uipc_socket2.c revision 1.53.2.1 1 /* $NetBSD: uipc_socket2.c,v 1.53.2.1 2003/07/02 15:26:45 darrenr Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1988, 1990, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * @(#)uipc_socket2.c 8.2 (Berkeley) 2/14/95
36 */
37
38 #include <sys/cdefs.h>
39 __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.53.2.1 2003/07/02 15:26:45 darrenr Exp $");
40
41 #include "opt_mbuftrace.h"
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/proc.h>
46 #include <sys/file.h>
47 #include <sys/buf.h>
48 #include <sys/malloc.h>
49 #include <sys/mbuf.h>
50 #include <sys/protosw.h>
51 #include <sys/socket.h>
52 #include <sys/socketvar.h>
53 #include <sys/signalvar.h>
54
55 /*
56 * Primitive routines for operating on sockets and socket buffers
57 */
58
59 /* strings for sleep message: */
60 const char netcon[] = "netcon";
61 const char netcls[] = "netcls";
62 const char netio[] = "netio";
63 const char netlck[] = "netlck";
64
65 /*
66 * Procedures to manipulate state flags of socket
67 * and do appropriate wakeups. Normal sequence from the
68 * active (originating) side is that soisconnecting() is
69 * called during processing of connect() call,
70 * resulting in an eventual call to soisconnected() if/when the
71 * connection is established. When the connection is torn down
72 * soisdisconnecting() is called during processing of disconnect() call,
73 * and soisdisconnected() is called when the connection to the peer
74 * is totally severed. The semantics of these routines are such that
75 * connectionless protocols can call soisconnected() and soisdisconnected()
76 * only, bypassing the in-progress calls when setting up a ``connection''
77 * takes no time.
78 *
79 * From the passive side, a socket is created with
80 * two queues of sockets: so_q0 for connections in progress
81 * and so_q for connections already made and awaiting user acceptance.
82 * As a protocol is preparing incoming connections, it creates a socket
83 * structure queued on so_q0 by calling sonewconn(). When the connection
84 * is established, soisconnected() is called, and transfers the
85 * socket structure to so_q, making it available to accept().
86 *
87 * If a socket is closed with sockets on either
88 * so_q0 or so_q, these sockets are dropped.
89 *
90 * If higher level protocols are implemented in
91 * the kernel, the wakeups done here will sometimes
92 * cause software-interrupt process scheduling.
93 */
94
95 void
96 soisconnecting(struct socket *so)
97 {
98
99 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
100 so->so_state |= SS_ISCONNECTING;
101 }
102
103 void
104 soisconnected(struct socket *so)
105 {
106 struct socket *head;
107
108 head = so->so_head;
109 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
110 so->so_state |= SS_ISCONNECTED;
111 if (head && soqremque(so, 0)) {
112 soqinsque(head, so, 1);
113 sorwakeup(head);
114 wakeup((caddr_t)&head->so_timeo);
115 } else {
116 wakeup((caddr_t)&so->so_timeo);
117 sorwakeup(so);
118 sowwakeup(so);
119 }
120 }
121
122 void
123 soisdisconnecting(struct socket *so)
124 {
125
126 so->so_state &= ~SS_ISCONNECTING;
127 so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
128 wakeup((caddr_t)&so->so_timeo);
129 sowwakeup(so);
130 sorwakeup(so);
131 }
132
133 void
134 soisdisconnected(struct socket *so)
135 {
136
137 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
138 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
139 wakeup((caddr_t)&so->so_timeo);
140 sowwakeup(so);
141 sorwakeup(so);
142 }
143
144 /*
145 * When an attempt at a new connection is noted on a socket
146 * which accepts connections, sonewconn is called. If the
147 * connection is possible (subject to space constraints, etc.)
148 * then we allocate a new structure, propoerly linked into the
149 * data structure of the original socket, and return this.
150 * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
151 *
152 * Currently, sonewconn() is defined as sonewconn1() in socketvar.h
153 * to catch calls that are missing the (new) second parameter.
154 */
155 struct socket *
156 sonewconn1(struct socket *head, int connstatus)
157 {
158 struct socket *so;
159 int soqueue;
160
161 soqueue = connstatus ? 1 : 0;
162 if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
163 return ((struct socket *)0);
164 so = pool_get(&socket_pool, PR_NOWAIT);
165 if (so == NULL)
166 return (NULL);
167 memset((caddr_t)so, 0, sizeof(*so));
168 so->so_type = head->so_type;
169 so->so_options = head->so_options &~ SO_ACCEPTCONN;
170 so->so_linger = head->so_linger;
171 so->so_state = head->so_state | SS_NOFDREF;
172 so->so_proto = head->so_proto;
173 so->so_timeo = head->so_timeo;
174 so->so_pgid = head->so_pgid;
175 so->so_send = head->so_send;
176 so->so_receive = head->so_receive;
177 so->so_uid = head->so_uid;
178 #ifdef MBUFTRACE
179 so->so_mowner = head->so_mowner;
180 so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
181 so->so_snd.sb_mowner = head->so_snd.sb_mowner;
182 #endif
183 (void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
184 soqinsque(head, so, soqueue);
185 if ((*so->so_proto->pr_usrreq)(so, PRU_ATTACH,
186 (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
187 (struct lwp *)0)) {
188 (void) soqremque(so, soqueue);
189 pool_put(&socket_pool, so);
190 return (NULL);
191 }
192 if (connstatus) {
193 sorwakeup(head);
194 wakeup((caddr_t)&head->so_timeo);
195 so->so_state |= connstatus;
196 }
197 return (so);
198 }
199
200 void
201 soqinsque(struct socket *head, struct socket *so, int q)
202 {
203
204 #ifdef DIAGNOSTIC
205 if (so->so_onq != NULL)
206 panic("soqinsque");
207 #endif
208
209 so->so_head = head;
210 if (q == 0) {
211 head->so_q0len++;
212 so->so_onq = &head->so_q0;
213 } else {
214 head->so_qlen++;
215 so->so_onq = &head->so_q;
216 }
217 TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
218 }
219
220 int
221 soqremque(struct socket *so, int q)
222 {
223 struct socket *head;
224
225 head = so->so_head;
226 if (q == 0) {
227 if (so->so_onq != &head->so_q0)
228 return (0);
229 head->so_q0len--;
230 } else {
231 if (so->so_onq != &head->so_q)
232 return (0);
233 head->so_qlen--;
234 }
235 TAILQ_REMOVE(so->so_onq, so, so_qe);
236 so->so_onq = NULL;
237 so->so_head = NULL;
238 return (1);
239 }
240
241 /*
242 * Socantsendmore indicates that no more data will be sent on the
243 * socket; it would normally be applied to a socket when the user
244 * informs the system that no more data is to be sent, by the protocol
245 * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data
246 * will be received, and will normally be applied to the socket by a
247 * protocol when it detects that the peer will send no more data.
