Home | History | Annotate | Line # | Download | only in kern
uipc_socket2.c revision 1.5
      1 /*
      2  * Copyright (c) 1982, 1986, 1988, 1990 Regents of the University of California.
      3  * All rights reserved.
      4  *
      5  * Redistribution and use in source and binary forms, with or without
      6  * modification, are permitted provided that the following conditions
      7  * are met:
      8  * 1. Redistributions of source code must retain the above copyright
      9  *    notice, this list of conditions and the following disclaimer.
     10  * 2. Redistributions in binary form must reproduce the above copyright
     11  *    notice, this list of conditions and the following disclaimer in the
     12  *    documentation and/or other materials provided with the distribution.
     13  * 3. All advertising materials mentioning features or use of this software
     14  *    must display the following acknowledgement:
     15  *	This product includes software developed by the University of
     16  *	California, Berkeley and its contributors.
     17  * 4. Neither the name of the University nor the names of its contributors
     18  *    may be used to endorse or promote products derived from this software
     19  *    without specific prior written permission.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     31  * SUCH DAMAGE.
     32  *
     33  *	from: @(#)uipc_socket2.c	7.17 (Berkeley) 5/4/91
     34  *	$Id: uipc_socket2.c,v 1.5 1993/12/18 04:22:30 mycroft Exp $
     35  */
     36 
     37 #include <sys/param.h>
     38 #include <sys/systm.h>
     39 #include <sys/proc.h>
     40 #include <sys/file.h>
     41 #include <sys/buf.h>
     42 #include <sys/malloc.h>
     43 #include <sys/select.h>
     44 #include <sys/mbuf.h>
     45 #include <sys/protosw.h>
     46 #include <sys/socket.h>
     47 #include <sys/socketvar.h>
     48 
     49 /*
     50  * Primitive routines for operating on sockets and socket buffers
     51  */
     52 
     53 /* strings for sleep message: */
     54 char	netio[] = "netio";
     55 char	netcon[] = "netcon";
     56 char	netcls[] = "netcls";
     57 
     58 u_long	sb_max = SB_MAX;		/* patchable */
     59 
     60 /*
     61  * Procedures to manipulate state flags of socket
     62  * and do appropriate wakeups.  Normal sequence from the
     63  * active (originating) side is that soisconnecting() is
     64  * called during processing of connect() call,
     65  * resulting in an eventual call to soisconnected() if/when the
     66  * connection is established.  When the connection is torn down
     67  * soisdisconnecting() is called during processing of disconnect() call,
     68  * and soisdisconnected() is called when the connection to the peer
     69  * is totally severed.  The semantics of these routines are such that
     70  * connectionless protocols can call soisconnected() and soisdisconnected()
     71  * only, bypassing the in-progress calls when setting up a ``connection''
     72  * takes no time.
     73  *
     74  * From the passive side, a socket is created with
     75  * two queues of sockets: so_q0 for connections in progress
     76  * and so_q for connections already made and awaiting user acceptance.
     77  * As a protocol is preparing incoming connections, it creates a socket
     78  * structure queued on so_q0 by calling sonewconn().  When the connection
     79  * is established, soisconnected() is called, and transfers the
     80  * socket structure to so_q, making it available to accept().
     81  *
     82  * If a socket is closed with sockets on either
     83  * so_q0 or so_q, these sockets are dropped.
     84  *
     85  * If higher level protocols are implemented in
     86  * the kernel, the wakeups done here will sometimes
     87  * cause software-interrupt process scheduling.
