Home | History | Annotate | Line # | Download | only in kern
uipc_socket2.c revision 1.50
      1 /*	$NetBSD: uipc_socket2.c,v 1.50 2003/04/17 13:12:39 fvdl Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1988, 1990, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by the University of
     18  *	California, Berkeley and its contributors.
     19  * 4. Neither the name of the University nor the names of its contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33  * SUCH DAMAGE.
     34  *
     35  *	@(#)uipc_socket2.c	8.2 (Berkeley) 2/14/95
     36  */
     37 
     38 #include <sys/cdefs.h>
     39 __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.50 2003/04/17 13:12:39 fvdl Exp $");
     40 
     41 #include <sys/param.h>
     42 #include <sys/systm.h>
     43 #include <sys/proc.h>
     44 #include <sys/file.h>
     45 #include <sys/buf.h>
     46 #include <sys/malloc.h>
     47 #include <sys/mbuf.h>
     48 #include <sys/protosw.h>
     49 #include <sys/socket.h>
     50 #include <sys/socketvar.h>
     51 #include <sys/signalvar.h>
     52 
     53 /*
     54  * Primitive routines for operating on sockets and socket buffers
     55  */
     56 
     57 /* strings for sleep message: */
     58 const char	netcon[] = "netcon";
     59 const char	netcls[] = "netcls";
     60 const char	netio[] = "netio";
     61 const char	netlck[] = "netlck";
     62 
     63 /*
     64  * Procedures to manipulate state flags of socket
     65  * and do appropriate wakeups.  Normal sequence from the
     66  * active (originating) side is that soisconnecting() is
     67  * called during processing of connect() call,
     68  * resulting in an eventual call to soisconnected() if/when the
     69  * connection is established.  When the connection is torn down
     70  * soisdisconnecting() is called during processing of disconnect() call,
     71  * and soisdisconnected() is called when the connection to the peer
     72  * is totally severed.  The semantics of these routines are such that
     73  * connectionless protocols can call soisconnected() and soisdisconnected()
     74  * only, bypassing the in-progress calls when setting up a ``connection''
     75  * takes no time.
     76  *
     77  * From the passive side, a socket is created with
     78  * two queues of sockets: so_q0 for connections in progress
     79  * and so_q for connections already made and awaiting user acceptance.
     80  * As a protocol is preparing incoming connections, it creates a socket
     81  * structure queued on so_q0 by calling sonewconn().  When the connection
     82  * is established, soisconnected() is called, and transfers the
     83  * socket structure to so_q, making it available to accept().
     84  *
     85  * If a socket is closed with sockets on either
     86  * so_q0 or so_q, these sockets are dropped.
     87  *
     88  * If higher level protocols are implemented in
     89  * the kernel, the wakeups done here will sometimes
     90  * cause software-interrupt process scheduling.
     91  */
     92 
     93 void
     94 soisconnecting(struct socket *so)
     95 {
     96 
     97 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
     98 	so->so_state |= SS_ISCONNECTING;
     99 }
    100 
    101 void
    102 soisconnected(struct socket *so)
    103 {
    104 	struct socket	*head;
    105 
    106 	head = so->so_head;
    107 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
    108 	so->so_state |= SS_ISCONNECTED;
    109 	if (head && soqremque(so, 0)) {
    110 		soqinsque(head, so, 1);
    111 		sorwakeup(head);
    112 		wakeup((caddr_t)&head->so_timeo);
    113 	} else {
    114 		wakeup((caddr_t)&so->so_timeo);
    115 		sorwakeup(so);
    116 		sowwakeup(so);
    117 	}
    118 }
    119 
    120 void
    121 soisdisconnecting(struct socket *so)
    122 {
    123 
    124 	so->so_state &= ~SS_ISCONNECTING;
    125 	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
    126 	wakeup((caddr_t)&so->so_timeo);
    127 	sowwakeup(so);
    128 	sorwakeup(so);
    129 }
    130 
    131 void
    132 soisdisconnected(struct socket *so)
    133 {
    134 
    135 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
    136 	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
    137 	wakeup((caddr_t)&so->so_timeo);
    138 	sowwakeup(so);
    139 	sorwakeup(so);
    140 }
    141 
    142 /*
    143  * When an attempt at a new connection is noted on a socket
    144  * which accepts connections, sonewconn is called.  If the
    145  * connection is possible (subject to space constraints, etc.)
