uipc_socket2.c revision 1.5 1 /*
2 * Copyright (c) 1982, 1986, 1988, 1990 Regents of the University of California.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 * from: @(#)uipc_socket2.c 7.17 (Berkeley) 5/4/91
34 * $Id: uipc_socket2.c,v 1.5 1993/12/18 04:22:30 mycroft Exp $
35 */
36
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/proc.h>
40 #include <sys/file.h>
41 #include <sys/buf.h>
42 #include <sys/malloc.h>
43 #include <sys/select.h>
44 #include <sys/mbuf.h>
45 #include <sys/protosw.h>
46 #include <sys/socket.h>
47 #include <sys/socketvar.h>
48
49 /*
50 * Primitive routines for operating on sockets and socket buffers
51 */
52
53 /* strings for sleep message: */
54 char netio[] = "netio";
55 char netcon[] = "netcon";
56 char netcls[] = "netcls";
57
58 u_long sb_max = SB_MAX; /* patchable */
59
60 /*
61 * Procedures to manipulate state flags of socket
62 * and do appropriate wakeups. Normal sequence from the
63 * active (originating) side is that soisconnecting() is
64 * called during processing of connect() call,
65 * resulting in an eventual call to soisconnected() if/when the
66 * connection is established. When the connection is torn down
67 * soisdisconnecting() is called during processing of disconnect() call,
68 * and soisdisconnected() is called when the connection to the peer
69 * is totally severed. The semantics of these routines are such that
70 * connectionless protocols can call soisconnected() and soisdisconnected()
71 * only, bypassing the in-progress calls when setting up a ``connection''
72 * takes no time.
73 *
74 * From the passive side, a socket is created with
75 * two queues of sockets: so_q0 for connections in progress
76 * and so_q for connections already made and awaiting user acceptance.
77 * As a protocol is preparing incoming connections, it creates a socket
78 * structure queued on so_q0 by calling sonewconn(). When the connection
79 * is established, soisconnected() is called, and transfers the
80 * socket structure to so_q, making it available to accept().
81 *
82 * If a socket is closed with sockets on either
83 * so_q0 or so_q, these sockets are dropped.
84 *
85 * If higher level protocols are implemented in
86 * the kernel, the wakeups done here will sometimes
87 * cause software-interrupt process scheduling.
88 */
89
90 soisconnecting(so)
91 register struct socket *so;
92 {
93
94 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
95 so->so_state |= SS_ISCONNECTING;
96 }
97
98 soisconnected(so)
99 register struct socket *so;
100 {
101 register struct socket *head = so->so_head;
102
103 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
104 so->so_state |= SS_ISCONNECTED;
105 if (head && soqremque(so, 0)) {
106 soqinsque(head, so, 1);
107 sorwakeup(head);
108 wakeup((caddr_t)&head->so_timeo);
109 } else {
110 wakeup((caddr_t)&so->so_timeo);
111 sorwakeup(so);
112 sowwakeup(so);
113 }
114 }
115
116 soisdisconnecting(so)
117 register struct socket *so;
118 {
119
120 so->so_state &= ~SS_ISCONNECTING;
121 so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
122 wakeup((caddr_t)&so->so_timeo);
123 sowwakeup(so);
124 sorwakeup(so);
125 }
126
127 soisdisconnected(so)
128 register struct socket *so;
129 {
130
131 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
132 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE);
133 wakeup((caddr_t)&so->so_timeo);
134 sowwakeup(so);
135 sorwakeup(so);
136 }
137
138 /*
139 * When an attempt at a new connection is noted on a socket
140 * which accepts connections, sonewconn is called. If the
141 * connection is possible (subject to space constraints, etc.)
142 * then we allocate a new structure, propoerly linked into the
143 * data structure of the original socket, and return this.
144 * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
145 *
146 * Currently, sonewconn() is defined as sonewconn1() in socketvar.h
147 * to catch calls that are missing the (new) second parameter.