     88  */
     89 
     90 soisconnecting(so)
     91 	register struct socket *so;
     92 {
     93 
     94 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
     95 	so->so_state |= SS_ISCONNECTING;
     96 }
     97 
     98 soisconnected(so)
     99 	register struct socket *so;
    100 {
    101 	register struct socket *head = so->so_head;
    102 
    103 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
    104 	so->so_state |= SS_ISCONNECTED;
    105 	if (head && soqremque(so, 0)) {
    106 		soqinsque(head, so, 1);
    107 		sorwakeup(head);
    108 		wakeup((caddr_t)&head->so_timeo);
    109 	} else {
    110 		wakeup((caddr_t)&so->so_timeo);
    111 		sorwakeup(so);
    112 		sowwakeup(so);
    113 	}
    114 }
    115 
    116 soisdisconnecting(so)
    117 	register struct socket *so;
    118 {
    119 
    120 	so->so_state &= ~SS_ISCONNECTING;
    121 	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
    122 	wakeup((caddr_t)&so->so_timeo);
    123 	sowwakeup(so);
    124 	sorwakeup(so);
    125 }
    126 
    127 soisdisconnected(so)
    128 	register struct socket *so;
    129 {
    130 
    131 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
    132 	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE);
    133 	wakeup((caddr_t)&so->so_timeo);
    134 	sowwakeup(so);
    135 	sorwakeup(so);
    136 }
    137 
    138 /*
    139  * When an attempt at a new connection is noted on a socket
    140  * which accepts connections, sonewconn is called.  If the
    141  * connection is possible (subject to space constraints, etc.)
    142  * then we allocate a new structure, propoerly linked into the
    143  * data structure of the original socket, and return this.
    144  * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
    145  *
    146  * Currently, sonewconn() is defined as sonewconn1() in socketvar.h
    147  * to catch calls that are missing the (new) second parameter.
    148  */
    149 struct socket *
    150 sonewconn1(head, connstatus)
    151 	register struct socket *head;
    152 	int connstatus;
    153 {
    154 	register struct socket *so;
    155 	int soqueue = connstatus ? 1 : 0;
    156 
    157 	if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
    158 		return ((struct socket *)0);
    159 	MALLOC(so, struct socket *, sizeof(*so), M_SOCKET, M_DONTWAIT);
    160 	if (so == NULL)
    161 		return ((struct socket *)0);
    162 	bzero((caddr_t)so, sizeof(*so));
    163 	so->so_type = head->so_type;
    164 	so->so_options = head->so_options &~ SO_ACCEPTCONN;
    165 	so->so_linger = head->so_linger;
    166 	so->so_state = head->so_state | SS_NOFDREF;
    167 	so->so_proto = head->so_proto;
    168 	so->so_timeo = head->so_timeo;
    169 	so->so_pgid = head->so_pgid;
    170 	(void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
    171 	soqinsque(head, so, soqueue);
    172 	if ((*so->so_proto->pr_usrreq)(so, PRU_ATTACH,
    173 	    (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0)) {
    174 		(void) soqremque(so, soqueue);
    175 		(void) free((caddr_t)so, M_SOCKET);
    176 		return ((struct socket *)0);
    177 	}
    178 	if (connstatus) {
    179 		sorwakeup(head);
    180 		wakeup((caddr_t)&head->so_timeo);
    181 		so->so_state |= connstatus;
    182 	}
    183 	return (so);
    184 }
    185 
    186 soqinsque(head, so, q)
    187 	register struct socket *head, *so;
    188 	int q;
    189 {
    190 
    191 	register struct socket **prev;
    192 	so->so_head = head;
    193 	if (q == 0) {
    194 		head->so_q0len++;
    195 		so->so_q0 = 0;
    196 		for (prev = &(head->so_q0); *prev; )
    197 			prev = &((*prev)->so_q0);
    198 	} else {
    199 		head->so_qlen++;
    200 		so->so_q = 0;
    201 		for (prev = &(head->so_q); *prev; )
    202 			prev = &((*prev)->so_q);
    203 	}
    204 	*prev = so;
    205 }
    206 
    207 soqremque(so, q)
    208 	register struct socket *so;
    209 	int q;
    210 {
    211 	register struct socket *head, *prev, *next;
    212 
    213 	head = so->so_head;
    214 	prev = head;
    215 	for (;;) {
    216 		next = q ? prev->so_q : prev->so_q0;
    217 		if (next == so)
    218 			break;
    219 		if (next == 0)
    220 			return (0);
    221 		prev = next;
    222 	}
    223 	if (q == 0) {
    224 		prev->so_q0 = next->so_q0;
    225 		head->so_q0len--;
    226 	} else {
    227 		prev->so_q = next->so_q;
    228 		head->so_qlen--;
    229 	}
    230 	next->so_q0 = next->so_q = 0;
    231 	next->so_head = 0;
    232 	return (1);
    233 }
    234 
    235 /*
    236  * Socantsendmore indicates that no more data will be sent on the
    237  * socket; it would normally be applied to a socket when the user
    238  * informs the system that no more data is to be sent, by the protocol
    239  * code (in case PRU_SHUTDOWN).  Socantrcvmore indicates that no more data
    240  * will be received, and will normally be applied to the socket by a
    241  * protocol when it detects that the peer will send no more data.