    146  * then we allocate a new structure, propoerly linked into the
    147  * data structure of the original socket, and return this.
    148  * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
    149  *
    150  * Currently, sonewconn() is defined as sonewconn1() in socketvar.h
    151  * to catch calls that are missing the (new) second parameter.
    152  */
    153 struct socket *
    154 sonewconn1(struct socket *head, int connstatus)
    155 {
    156 	struct socket	*so;
    157 	int		soqueue;
    158 
    159 	soqueue = connstatus ? 1 : 0;
    160 	if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
    161 		return ((struct socket *)0);
    162 	so = pool_get(&socket_pool, PR_NOWAIT);
    163 	if (so == NULL)
    164 		return (NULL);
    165 	memset((caddr_t)so, 0, sizeof(*so));
    166 	so->so_type = head->so_type;
    167 	so->so_options = head->so_options &~ SO_ACCEPTCONN;
    168 	so->so_linger = head->so_linger;
    169 	so->so_state = head->so_state | SS_NOFDREF;
    170 	so->so_proto = head->so_proto;
    171 	so->so_timeo = head->so_timeo;
    172 	so->so_pgid = head->so_pgid;
    173 	so->so_send = head->so_send;
    174 	so->so_receive = head->so_receive;
    175 	so->so_uid = head->so_uid;
    176 #ifdef MBUFTRACE
    177 	so->so_mowner = head->so_mowner;
    178 	so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
    179 	so->so_snd.sb_mowner = head->so_snd.sb_mowner;
    180 #endif
    181 	(void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
    182 	soqinsque(head, so, soqueue);
    183 	if ((*so->so_proto->pr_usrreq)(so, PRU_ATTACH,
    184 	    (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
    185 	    (struct proc *)0)) {
    186 		(void) soqremque(so, soqueue);
    187 		pool_put(&socket_pool, so);
    188 		return (NULL);
    189 	}
    190 	if (connstatus) {
    191 		sorwakeup(head);
    192 		wakeup((caddr_t)&head->so_timeo);
    193 		so->so_state |= connstatus;
    194 	}
    195 	return (so);
    196 }
    197 
    198 void
    199 soqinsque(struct socket *head, struct socket *so, int q)
    200 {
    201 
    202 #ifdef DIAGNOSTIC
    203 	if (so->so_onq != NULL)
    204 		panic("soqinsque");
    205 #endif
    206 
    207 	so->so_head = head;
    208 	if (q == 0) {
    209 		head->so_q0len++;
    210 		so->so_onq = &head->so_q0;
    211 	} else {
    212 		head->so_qlen++;
    213 		so->so_onq = &head->so_q;
    214 	}
    215 	TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
    216 }
    217 
    218 int
    219 soqremque(struct socket *so, int q)
    220 {
    221 	struct socket	*head;
    222 
    223 	head = so->so_head;
    224 	if (q == 0) {
    225 		if (so->so_onq != &head->so_q0)
    226 			return (0);
    227 		head->so_q0len--;
    228 	} else {
    229 		if (so->so_onq != &head->so_q)
    230 			return (0);
    231 		head->so_qlen--;
    232 	}
    233 	TAILQ_REMOVE(so->so_onq, so, so_qe);
    234 	so->so_onq = NULL;
    235 	so->so_head = NULL;
    236 	return (1);
    237 }
    238 
    239 /*
    240  * Socantsendmore indicates that no more data will be sent on the
    241  * socket; it would normally be applied to a socket when the user
    242  * informs the system that no more data is to be sent, by the protocol
    243  * code (in case PRU_SHUTDOWN).  Socantrcvmore indicates that no more data
    244  * will be received, and will normally be applied to the socket by a
    245  * protocol when it detects that the peer will send no more data.
    246  * Data queued for reading in the socket may yet be read.
    247  */
    248 
    249 void
    250 socantsendmore(struct socket *so)
    251 {
    252 
    253 	so->so_state |= SS_CANTSENDMORE;
    254 	sowwakeup(so);
    255 }
    256 
    257 void
    258 socantrcvmore(struct socket *so)
    259 {
    260 
    261 	so->so_state |= SS_CANTRCVMORE;
    262 	sorwakeup(so);
    263 }
    264 
    265 /*
    266  * Wait for data to arrive at/drain from a socket buffer.