148 */
149 struct socket *
150 sonewconn1(head, connstatus)
151 register struct socket *head;
152 int connstatus;
153 {
154 register struct socket *so;
155 int soqueue = connstatus ? 1 : 0;
156
157 if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
158 return ((struct socket *)0);
159 MALLOC(so, struct socket *, sizeof(*so), M_SOCKET, M_DONTWAIT);
160 if (so == NULL)
161 return ((struct socket *)0);
162 bzero((caddr_t)so, sizeof(*so));
163 so->so_type = head->so_type;
164 so->so_options = head->so_options &~ SO_ACCEPTCONN;
165 so->so_linger = head->so_linger;
166 so->so_state = head->so_state | SS_NOFDREF;
167 so->so_proto = head->so_proto;
168 so->so_timeo = head->so_timeo;
169 so->so_pgid = head->so_pgid;
170 (void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
171 soqinsque(head, so, soqueue);
172 if ((*so->so_proto->pr_usrreq)(so, PRU_ATTACH,
173 (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0)) {
174 (void) soqremque(so, soqueue);
175 (void) free((caddr_t)so, M_SOCKET);
176 return ((struct socket *)0);
177 }
178 if (connstatus) {
179 sorwakeup(head);
180 wakeup((caddr_t)&head->so_timeo);
181 so->so_state |= connstatus;
182 }
183 return (so);
184 }
185
186 soqinsque(head, so, q)
187 register struct socket *head, *so;
188 int q;
189 {
190
191 register struct socket **prev;
192 so->so_head = head;
193 if (q == 0) {
194 head->so_q0len++;
195 so->so_q0 = 0;
196 for (prev = &(head->so_q0); *prev; )
197 prev = &((*prev)->so_q0);
198 } else {
199 head->so_qlen++;
200 so->so_q = 0;
201 for (prev = &(head->so_q); *prev; )
202 prev = &((*prev)->so_q);
203 }
204 *prev = so;
205 }
206
207 soqremque(so, q)
208 register struct socket *so;
209 int q;
210 {
211 register struct socket *head, *prev, *next;
212
213 head = so->so_head;
214 prev = head;
215 for (;;) {
216 next = q ? prev->so_q : prev->so_q0;
217 if (next == so)
218 break;
219 if (next == 0)
220 return (0);
221 prev = next;
222 }
223 if (q == 0) {
224 prev->so_q0 = next->so_q0;
225 head->so_q0len--;
226 } else {
227 prev->so_q = next->so_q;
228 head->so_qlen--;
229 }
230 next->so_q0 = next->so_q = 0;
231 next->so_head = 0;
232 return (1);
233 }
234
235 /*
236 * Socantsendmore indicates that no more data will be sent on the
237 * socket; it would normally be applied to a socket when the user
238 * informs the system that no more data is to be sent, by the protocol
239 * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data
240 * will be received, and will normally be applied to the socket by a
241 * protocol when it detects that the peer will send no more data.
242 * Data queued for reading in the socket may yet be read.
243 */
244
245 void
246 socantsendmore(so)
247 struct socket *so;
248 {
249
250 so->so_state |= SS_CANTSENDMORE;
251 sowwakeup(so);
252 }
253
254 void
255 socantrcvmore(so)
256 struct socket *so;
257 {
258
259 so->so_state |= SS_CANTRCVMORE;
260 sorwakeup(so);
261 }
262
263 /*
264 * Socket select/wakeup routines.
265 */
266
267 /*
268 * Queue a process for a select on a socket buffer.
269 */
270 sbselqueue(sb, cp)
271 struct sockbuf *sb;
272 struct proc *cp;
273 {
274 selrecord(cp, &sb->sb_sel);
275 sb->sb_flags |= SB_SEL;
276 }
277
278 /*
279 * Wait for data to arrive at/drain from a socket buffer.