    242  * Data queued for reading in the socket may yet be read.
    243  */
    244 
    245 void
    246 socantsendmore(so)
    247 	struct socket *so;
    248 {
    249 
    250 	so->so_state |= SS_CANTSENDMORE;
    251 	sowwakeup(so);
    252 }
    253 
    254 void
    255 socantrcvmore(so)
    256 	struct socket *so;
    257 {
    258 
    259 	so->so_state |= SS_CANTRCVMORE;
    260 	sorwakeup(so);
    261 }
    262 
    263 /*
    264  * Socket select/wakeup routines.
    265  */
    266 
    267 /*
    268  * Queue a process for a select on a socket buffer.
    269  */
    270 sbselqueue(sb, cp)
    271 	struct sockbuf *sb;
    272 	struct proc *cp;
    273 {
    274 	selrecord(cp, &sb->sb_sel);
    275 	sb->sb_flags |= SB_SEL;
    276 }
    277 
    278 /*
    279  * Wait for data to arrive at/drain from a socket buffer.
    280  */
    281 sbwait(sb)
    282 	struct sockbuf *sb;
    283 {
    284 
    285 	sb->sb_flags |= SB_WAIT;
    286 	return (tsleep((caddr_t)&sb->sb_cc,
    287 	    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, netio,
    288 	    sb->sb_timeo));
    289 }
    290 
    291 /*
    292  * Lock a sockbuf already known to be locked;
    293  * return any error returned from sleep (EINTR).
    294  */
    295 sb_lock(sb)
    296 	register struct sockbuf *sb;
    297 {
    298 	int error;
    299 
    300 	while (sb->sb_flags & SB_LOCK) {
    301 		sb->sb_flags |= SB_WANT;
    302 		if (error = tsleep((caddr_t)&sb->sb_flags,
    303 		    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK|PCATCH,
    304 		    netio, 0))
    305 			return (error);
    306 	}
    307 	sb->sb_flags |= SB_LOCK;
    308 	return (0);
    309 }
    310 
    311 /*
    312  * Wakeup processes waiting on a socket buffer.
    313  * Do asynchronous notification via SIGIO
    314  * if the socket has the SS_ASYNC flag set.
    315  */
    316 sowakeup(so, sb)
    317 	register struct socket *so;
    318 	register struct sockbuf *sb;
    319 {
    320 	struct proc *p;
    321 
    322 	selwakeup(&sb->sb_sel);
    323         sb->sb_flags &= ~SB_SEL;
    324 	if (sb->sb_flags & SB_WAIT) {
    325 		sb->sb_flags &= ~SB_WAIT;
    326 		wakeup((caddr_t)&sb->sb_cc);
    327 	}
    328 	if (so->so_state & SS_ASYNC) {
    329 		if (so->so_pgid < 0)
    330 			gsignal(-so->so_pgid, SIGIO);
    331 		else if (so->so_pgid > 0 && (p = pfind(so->so_pgid)) != 0)
    332 			psignal(p, SIGIO);
    333 	}
    334 }
    335 
    336 /*
    337  * Socket buffer (struct sockbuf) utility routines.