    267  */
    268 int
    269 sbwait(struct sockbuf *sb)
    270 {
    271 
    272 	sb->sb_flags |= SB_WAIT;
    273 	return (tsleep((caddr_t)&sb->sb_cc,
    274 	    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, netio,
    275 	    sb->sb_timeo));
    276 }
    277 
    278 /*
    279  * Lock a sockbuf already known to be locked;
    280  * return any error returned from sleep (EINTR).
    281  */
    282 int
    283 sb_lock(struct sockbuf *sb)
    284 {
    285 	int	error;
    286 
    287 	while (sb->sb_flags & SB_LOCK) {
    288 		sb->sb_flags |= SB_WANT;
    289 		error = tsleep((caddr_t)&sb->sb_flags,
    290 		    (sb->sb_flags & SB_NOINTR) ?  PSOCK : PSOCK|PCATCH,
    291 		    netlck, 0);
    292 		if (error)
    293 			return (error);
    294 	}
    295 	sb->sb_flags |= SB_LOCK;
    296 	return (0);
    297 }
    298 
    299 /*
    300  * Wakeup processes waiting on a socket buffer.
    301  * Do asynchronous notification via SIGIO
    302  * if the socket buffer has the SB_ASYNC flag set.
    303  */
    304 void
    305 sowakeup(struct socket *so, struct sockbuf *sb)
    306 {
    307 	struct proc	*p;
    308 
    309 	selnotify(&sb->sb_sel, 0);
    310 	sb->sb_flags &= ~SB_SEL;
    311 	if (sb->sb_flags & SB_WAIT) {
    312 		sb->sb_flags &= ~SB_WAIT;
    313 		wakeup((caddr_t)&sb->sb_cc);
    314 	}
    315 	if (sb->sb_flags & SB_ASYNC) {
    316 		if (so->so_pgid < 0)
    317 			gsignal(-so->so_pgid, SIGIO);
    318 		else if (so->so_pgid > 0 && (p = pfind(so->so_pgid)) != 0)
    319 			psignal(p, SIGIO);
    320 	}
    321 	if (sb->sb_flags & SB_UPCALL)
    322 		(*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT);
    323 }
    324 
    325 /*
    326  * Socket buffer (struct sockbuf) utility routines.
    327  *
    328  * Each socket contains two socket buffers: one for sending data and
    329  * one for receiving data.  Each buffer contains a queue of mbufs,
    330  * information about the number of mbufs and amount of data in the
    331  * queue, and other fields allowing poll() statements and notification
    332  * on data availability to be implemented.
    333  *
    334  * Data stored in a socket buffer is maintained as a list of records.
    335  * Each record is a list of mbufs chained together with the m_next
    336  * field.  Records are chained together with the m_nextpkt field. The upper
    337  * level routine soreceive() expects the following conventions to be
    338  * observed when placing information in the receive buffer:
    339  *
    340  * 1. If the protocol requires each message be preceded by the sender's
    341  *    name, then a record containing that name must be present before
    342  *    any associated data (mbuf's must be of type MT_SONAME).
    343  * 2. If the protocol supports the exchange of ``access rights'' (really
    344  *    just additional data associated with the message), and there are
    345  *    ``rights'' to be received, then a record containing this data
    346  *    should be present (mbuf's must be of type MT_CONTROL).
    347  * 3. If a name or rights record exists, then it must be followed by
    348  *    a data record, perhaps of zero length.
    349  *
    350  * Before using a new socket structure it is first necessary to reserve
    351  * buffer space to the socket, by calling sbreserve().  This should commit
    352  * some of the available buffer space in the system buffer pool for the
    353  * socket (currently, it does nothing but enforce limits).  The space
    354  * should be released by calling sbrelease() when the socket is destroyed.