280 */
281 sbwait(sb)
282 struct sockbuf *sb;
283 {
284
285 sb->sb_flags |= SB_WAIT;
286 return (tsleep((caddr_t)&sb->sb_cc,
287 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, netio,
288 sb->sb_timeo));
289 }
290
291 /*
292 * Lock a sockbuf already known to be locked;
293 * return any error returned from sleep (EINTR).
294 */
295 sb_lock(sb)
296 register struct sockbuf *sb;
297 {
298 int error;
299
300 while (sb->sb_flags & SB_LOCK) {
301 sb->sb_flags |= SB_WANT;
302 if (error = tsleep((caddr_t)&sb->sb_flags,
303 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK|PCATCH,
304 netio, 0))
305 return (error);
306 }
307 sb->sb_flags |= SB_LOCK;
308 return (0);
309 }
310
311 /*
312 * Wakeup processes waiting on a socket buffer.
313 * Do asynchronous notification via SIGIO
314 * if the socket has the SS_ASYNC flag set.
315 */
316 sowakeup(so, sb)
317 register struct socket *so;
318 register struct sockbuf *sb;
319 {
320 struct proc *p;
321
322 selwakeup(&sb->sb_sel);
323 sb->sb_flags &= ~SB_SEL;
324 if (sb->sb_flags & SB_WAIT) {
325 sb->sb_flags &= ~SB_WAIT;
326 wakeup((caddr_t)&sb->sb_cc);
327 }
328 if (so->so_state & SS_ASYNC) {
329 if (so->so_pgid < 0)
330 gsignal(-so->so_pgid, SIGIO);
331 else if (so->so_pgid > 0 && (p = pfind(so->so_pgid)) != 0)
332 psignal(p, SIGIO);
333 }
334 }
335
336 /*
337 * Socket buffer (struct sockbuf) utility routines.
338 *
339 * Each socket contains two socket buffers: one for sending data and
340 * one for receiving data. Each buffer contains a queue of mbufs,
341 * information about the number of mbufs and amount of data in the
342 * queue, and other fields allowing select() statements and notification
343 * on data availability to be implemented.
344 *
345 * Data stored in a socket buffer is maintained as a list of records.
346 * Each record is a list of mbufs chained together with the m_next
347 * field. Records are chained together with the m_nextpkt field. The upper
348 * level routine soreceive() expects the following conventions to be
349 * observed when placing information in the receive buffer:
350 *
351 * 1. If the protocol requires each message be preceded by the sender's
352 * name, then a record containing that name must be present before
353 * any associated data (mbuf's must be of type MT_SONAME).
354 * 2. If the protocol supports the exchange of ``access rights'' (really
355 * just additional data associated with the message), and there are
356 * ``rights'' to be received, then a record containing this data
357 * should be present (mbuf's must be of type MT_RIGHTS).
358 * 3. If a name or rights record exists, then it must be followed by
359 * a data record, perhaps of zero length.
360 *
361 * Before using a new socket structure it is first necessary to reserve
362 * buffer space to the socket, by calling sbreserve(). This should commit
363 * some of the available buffer space in the system buffer pool for the
364 * socket (currently, it does nothing but enforce limits). The space
365 * should be released by calling sbrelease() when the socket is destroyed.
366 */
367
368 soreserve(so, sndcc, rcvcc)
369 register struct socket *so;
370 u_long sndcc, rcvcc;
371 {
372
373 if (sbreserve(&so->so_snd, sndcc) == 0)
374 goto bad;
375 if (sbreserve(&so->so_rcv, rcvcc) == 0)
376 goto bad2;
377 if (so->so_rcv.sb_lowat == 0)
378 so->so_rcv.sb_lowat = 1;
379 if (so->so_snd.sb_lowat == 0)
380 so->so_snd.sb_lowat = MCLBYTES;
381 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
382 so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
383 return (0);
384 bad2:
385 sbrelease(&so->so_snd);
386 bad:
387 return (ENOBUFS);
388 }
389
390 /*
391 * Allot mbufs to a sockbuf.
392 * Attempt to scale mbmax so that mbcnt doesn't become limiting
393 * if buffering efficiency is near the normal case.