    338  *
    339  * Each socket contains two socket buffers: one for sending data and
    340  * one for receiving data.  Each buffer contains a queue of mbufs,
    341  * information about the number of mbufs and amount of data in the
    342  * queue, and other fields allowing select() statements and notification
    343  * on data availability to be implemented.
    344  *
    345  * Data stored in a socket buffer is maintained as a list of records.
    346  * Each record is a list of mbufs chained together with the m_next
    347  * field.  Records are chained together with the m_nextpkt field. The upper
    348  * level routine soreceive() expects the following conventions to be
    349  * observed when placing information in the receive buffer:
    350  *
    351  * 1. If the protocol requires each message be preceded by the sender's
    352  *    name, then a record containing that name must be present before
    353  *    any associated data (mbuf's must be of type MT_SONAME).
    354  * 2. If the protocol supports the exchange of ``access rights'' (really
    355  *    just additional data associated with the message), and there are
    356  *    ``rights'' to be received, then a record containing this data
    357  *    should be present (mbuf's must be of type MT_RIGHTS).
    358  * 3. If a name or rights record exists, then it must be followed by
    359  *    a data record, perhaps of zero length.
    360  *
    361  * Before using a new socket structure it is first necessary to reserve
    362  * buffer space to the socket, by calling sbreserve().  This should commit
    363  * some of the available buffer space in the system buffer pool for the
    364  * socket (currently, it does nothing but enforce limits).  The space
    365  * should be released by calling sbrelease() when the socket is destroyed.
    366  */
    367 
    368 soreserve(so, sndcc, rcvcc)
    369 	register struct socket *so;
    370 	u_long sndcc, rcvcc;
    371 {
    372 
    373 	if (sbreserve(&so->so_snd, sndcc) == 0)
    374 		goto bad;
    375 	if (sbreserve(&so->so_rcv, rcvcc) == 0)
    376 		goto bad2;
    377 	if (so->so_rcv.sb_lowat == 0)
    378 		so->so_rcv.sb_lowat = 1;
    379 	if (so->so_snd.sb_lowat == 0)
    380 		so->so_snd.sb_lowat = MCLBYTES;
    381 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
    382 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
    383 	return (0);
    384 bad2:
    385 	sbrelease(&so->so_snd);
    386 bad:
    387 	return (ENOBUFS);
    388 }
    389 
    390 /*
    391  * Allot mbufs to a sockbuf.
    392  * Attempt to scale mbmax so that mbcnt doesn't become limiting
    393  * if buffering efficiency is near the normal case.
    394  */
    395 sbreserve(sb, cc)
    396 	struct sockbuf *sb;
    397 	u_long cc;
    398 {
    399 
    400 	if (cc > sb_max * MCLBYTES / (MSIZE + MCLBYTES))
    401 		return (0);
    402 	sb->sb_hiwat = cc;
    403 	sb->sb_mbmax = min(cc * 2, sb_max);
    404 	if (sb->sb_lowat > sb->sb_hiwat)
    405 		sb->sb_lowat = sb->sb_hiwat;
    406 	return (1);
    407 }
    408 
    409 /*
    410  * Free mbufs held by a socket, and reserved mbuf space.
    411  */
    412 sbrelease(sb)
    413 	struct sockbuf *sb;
    414 {
    415 
    416 	sbflush(sb);
    417 	sb->sb_hiwat = sb->sb_mbmax = 0;
    418 }
    419 
    420 /*
    421  * Routines to add and remove
    422  * data from an mbuf queue.
    423  *
    424  * The routines sbappend() or sbappendrecord() are normally called to
    425  * append new mbufs to a socket buffer, after checking that adequate
    426  * space is available, comparing the function sbspace() with the amount
    427  * of data to be added.  sbappendrecord() differs from sbappend() in
    428  * that data supplied is treated as the beginning of a new record.
    429  * To place a sender's address, optional access rights, and data in a
    430  * socket receive buffer, sbappendaddr() should be used.  To place
    431  * access rights and data in a socket receive buffer, sbappendrights()
    432  * should be used.  In either case, the new data begins a new record.