    355  */
    356 
    357 int
    358 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
    359 {
    360 
    361 	if (sbreserve(&so->so_snd, sndcc) == 0)
    362 		goto bad;
    363 	if (sbreserve(&so->so_rcv, rcvcc) == 0)
    364 		goto bad2;
    365 	if (so->so_rcv.sb_lowat == 0)
    366 		so->so_rcv.sb_lowat = 1;
    367 	if (so->so_snd.sb_lowat == 0)
    368 		so->so_snd.sb_lowat = MCLBYTES;
    369 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
    370 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
    371 	return (0);
    372  bad2:
    373 	sbrelease(&so->so_snd);
    374  bad:
    375 	return (ENOBUFS);
    376 }
    377 
    378 /*
    379  * Allot mbufs to a sockbuf.
    380  * Attempt to scale mbmax so that mbcnt doesn't become limiting
    381  * if buffering efficiency is near the normal case.
    382  */
    383 int
    384 sbreserve(struct sockbuf *sb, u_long cc)
    385 {
    386 
    387 	if (cc == 0 ||
    388 	    (u_quad_t) cc > (u_quad_t) sb_max * MCLBYTES / (MSIZE + MCLBYTES))
    389 		return (0);
    390 	sb->sb_hiwat = cc;
    391 	sb->sb_mbmax = min(cc * 2, sb_max);
    392 	if (sb->sb_lowat > sb->sb_hiwat)
    393 		sb->sb_lowat = sb->sb_hiwat;
    394 	return (1);
    395 }
    396 
    397 /*
    398  * Free mbufs held by a socket, and reserved mbuf space.
    399  */
    400 void
    401 sbrelease(struct sockbuf *sb)
    402 {
    403 
    404 	sbflush(sb);
    405 	sb->sb_hiwat = sb->sb_mbmax = 0;
    406 }
    407 
    408 /*
    409  * Routines to add and remove
    410  * data from an mbuf queue.
    411  *
    412  * The routines sbappend() or sbappendrecord() are normally called to
    413  * append new mbufs to a socket buffer, after checking that adequate
    414  * space is available, comparing the function sbspace() with the amount
    415  * of data to be added.  sbappendrecord() differs from sbappend() in
    416  * that data supplied is treated as the beginning of a new record.
    417  * To place a sender's address, optional access rights, and data in a
    418  * socket receive buffer, sbappendaddr() should be used.  To place
    419  * access rights and data in a socket receive buffer, sbappendrights()
    420  * should be used.  In either case, the new data begins a new record.
    421  * Note that unlike sbappend() and sbappendrecord(), these routines check
    422  * for the caller that there will be enough space to store the data.
    423  * Each fails if there is not enough space, or if it cannot find mbufs
    424  * to store additional information in.
    425  *
    426  * Reliable protocols may use the socket send buffer to hold data
    427  * awaiting acknowledgement.  Data is normally copied from a socket
    428  * send buffer in a protocol with m_copy for output to a peer,
    429  * and then removing the data from the socket buffer with sbdrop()
    430  * or sbdroprecord() when the data is acknowledged by the peer.
    431  */
    432 
    433 #ifdef SOCKBUF_DEBUG
    434 void
    435 sblastrecordchk(struct sockbuf *sb, const char *where)
    436 {
    437 	struct mbuf *m = sb->sb_mb;
    438 
    439 	while (m && m->m_nextpkt)
    440 		m = m->m_nextpkt;
    441 
    442 	if (m != sb->sb_lastrecord) {
    443 		printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
    444 		    sb->sb_mb, sb->sb_lastrecord, m);
    445 		printf("packet chain:\n");
    446 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
    447 			printf("\t%p\n", m);
    448 		panic("sblastrecordchk from %s", where);
    449 	}
    450 }
    451 
    452 void
    453 sblastmbufchk(struct sockbuf *sb, const char *where)
    454 {
    455 	struct mbuf *m = sb->sb_mb;
    456 	struct mbuf *n;
    457 
    458 	while (m && m->m_nextpkt)
    459 		m = m->m_nextpkt;
    460 
    461 	while (m && m->m_next)
    462 		m = m->m_next;
    463 
    464 	if (m != sb->sb_mbtail) {
    465 		printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
    466 		    sb->sb_mb, sb->sb_mbtail, m);
    467 		printf("packet tree:\n");
    468 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
    469 			printf("\t");
    470 			for (n = m; n != NULL; n = n->m_next)
    471 				printf("%p ", n);
    472 			printf("\n");
    473 		}
    474 		panic("sblastmbufchk from %s", where);
    475 	}
    476 }
    477 #endif /* SOCKBUF_DEBUG */
    478 
    479 #define	SBLINKRECORD(sb, m0)						\
    480 do {									\
    481 	if ((sb)->sb_lastrecord != NULL)				\
    482 		(sb)->sb_lastrecord->m_nextpkt = (m0);			\
    483 	else								\
    484 		(sb)->sb_mb = (m0);					\
    485 	(sb)->sb_lastrecord = (m0);					\
    486 } while (/*CONSTCOND*/0)
    487 
    488 /*
    489  * Append mbuf chain m to the last record in the
    490  * socket buffer sb.  The additional space associated
    491  * the mbuf chain is recorded in sb.  Empty mbufs are
    492  * discarded and mbufs are compacted where possible.