394 */
395 sbreserve(sb, cc)
396 struct sockbuf *sb;
397 u_long cc;
398 {
399
400 if (cc > sb_max * MCLBYTES / (MSIZE + MCLBYTES))
401 return (0);
402 sb->sb_hiwat = cc;
403 sb->sb_mbmax = min(cc * 2, sb_max);
404 if (sb->sb_lowat > sb->sb_hiwat)
405 sb->sb_lowat = sb->sb_hiwat;
406 return (1);
407 }
408
409 /*
410 * Free mbufs held by a socket, and reserved mbuf space.
411 */
412 sbrelease(sb)
413 struct sockbuf *sb;
414 {
415
416 sbflush(sb);
417 sb->sb_hiwat = sb->sb_mbmax = 0;
418 }
419
420 /*
421 * Routines to add and remove
422 * data from an mbuf queue.
423 *
424 * The routines sbappend() or sbappendrecord() are normally called to
425 * append new mbufs to a socket buffer, after checking that adequate
426 * space is available, comparing the function sbspace() with the amount
427 * of data to be added. sbappendrecord() differs from sbappend() in
428 * that data supplied is treated as the beginning of a new record.
429 * To place a sender's address, optional access rights, and data in a
430 * socket receive buffer, sbappendaddr() should be used. To place
431 * access rights and data in a socket receive buffer, sbappendrights()
432 * should be used. In either case, the new data begins a new record.
433 * Note that unlike sbappend() and sbappendrecord(), these routines check
434 * for the caller that there will be enough space to store the data.
435 * Each fails if there is not enough space, or if it cannot find mbufs
436 * to store additional information in.
437 *
438 * Reliable protocols may use the socket send buffer to hold data
439 * awaiting acknowledgement. Data is normally copied from a socket
440 * send buffer in a protocol with m_copy for output to a peer,
441 * and then removing the data from the socket buffer with sbdrop()
442 * or sbdroprecord() when the data is acknowledged by the peer.
443 */
444
445 /*
446 * Append mbuf chain m to the last record in the
447 * socket buffer sb. The additional space associated
448 * the mbuf chain is recorded in sb. Empty mbufs are
449 * discarded and mbufs are compacted where possible.
450 */
451 sbappend(sb, m)
452 struct sockbuf *sb;
453 struct mbuf *m;
454 {
455 register struct mbuf *n;
456
457 if (m == 0)
458 return;
459 if (n = sb->sb_mb) {
460 while (n->m_nextpkt)
461 n = n->m_nextpkt;
462 do {
463 if (n->m_flags & M_EOR) {
464 sbappendrecord(sb, m); /* XXXXXX!!!! */
465 return;
466 }
467 } while (n->m_next && (n = n->m_next));
468 }
469 sbcompress(sb, m, n);
470 }
471
472 #ifdef SOCKBUF_DEBUG
473 sbcheck(sb)
474 register struct sockbuf *sb;
475 {
476 register struct mbuf *m;
477 register int len = 0, mbcnt = 0;
478
479 for (m = sb->sb_mb; m; m = m->m_next) {
480 len += m->m_len;
481 mbcnt += MSIZE;
482 if (m->m_flags & M_EXT)
483 mbcnt += m->m_ext.ext_size;
484 if (m->m_nextpkt)
485 panic("sbcheck nextpkt");
486 }
487 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
488 printf("cc %d != %d || mbcnt %d != %d\n", len, sb->sb_cc,
489 mbcnt, sb->sb_mbcnt);
490 panic("sbcheck");
491 }
492 }
493 #endif
494
495 /*
496 * As above, except the mbuf chain
497 * begins a new record.
498 */
499 sbappendrecord(sb, m0)
500 register struct sockbuf *sb;
501 register struct mbuf *m0;
502 {
503 register struct mbuf *m;
504
505 if (m0 == 0)
506 return;
507 if (m = sb->sb_mb)
508 while (m->m_nextpkt)
509 m = m->m_nextpkt;
510 /*
511 * Put the first mbuf on the queue.