    433  * Note that unlike sbappend() and sbappendrecord(), these routines check
    434  * for the caller that there will be enough space to store the data.
    435  * Each fails if there is not enough space, or if it cannot find mbufs
    436  * to store additional information in.
    437  *
    438  * Reliable protocols may use the socket send buffer to hold data
    439  * awaiting acknowledgement.  Data is normally copied from a socket
    440  * send buffer in a protocol with m_copy for output to a peer,
    441  * and then removing the data from the socket buffer with sbdrop()
    442  * or sbdroprecord() when the data is acknowledged by the peer.
    443  */
    444 
    445 /*
    446  * Append mbuf chain m to the last record in the
    447  * socket buffer sb.  The additional space associated
    448  * the mbuf chain is recorded in sb.  Empty mbufs are
    449  * discarded and mbufs are compacted where possible.
    450  */
    451 sbappend(sb, m)
    452 	struct sockbuf *sb;
    453 	struct mbuf *m;
    454 {
    455 	register struct mbuf *n;
    456 
    457 	if (m == 0)
    458 		return;
    459 	if (n = sb->sb_mb) {
    460 		while (n->m_nextpkt)
    461 			n = n->m_nextpkt;
    462 		do {
    463 			if (n->m_flags & M_EOR) {
    464 				sbappendrecord(sb, m); /* XXXXXX!!!! */
    465 				return;
    466 			}
    467 		} while (n->m_next && (n = n->m_next));
    468 	}
    469 	sbcompress(sb, m, n);
    470 }
    471 
    472 #ifdef SOCKBUF_DEBUG
    473 sbcheck(sb)
    474 	register struct sockbuf *sb;
    475 {
    476 	register struct mbuf *m;
    477 	register int len = 0, mbcnt = 0;
    478 
    479 	for (m = sb->sb_mb; m; m = m->m_next) {
    480 		len += m->m_len;
    481 		mbcnt += MSIZE;
    482 		if (m->m_flags & M_EXT)
    483 			mbcnt += m->m_ext.ext_size;
    484 		if (m->m_nextpkt)
    485 			panic("sbcheck nextpkt");
    486 	}
    487 	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
    488 		printf("cc %d != %d || mbcnt %d != %d\n", len, sb->sb_cc,
    489 		    mbcnt, sb->sb_mbcnt);
    490 		panic("sbcheck");
    491 	}
    492 }
    493 #endif
    494 
    495 /*
    496  * As above, except the mbuf chain
    497  * begins a new record.
    498  */
    499 sbappendrecord(sb, m0)
    500 	register struct sockbuf *sb;
    501 	register struct mbuf *m0;
    502 {
    503 	register struct mbuf *m;
    504 
    505 	if (m0 == 0)
    506 		return;
    507 	if (m = sb->sb_mb)
    508 		while (m->m_nextpkt)
    509 			m = m->m_nextpkt;
    510 	/*
    511 	 * Put the first mbuf on the queue.
    512 	 * Note this permits zero length records.
    513 	 */
    514 	sballoc(sb, m0);
    515 	if (m)
    516 		m->m_nextpkt = m0;
    517 	else
    518 		sb->sb_mb = m0;
    519 	m = m0->m_next;
    520 	m0->m_next = 0;
    521 	if (m && (m0->m_flags & M_EOR)) {
    522 		m0->m_flags &= ~M_EOR;
    523 		m->m_flags |= M_EOR;
    524 	}
    525 	sbcompress(sb, m, m0);
    526 }
    527 
    528 /*
    529  * As above except that OOB data
    530  * is inserted at the beginning of the sockbuf,
    531  * but after any other OOB data.