    493  */
    494 void
    495 sbappend(struct sockbuf *sb, struct mbuf *m)
    496 {
    497 	struct mbuf	*n;
    498 
    499 	if (m == 0)
    500 		return;
    501 
    502 #ifdef MBUFTRACE
    503 	m_claim(m, sb->sb_mowner);
    504 #endif
    505 
    506 	SBLASTRECORDCHK(sb, "sbappend 1");
    507 
    508 	if ((n = sb->sb_lastrecord) != NULL) {
    509 		/*
    510 		 * XXX Would like to simply use sb_mbtail here, but
    511 		 * XXX I need to verify that I won't miss an EOR that
    512 		 * XXX way.
    513 		 */
    514 		do {
    515 			if (n->m_flags & M_EOR) {
    516 				sbappendrecord(sb, m); /* XXXXXX!!!! */
    517 				return;
    518 			}
    519 		} while (n->m_next && (n = n->m_next));
    520 	} else {
    521 		/*
    522 		 * If this is the first record in the socket buffer, it's
    523 		 * also the last record.
    524 		 */
    525 		sb->sb_lastrecord = m;
    526 	}
    527 	sbcompress(sb, m, n);
    528 	SBLASTRECORDCHK(sb, "sbappend 2");
    529 }
    530 
    531 /*
    532  * This version of sbappend() should only be used when the caller
    533  * absolutely knows that there will never be more than one record
    534  * in the socket buffer, that is, a stream protocol (such as TCP).
    535  */
    536 void
    537 sbappendstream(struct sockbuf *sb, struct mbuf *m)
    538 {
    539 
    540 	KDASSERT(m->m_nextpkt == NULL);
    541 	KASSERT(sb->sb_mb == sb->sb_lastrecord);
    542 
    543 	SBLASTMBUFCHK(sb, __func__);
    544 
    545 #ifdef MBUFTRACE
    546 	m_claim(m, sb->sb_mowner);
    547 #endif
    548 
    549 	sbcompress(sb, m, sb->sb_mbtail);
    550 
    551 	sb->sb_lastrecord = sb->sb_mb;
    552 	SBLASTRECORDCHK(sb, __func__);
    553 }
    554 
    555 #ifdef SOCKBUF_DEBUG
    556 void
    557 sbcheck(struct sockbuf *sb)
    558 {
    559 	struct mbuf	*m;
    560 	u_long		len, mbcnt;
    561 
    562 	len = 0;
    563 	mbcnt = 0;
    564 	for (m = sb->sb_mb; m; m = m->m_next) {
    565 		len += m->m_len;
    566 		mbcnt += MSIZE;
    567 		if (m->m_flags & M_EXT)
    568 			mbcnt += m->m_ext.ext_size;
    569 		if (m->m_nextpkt)
    570 			panic("sbcheck nextpkt");
    571 	}
    572 	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
    573 		printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
    574 		    mbcnt, sb->sb_mbcnt);
    575 		panic("sbcheck");
    576 	}
    577 }
    578 #endif
    579 
    580 /*
    581  * As above, except the mbuf chain
    582  * begins a new record.
    583  */
    584 void
    585 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
    586 {
    587 	struct mbuf	*m;
    588 
    589 	if (m0 == 0)
    590 		return;
    591 
    592 #ifdef MBUFTRACE
    593 	m_claim(m0, sb->sb_mowner);
    594 #endif
    595 	/*
    596 	 * Put the first mbuf on the queue.