512 * Note this permits zero length records.
513 */
514 sballoc(sb, m0);
515 if (m)
516 m->m_nextpkt = m0;
517 else
518 sb->sb_mb = m0;
519 m = m0->m_next;
520 m0->m_next = 0;
521 if (m && (m0->m_flags & M_EOR)) {
522 m0->m_flags &= ~M_EOR;
523 m->m_flags |= M_EOR;
524 }
525 sbcompress(sb, m, m0);
526 }
527
528 /*
529 * As above except that OOB data
530 * is inserted at the beginning of the sockbuf,
531 * but after any other OOB data.
532 */
533 sbinsertoob(sb, m0)
534 register struct sockbuf *sb;
535 register struct mbuf *m0;
536 {
537 register struct mbuf *m;
538 register struct mbuf **mp;
539
540 if (m0 == 0)
541 return;
542 for (mp = &sb->sb_mb; m = *mp; mp = &((*mp)->m_nextpkt)) {
543 again:
544 switch (m->m_type) {
545
546 case MT_OOBDATA:
547 continue; /* WANT next train */
548
549 case MT_CONTROL:
550 if (m = m->m_next)
551 goto again; /* inspect THIS train further */
552 }
553 break;
554 }
555 /*
556 * Put the first mbuf on the queue.
557 * Note this permits zero length records.
558 */
559 sballoc(sb, m0);
560 m0->m_nextpkt = *mp;
561 *mp = m0;
562 m = m0->m_next;
563 m0->m_next = 0;
564 if (m && (m0->m_flags & M_EOR)) {
565 m0->m_flags &= ~M_EOR;
566 m->m_flags |= M_EOR;
567 }
568 sbcompress(sb, m, m0);
569 }
570
571 /*
572 * Append address and data, and optionally, control (ancillary) data
573 * to the receive queue of a socket. If present,
574 * m0 must include a packet header with total length.
575 * Returns 0 if no space in sockbuf or insufficient mbufs.
576 */
577 sbappendaddr(sb, asa, m0, control)
578 register struct sockbuf *sb;
579 struct sockaddr *asa;
580 struct mbuf *m0, *control;
581 {
582 register struct mbuf *m, *n;
583 int space = asa->sa_len;
584
585 if (m0 && (m0->m_flags & M_PKTHDR) == 0)
586 panic("sbappendaddr");
587 if (m0)
588 space += m0->m_pkthdr.len;
589 for (n = control; n; n = n->m_next) {
590 space += n->m_len;
591 if (n->m_next == 0) /* keep pointer to last control buf */
592 break;
593 }
594 if (space > sbspace(sb))
595 return (0);
596 if (asa->sa_len > MLEN)
597 return (0);
598 MGET(m, M_DONTWAIT, MT_SONAME);
599 if (m == 0)
600 return (0);
601 m->m_len = asa->sa_len;
602 bcopy((caddr_t)asa, mtod(m, caddr_t), asa->sa_len);
603 if (n)
604 n->m_next = m0; /* concatenate data to control */
605 else
606 control = m0;
607 m->m_next = control;
608 for (n = m; n; n = n->m_next)
609 sballoc(sb, n);
610 if (n = sb->sb_mb) {
611 while (n->m_nextpkt)
612 n = n->m_nextpkt;
613 n->m_nextpkt = m;
614 } else
615 sb->sb_mb = m;
616 return (1);
617 }
618
619 sbappendcontrol(sb, m0, control)
620 struct sockbuf *sb;
621 struct mbuf *control, *m0;
622 {
623 register struct mbuf *m, *n;
624 int space = 0;
625
626 if (control == 0)
627 panic("sbappendcontrol");
628 for (m = control; ; m = m->m_next) {
629 space += m->m_len;
630 if (m->m_next == 0)
631 break;
632 }
633 n = m; /* save pointer to last control buffer */
634 for (m = m0; m; m = m->m_next)
635 space += m->m_len;
636 if (space > sbspace(sb))
637 return (0);
638 n->m_next = m0; /* concatenate data to control */
639 for (m = control; m; m = m->m_next)
640 sballoc(sb, m);
641 if (n = sb->sb_mb) {
642 while (n->m_nextpkt)
643 n = n->m_nextpkt;
644 n->m_nextpkt = control;
645 } else
646 sb->sb_mb = control;
647 return (1);
648 }
649
650 /*
651 * Compress mbuf chain m into the socket
652 * buffer sb following mbuf n. If n
653 * is null, the buffer is presumed empty.