    532  */
    533 sbinsertoob(sb, m0)
    534 	register struct sockbuf *sb;
    535 	register struct mbuf *m0;
    536 {
    537 	register struct mbuf *m;
    538 	register struct mbuf **mp;
    539 
    540 	if (m0 == 0)
    541 		return;
    542 	for (mp = &sb->sb_mb; m = *mp; mp = &((*mp)->m_nextpkt)) {
    543 	    again:
    544 		switch (m->m_type) {
    545 
    546 		case MT_OOBDATA:
    547 			continue;		/* WANT next train */
    548 
    549 		case MT_CONTROL:
    550 			if (m = m->m_next)
    551 				goto again;	/* inspect THIS train further */
    552 		}
    553 		break;
    554 	}
    555 	/*
    556 	 * Put the first mbuf on the queue.
    557 	 * Note this permits zero length records.
    558 	 */
    559 	sballoc(sb, m0);
    560 	m0->m_nextpkt = *mp;
    561 	*mp = m0;
    562 	m = m0->m_next;
    563 	m0->m_next = 0;
    564 	if (m && (m0->m_flags & M_EOR)) {
    565 		m0->m_flags &= ~M_EOR;
    566 		m->m_flags |= M_EOR;
    567 	}
    568 	sbcompress(sb, m, m0);
    569 }
    570 
    571 /*
    572  * Append address and data, and optionally, control (ancillary) data
    573  * to the receive queue of a socket.  If present,
    574  * m0 must include a packet header with total length.
    575  * Returns 0 if no space in sockbuf or insufficient mbufs.
    576  */
    577 sbappendaddr(sb, asa, m0, control)
    578 	register struct sockbuf *sb;
    579 	struct sockaddr *asa;
    580 	struct mbuf *m0, *control;
    581 {
    582 	register struct mbuf *m, *n;
    583 	int space = asa->sa_len;
    584 
    585 if (m0 && (m0->m_flags & M_PKTHDR) == 0)
    586 panic("sbappendaddr");
    587 	if (m0)
    588 		space += m0->m_pkthdr.len;
    589 	for (n = control; n; n = n->m_next) {
    590 		space += n->m_len;
    591 		if (n->m_next == 0)	/* keep pointer to last control buf */
    592 			break;
    593 	}
    594 	if (space > sbspace(sb))
    595 		return (0);
    596 	if (asa->sa_len > MLEN)
    597 		return (0);
    598 	MGET(m, M_DONTWAIT, MT_SONAME);
    599 	if (m == 0)
    600 		return (0);
    601 	m->m_len = asa->sa_len;
    602 	bcopy((caddr_t)asa, mtod(m, caddr_t), asa->sa_len);
    603 	if (n)
    604 		n->m_next = m0;		/* concatenate data to control */
    605 	else
    606 		control = m0;
    607 	m->m_next = control;
    608 	for (n = m; n; n = n->m_next)
    609 		sballoc(sb, n);
    610 	if (n = sb->sb_mb) {
    611 		while (n->m_nextpkt)
    612 			n = n->m_nextpkt;
    613 		n->m_nextpkt = m;
    614 	} else
    615 		sb->sb_mb = m;
    616 	return (1);
    617 }
    618 
    619 sbappendcontrol(sb, m0, control)
    620 	struct sockbuf *sb;
    621 	struct mbuf *control, *m0;
    622 {
    623 	register struct mbuf *m, *n;
    624 	int space = 0;
    625 
    626 	if (control == 0)
    627 		panic("sbappendcontrol");
    628 	for (m = control; ; m = m->m_next) {
    629 		space += m->m_len;
    630 		if (m->m_next == 0)
    631 			break;
    632 	}
    633 	n = m;			/* save pointer to last control buffer */
    634 	for (m = m0; m; m = m->m_next)
    635 		space += m->m_len;
    636 	if (space > sbspace(sb))
    637 		return (0);
    638 	n->m_next = m0;			/* concatenate data to control */
    639 	for (m = control; m; m = m->m_next)
    640 		sballoc(sb, m);
    641 	if (n = sb->sb_mb) {
    642 		while (n->m_nextpkt)
    643 			n = n->m_nextpkt;
    644 		n->m_nextpkt = control;
    645 	} else
    646 		sb->sb_mb = control;
    647 	return (1);
    648 }
    649 
    650 /*
    651  * Compress mbuf chain m into the socket
    652  * buffer sb following mbuf n.  If n
    653  * is null, the buffer is presumed empty.
