_len;
771 sb->sb_cc += m->m_len;
772 m = m_free(m);
773 continue;
774 }
775 if (n)
776 n->m_next = m;
777 else
778 sb->sb_mb = m;
779 sb->sb_mbtail = m;
780 sballoc(sb, m);
781 n = m;
782 m->m_flags &= ~M_EOR;
783 m = m->m_next;
784 n->m_next = 0;
785 }
786 if (eor) {
787 if (n)
788 n->m_flags |= eor;
789 else
790 printf("semi-panic: sbcompress\n");
791 }
792 SBLASTMBUFCHK(sb, __func__);
793 }
794
795 /*
796 * Free all mbufs in a sockbuf.
797 * Check that all resources are reclaimed.
798 */
799 void
800 sbflush(struct sockbuf *sb)
801 {
802
803 KASSERT((sb->sb_flags & SB_LOCK) == 0);
804
805 while (sb->sb_mbcnt)
806 sbdrop(sb, (int)sb->sb_cc);
807
808 KASSERT(sb->sb_cc == 0);
809 KASSERT(sb->sb_mb == NULL);
810 KASSERT(sb->sb_mbtail == NULL);
811 KASSERT(sb->sb_lastrecord == NULL);
812 }
813
814 /*
815 * Drop data from (the front of) a sockbuf.
816 */
817 void
818 sbdrop(struct sockbuf *sb, int len)
819 {
820 struct mbuf *m, *mn, *next;
821
822 next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
823 while (len > 0) {
824 if (m == 0) {
825 if (next == 0)
826 panic("sbdrop");
827 m = next;
828 next = m->m_nextpkt;
829 continue;
830 }
831 if (m->m_len > len) {
832 m->m_len -= len;
833 m->m_data += len;
834 sb->sb_cc -= len;
835 break;
836 }
837 len -= m->m_len;
838 sbfree(sb, m);
839 MFREE(m, mn);
840 m = mn;
841 }
842 while (m && m->m_len == 0) {
843 sbfree(sb, m);
844 MFREE(m, mn);
845 m = mn;
846 }
847 if (m) {
848 sb->sb_mb = m;
849 m->m_nextpkt = next;
850 } else
851 sb->sb_mb = next;
852 /*
853 * First part is an inline SB_EMPTY_FIXUP(). Second part
854 * makes sure sb_lastrecord is up-to-date if we dropped
855 * part of the last record.
856 */
857 m = sb->sb_mb;
858 if (m == NULL) {
859 sb->sb_mbtail = NULL;
860 sb->sb_lastrecord = NULL;
861 } else if (m->m_nextpkt == NULL)
862 sb->sb_lastrecord = m;
863 }
864
865 /*
866 * Drop a record off the front of a sockbuf
867 * and move the next record to the front.
868 */
869 void
870 sbdroprecord(struct sockbuf *sb)
871 {
872 struct mbuf *m, *mn;
873
874 m = sb->sb_mb;
875 if (m) {
876 sb->sb_mb = m->m_nextpkt;
877 do {
878 sbfree(sb, m);
879 MFREE(m, mn);
880 } while ((m = mn) != NULL);
881 }
882 SB_EMPTY_FIXUP(sb);
883 }
884
885 /*
886 * Create a "control" mbuf containing the specified data
887 * with the specified type for presentation on a socket buffer.
888 */
889 struct mbuf *
890 sbcreatecontrol(caddr_t p, int size, int type, int level)
891 {
892 struct cmsghdr *cp;
893 struct mbuf *m;
894
895 if (CMSG_SPACE(size) > MCLBYTES) {
896 printf("sbcreatecontrol: message too large %d\n", size);
897 return NULL;
898 }
899
900 if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
901 return ((struct mbuf *) NULL);
902 if (CMSG_SPACE(size) > MLEN) {
903 MCLGET(m, M_DONTWAIT);
904 if ((m->m_flags & M_EXT) == 0) {
905 m_free(m);
906 return NULL;
907 }
908 }
909 cp = mtod(m, struct cmsghdr *);
910 memcpy(CMSG_DATA(cp), p, size);
911 m->m_len = CMSG_SPACE(size);
912 cp->cmsg_len = CMSG_LEN(size);
913 cp->cmsg_level = level;
914 cp->cmsg_type = type;
915 return (m);
916 }
917