654 */
655 sbcompress(sb, m, n)
656 register struct sockbuf *sb;
657 register struct mbuf *m, *n;
658 {
659 register int eor = 0;
660 register struct mbuf *o;
661
662 while (m) {
663 eor |= m->m_flags & M_EOR;
664 if (m->m_len == 0 &&
665 (eor == 0 ||
666 (((o = m->m_next) || (o = n)) &&
667 o->m_type == m->m_type))) {
668 m = m_free(m);
669 continue;
670 }
671 if (n && (n->m_flags & (M_EXT | M_EOR)) == 0 &&
672 (n->m_data + n->m_len + m->m_len) < &n->m_dat[MLEN] &&
673 n->m_type == m->m_type) {
674 bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len,
675 (unsigned)m->m_len);
676 n->m_len += m->m_len;
677 sb->sb_cc += m->m_len;
678 m = m_free(m);
679 continue;
680 }
681 if (n)
682 n->m_next = m;
683 else
684 sb->sb_mb = m;
685 sballoc(sb, m);
686 n = m;
687 m->m_flags &= ~M_EOR;
688 m = m->m_next;
689 n->m_next = 0;
690 }
691 if (eor) {
692 if (n)
693 n->m_flags |= eor;
694 else
695 printf("semi-panic: sbcompress\n");
696 }
697 }
698
699 /*
700 * Free all mbufs in a sockbuf.
701 * Check that all resources are reclaimed.
702 */
703 sbflush(sb)
704 register struct sockbuf *sb;
705 {
706
707 if (sb->sb_flags & SB_LOCK)
708 panic("sbflush");
709 while (sb->sb_mbcnt)
710 sbdrop(sb, (int)sb->sb_cc);
711 if (sb->sb_cc || sb->sb_mb)
712 panic("sbflush 2");
713 }
714
715 /*
716 * Drop data from (the front of) a sockbuf.
717 */
718 sbdrop(sb, len)
719 register struct sockbuf *sb;
720 register int len;
721 {
722 register struct mbuf *m, *mn;
723 struct mbuf *next;
724
725 next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
726 while (len > 0) {
727 if (m == 0) {
728 if (next == 0)
729 panic("sbdrop");
730 m = next;
731 next = m->m_nextpkt;
732 continue;
733 }
734 if (m->m_len > len) {
735 m->m_len -= len;
736 m->m_data += len;
737 sb->sb_cc -= len;
738 break;
739 }
740 len -= m->m_len;
741 sbfree(sb, m);
742 MFREE(m, mn);
743 m = mn;
744 }
745 while (m && m->m_len == 0) {
746 sbfree(sb, m);
747 MFREE(m, mn);
748 m = mn;
749 }
750 if (m) {
751 sb->sb_mb = m;
752 m->m_nextpkt = next;
753 } else
754 sb->sb_mb = next;
755 }
756
757 /*
758 * Drop a record off the front of a sockbuf
759 * and move the next record to the front.
760 */
761 sbdroprecord(sb)
762 register struct sockbuf *sb;
763 {
764 register struct mbuf *m, *mn;
765
766 m = sb->sb_mb;
767 if (m) {
768 sb->sb_mb = m->m_nextpkt;
769 do {
770 sbfree(sb, m);
771 MFREE(m, mn);
772 } while (m = mn);
773 }
774 }
775