    597 	 * Note this permits zero length records.
    598 	 */
    599 	sballoc(sb, m0);
    600 	SBLASTRECORDCHK(sb, "sbappendrecord 1");
    601 	SBLINKRECORD(sb, m0);
    602 	m = m0->m_next;
    603 	m0->m_next = 0;
    604 	if (m && (m0->m_flags & M_EOR)) {
    605 		m0->m_flags &= ~M_EOR;
    606 		m->m_flags |= M_EOR;
    607 	}
    608 	sbcompress(sb, m, m0);
    609 	SBLASTRECORDCHK(sb, "sbappendrecord 2");
    610 }
    611 
    612 /*
    613  * As above except that OOB data
    614  * is inserted at the beginning of the sockbuf,
    615  * but after any other OOB data.
    616  */
    617 void
    618 sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
    619 {
    620 	struct mbuf	*m, **mp;
    621 
    622 	if (m0 == 0)
    623 		return;
    624 
    625 	SBLASTRECORDCHK(sb, "sbinsertoob 1");
    626 
    627 	for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
    628 	    again:
    629 		switch (m->m_type) {
    630 
    631 		case MT_OOBDATA:
    632 			continue;		/* WANT next train */
    633 
    634 		case MT_CONTROL:
    635 			if ((m = m->m_next) != NULL)
    636 				goto again;	/* inspect THIS train further */
    637 		}
    638 		break;
    639 	}
    640 	/*
    641 	 * Put the first mbuf on the queue.
    642 	 * Note this permits zero length records.
    643 	 */
    644 	sballoc(sb, m0);
    645 	m0->m_nextpkt = *mp;
    646 	if (*mp == NULL) {
    647 		/* m0 is actually the new tail */
    648 		sb->sb_lastrecord = m0;
    649 	}
    650 	*mp = m0;
    651 	m = m0->m_next;
    652 	m0->m_next = 0;
    653 	if (m && (m0->m_flags & M_EOR)) {
    654 		m0->m_flags &= ~M_EOR;
    655 		m->m_flags |= M_EOR;
    656 	}
    657 	sbcompress(sb, m, m0);
    658 	SBLASTRECORDCHK(sb, "sbinsertoob 2");
    659 }
    660 
    661 /*
    662  * Append address and data, and optionally, control (ancillary) data
    663  * to the receive queue of a socket.  If present,
    664  * m0 must include a packet header with total length.
    665  * Returns 0 if no space in sockbuf or insufficient mbufs.
    666  */
    667 int
    668 sbappendaddr(struct sockbuf *sb, struct sockaddr *asa, struct mbuf *m0,
    669 	struct mbuf *control)
    670 {
    671 	struct mbuf	*m, *n, *nlast;
    672 	int		space, len;
    673 
    674 	space = asa->sa_len;
    675 
    676 	if (m0 != NULL) {
    677 		if ((m0->m_flags & M_PKTHDR) == 0)
    678 			panic("sbappendaddr");
    679 		space += m0->m_pkthdr.len;
    680 #ifdef MBUFTRACE
    681 		m_claim(m0, sb->sb_mowner);
    682 #endif
    683 	}
    684 	for (n = control; n; n = n->m_next) {
    685 		space += n->m_len;
    686 		MCLAIM(n, sb->sb_mowner);
    687 		if (n->m_next == 0)	/* keep pointer to last control buf */
    688 			break;
    689 	}
    690 	if (space > sbspace(sb))
    691 		return (0);
    692 	MGET(m, M_DONTWAIT, MT_SONAME);
    693 	if (m == 0)
    694 		return (0);
    695 	MCLAIM(m, sb->sb_mowner);
    696 	/*
    697 	 * XXX avoid 'comparison always true' warning which isn't easily
    698 	 * avoided.