    654  */
    655 sbcompress(sb, m, n)
    656 	register struct sockbuf *sb;
    657 	register struct mbuf *m, *n;
    658 {
    659 	register int eor = 0;
    660 	register struct mbuf *o;
    661 
    662 	while (m) {
    663 		eor |= m->m_flags & M_EOR;
    664 		if (m->m_len == 0 &&
    665 		    (eor == 0 ||
    666 		     (((o = m->m_next) || (o = n)) &&
    667 		      o->m_type == m->m_type))) {
    668 			m = m_free(m);
    669 			continue;
    670 		}
    671 		if (n && (n->m_flags & (M_EXT | M_EOR)) == 0 &&
    672 		    (n->m_data + n->m_len + m->m_len) < &n->m_dat[MLEN] &&
    673 		    n->m_type == m->m_type) {
    674 			bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len,
    675 			    (unsigned)m->m_len);
    676 			n->m_len += m->m_len;
    677 			sb->sb_cc += m->m_len;
    678 			m = m_free(m);
    679 			continue;
    680 		}
    681 		if (n)
    682 			n->m_next = m;
    683 		else
    684 			sb->sb_mb = m;
    685 		sballoc(sb, m);
    686 		n = m;
    687 		m->m_flags &= ~M_EOR;
    688 		m = m->m_next;
    689 		n->m_next = 0;
    690 	}
    691 	if (eor) {
    692 		if (n)
    693 			n->m_flags |= eor;
    694 		else
    695 			printf("semi-panic: sbcompress\n");
    696 	}
    697 }
    698 
    699 /*
    700  * Free all mbufs in a sockbuf.
    701  * Check that all resources are reclaimed.
    702  */
    703 sbflush(sb)
    704 	register struct sockbuf *sb;
    705 {
    706 
    707 	if (sb->sb_flags & SB_LOCK)
    708 		panic("sbflush");
    709 	while (sb->sb_mbcnt)
    710 		sbdrop(sb, (int)sb->sb_cc);
    711 	if (sb->sb_cc || sb->sb_mb)
    712 		panic("sbflush 2");
    713 }
    714 
    715 /*
    716  * Drop data from (the front of) a sockbuf.
    717  */
    718 sbdrop(sb, len)
    719 	register struct sockbuf *sb;
    720 	register int len;
    721 {
    722 	register struct mbuf *m, *mn;
    723 	struct mbuf *next;
    724 
    725 	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
    726 	while (len > 0) {
    727 		if (m == 0) {
    728 			if (next == 0)
    729 				panic("sbdrop");
    730 			m = next;
    731 			next = m->m_nextpkt;
    732 			continue;
    733 		}
    734 		if (m->m_len > len) {
    735 			m->m_len -= len;
    736 			m->m_data += len;
    737 			sb->sb_cc -= len;
    738 			break;
    739 		}
    740 		len -= m->m_len;
    741 		sbfree(sb, m);
    742 		MFREE(m, mn);
    743 		m = mn;
    744 	}
    745 	while (m && m->m_len == 0) {
    746 		sbfree(sb, m);
    747 		MFREE(m, mn);
    748 		m = mn;
    749 	}
    750 	if (m) {
    751 		sb->sb_mb = m;
    752 		m->m_nextpkt = next;
    753 	} else
    754 		sb->sb_mb = next;
    755 }
    756 
    757 /*
    758  * Drop a record off the front of a sockbuf
    759  * and move the next record to the front.
    760  */
    761 sbdroprecord(sb)
    762 	register struct sockbuf *sb;
    763 {
    764 	register struct mbuf *m, *mn;
    765 
    766 	m = sb->sb_mb;
    767 	if (m) {
    768 		sb->sb_mb = m->m_nextpkt;
    769 		do {
    770 			sbfree(sb, m);
    771 			MFREE(m, mn);
    772 		} while (m = mn);
    773 	}
    774 }
    775