    699 	 */
    700 	len = asa->sa_len;
    701 	if (len > MLEN) {
    702 		MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
    703 		if ((m->m_flags & M_EXT) == 0) {
    704 			m_free(m);
    705 			return (0);
    706 		}
    707 	}
    708 	m->m_len = asa->sa_len;
    709 	memcpy(mtod(m, caddr_t), (caddr_t)asa, asa->sa_len);
    710 	if (n)
    711 		n->m_next = m0;		/* concatenate data to control */
    712 	else
    713 		control = m0;
    714 	m->m_next = control;
    715 
    716 	SBLASTRECORDCHK(sb, "sbappendaddr 1");
    717 
    718 	for (n = m; n->m_next != NULL; n = n->m_next)
    719 		sballoc(sb, n);
    720 	sballoc(sb, n);
    721 	nlast = n;
    722 	SBLINKRECORD(sb, m);
    723 
    724 	sb->sb_mbtail = nlast;
    725 	SBLASTMBUFCHK(sb, "sbappendaddr");
    726 
    727 	SBLASTRECORDCHK(sb, "sbappendaddr 2");
    728 
    729 	return (1);
    730 }
    731 
    732 int
    733 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
    734 {
    735 	struct mbuf	*m, *mlast, *n;
    736 	int		space;
    737 
    738 	space = 0;
    739 	if (control == 0)
    740 		panic("sbappendcontrol");
    741 	for (m = control; ; m = m->m_next) {
    742 		space += m->m_len;
    743 		MCLAIM(m, sb->sb_mowner);
    744 		if (m->m_next == 0)
    745 			break;
    746 	}
    747 	n = m;			/* save pointer to last control buffer */
    748 	for (m = m0; m; m = m->m_next) {
    749 		MCLAIM(m, sb->sb_mowner);
    750 		space += m->m_len;
    751 	}
    752 	if (space > sbspace(sb))
    753 		return (0);
    754 	n->m_next = m0;			/* concatenate data to control */
    755 
    756 	SBLASTRECORDCHK(sb, "sbappendcontrol 1");
    757 
    758 	for (m = control; m->m_next != NULL; m = m->m_next)
    759 		sballoc(sb, m);
    760 	sballoc(sb, m);
    761 	mlast = m;
    762 	SBLINKRECORD(sb, control);
    763 
    764 	sb->sb_mbtail = mlast;
    765 	SBLASTMBUFCHK(sb, "sbappendcontrol");
    766 
    767 	SBLASTRECORDCHK(sb, "sbappendcontrol 2");
    768 
    769 	return (1);
    770 }
    771 
    772 /*
    773  * Compress mbuf chain m into the socket
    774  * buffer sb following mbuf n.  If n
    775  * is null, the buffer is presumed empty.
    776  */
    777 void
    778 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
    779 {
    780 	int		eor;
    781 	struct mbuf	*o;
    782 
    783 	eor = 0;
    784 	while (m) {
    785 		eor |= m->m_flags & M_EOR;
    786 		if (m->m_len == 0 &&
    787 		    (eor == 0 ||
    788 		     (((o = m->m_next) || (o = n)) &&
    789 		      o->m_type == m->m_type))) {
    790 			if (sb->sb_lastrecord == m)
    791 				sb->sb_lastrecord = m->m_next;
    792 			m = m_free(m);
    793 			continue;
    794 		}
    795 		if (n && (n->m_flags & M_EOR) == 0 &&
    796 		    /* M_TRAILINGSPACE() checks buffer writeability */
    797 		    m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
    798 		    m->m_len <= M_TRAILINGSPACE(n) &&
    799 		    n->m_type == m->m_type) {
    800 			memcpy(mtod(n, caddr_t) + n->m_len, mtod(m, caddr_t),
    801 			    (unsigned)m->m_len);
    802 			n->m_len += m->m_len;
    803 			sb->sb_cc += m->m_len;
    804 			m = m_free(m);
    805 			continue;
    806 		}
    807 		if (n)
    808 			n->m_next = m;
    809 		else
    810 			sb->sb_mb = m;
    811 		sb->sb_mbtail = m;
    812 		sballoc(sb, m);
    813 		n = m;
    814 		m->m_flags &= ~M_EOR;
    815 		m = m->m_next;
    816 		n->m_next = 0;
    817 	}
    818 	if (eor) {
    819 		if (n)
    820 			n->m_flags |= eor;
    821 		else
    822 			printf("semi-panic: sbcompress\n");
    823 	}
    824 	SBLASTMBUFCHK(sb, __func__);
    825 }
    826 
    827 /*
    828  * Free all mbufs in a sockbuf.
    829  * Check that all resources are reclaimed.
    830  */
    831 void
    832 sbflush(struct sockbuf *sb)
    833 {
    834 
    835 	KASSERT((sb->sb_flags & SB_LOCK) == 0);
    836 
    837 	while (sb->sb_mbcnt)
    838 		sbdrop(sb, (int)sb->sb_cc);
    839 
    840 	KASSERT(sb->sb_cc == 0);
    841 	KASSERT(sb->sb_mb == NULL);
    842 	KASSERT(sb->sb_mbtail == NULL);
    843 	KASSERT(sb->sb_lastrecord == NULL);
    844 }
    845 
    846 /*
    847  * Drop data from (the front of) a sockbuf.
    848  */
    849 void
    850 sbdrop(struct sockbuf *sb, int len)
    851 {
    852 	struct mbuf	*m, *mn, *next;
    853 
    854 	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
    855 	while (len > 0) {
    856 		if (m == 0) {
    857 			if (next == 0)
    858 				panic("sbdrop");
    859 			m = next;
    860 			next = m->m_nextpkt;
    861 			continue;
    862 		}
    863 		if (m->m_len > len) {
    864 			m->m_len -= len;
    865 			m->m_data += len;
    866 			sb->sb_cc -= len;
    867 			break;
    868 		}
    869 		len -= m->m_len;
    870 		sbfree(sb, m);
    871 		MFREE(m, mn);
    872 		m = mn;
    873 	}
    874 	while (m && m->m_len == 0) {
    875 		sbfree(sb, m);
    876 		MFREE(m, mn);
    877 		m = mn;
    878 	}
    879 	if (m) {
    880 		sb->sb_mb = m;
    881 		m->m_nextpkt = next;
    882 	} else
    883 		sb->sb_mb = next;
    884 	/*
    885 	 * First part is an inline SB_EMPTY_FIXUP().  Second part
    886 	 * makes sure sb_lastrecord is up-to-date if we dropped
    887 	 * part of the last record.
    888 	 */
    889 	m = sb->sb_mb;
    890 	if (m == NULL) {
    891 		sb->sb_mbtail = NULL;
    892 		sb->sb_lastrecord = NULL;
    893 	} else if (m->m_nextpkt == NULL)
    894 		sb->sb_lastrecord = m;
    895 }
    896 
    897 /*
    898  * Drop a record off the front of a sockbuf
    899  * and move the next record to the front.
    900  */
    901 void
    902 sbdroprecord(struct sockbuf *sb)
    903 {
    904 	struct mbuf	*m, *mn;
    905 
    906 	m = sb->sb_mb;
    907 	if (m) {
    908 		sb->sb_mb = m->m_nextpkt;
    909 		do {
    910 			sbfree(sb, m);
    911 			MFREE(m, mn);
    912 		} while ((m = mn) != NULL);
    913 	}
    914 	SB_EMPTY_FIXUP(sb);
    915 }
    916 
    917 /*
    918  * Create a "control" mbuf containing the specified data
    919  * with the specified type for presentation on a socket buffer.
    920  */
    921 struct mbuf *
    922 sbcreatecontrol(caddr_t p, int size, int type, int level)
    923 {
    924 	struct cmsghdr	*cp;
    925 	struct mbuf	*m;
    926 
    927 	if (CMSG_SPACE(size) > MCLBYTES) {
    928 		printf("sbcreatecontrol: message too large %d\n", size);
    929 		return NULL;
    930 	}
    931 
    932 	if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
    933 		return ((struct mbuf *) NULL);
    934 	if (CMSG_SPACE(size) > MLEN) {
    935 		MCLGET(m, M_DONTWAIT);
    936 		if ((m->m_flags & M_EXT) == 0) {
    937 			m_free(m);
    938 			return NULL;
    939 		}
    940 	}
    941 	cp = mtod(m, struct cmsghdr *);
    942 	memcpy(CMSG_DATA(cp), p, size);
    943 	m->m_len = CMSG_SPACE(size);
    944 	cp->cmsg_len = CMSG_LEN(size);
    945 	cp->cmsg_level = level;
    946 	cp->cmsg_type = type;
    947 	return (m);
    948 }
    949