248 * Data queued for reading in the socket may yet be read.
249 */
250
251 void
252 socantsendmore(struct socket *so)
253 {
254
255 so->so_state |= SS_CANTSENDMORE;
256 sowwakeup(so);
257 }
258
259 void
260 socantrcvmore(struct socket *so)
261 {
262
263 so->so_state |= SS_CANTRCVMORE;
264 sorwakeup(so);
265 }
266
267 /*
268 * Wait for data to arrive at/drain from a socket buffer.
269 */
270 int
271 sbwait(struct sockbuf *sb)
272 {
273
274 sb->sb_flags |= SB_WAIT;
275 return (tsleep((caddr_t)&sb->sb_cc,
276 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, netio,
277 sb->sb_timeo));
278 }
279
280 /*
281 * Lock a sockbuf already known to be locked;
282 * return any error returned from sleep (EINTR).
283 */
284 int
285 sb_lock(struct sockbuf *sb)
286 {
287 int error;
288
289 while (sb->sb_flags & SB_LOCK) {
290 sb->sb_flags |= SB_WANT;
291 error = tsleep((caddr_t)&sb->sb_flags,
292 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK|PCATCH,
293 netlck, 0);
294 if (error)
295 return (error);
296 }
297 sb->sb_flags |= SB_LOCK;
298 return (0);
299 }
300
301 /*
302 * Wakeup processes waiting on a socket buffer.
303 * Do asynchronous notification via SIGIO
304 * if the socket buffer has the SB_ASYNC flag set.
305 */
306 void
307 sowakeup(struct socket *so, struct sockbuf *sb)
308 {
309 struct proc *p;
310
311 selnotify(&sb->sb_sel, 0);
312 sb->sb_flags &= ~SB_SEL;
313 if (sb->sb_flags & SB_WAIT) {
314 sb->sb_flags &= ~SB_WAIT;
315 wakeup((caddr_t)&sb->sb_cc);
316 }
317 if (sb->sb_flags & SB_ASYNC) {
318 if (so->so_pgid < 0)
319 gsignal(-so->so_pgid, SIGIO);
320 else if (so->so_pgid > 0 && (p = pfind(so->so_pgid)) != 0)
321 psignal(p, SIGIO);
322 }
323 if (sb->sb_flags & SB_UPCALL)
324 (*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT);
325 }
326
327 /*
328 * Socket buffer (struct sockbuf) utility routines.
329 *
330 * Each socket contains two socket buffers: one for sending data and
331 * one for receiving data. Each buffer contains a queue of mbufs,
332 * information about the number of mbufs and amount of data in the
333 * queue, and other fields allowing poll() statements and notification
334 * on data availability to be implemented.
335 *
336 * Data stored in a socket buffer is maintained as a list of records.
337 * Each record is a list of mbufs chained together with the m_next
338 * field. Records are chained together with the m_nextpkt field. The upper
339 * level routine soreceive() expects the following conventions to be
340 * observed when placing information in the receive buffer:
341 *
342 * 1. If the protocol requires each message be preceded by the sender's
343 * name, then a record containing that name must be present before
344 * any associated data (mbuf's must be of type MT_SONAME).
345 * 2. If the protocol supports the exchange of ``access rights'' (really
346 * just additional data associated with the message), and there are
347 * ``rights'' to be received, then a record containing this data
348 * should be present (mbuf's must be of type MT_CONTROL).
349 * 3. If a name or rights record exists, then it must be followed by
350 * a data record, perhaps of zero length.
351 *
352 * Before using a new socket structure it is first necessary to reserve
353 * buffer space to the socket, by calling sbreserve(). This should commit
354 * some of the available buffer space in the system buffer pool for the
355 * socket (currently, it does nothing but enforce limits). The space
356 * should be released by calling sbrelease() when the socket is destroyed.
357 */
358
359 int
360 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
361 {
362
363 if (sbreserve(&so->so_snd, sndcc) == 0)
364 goto bad;
365 if (sbreserve(&so->so_rcv, rcvcc) == 0)
366 goto bad2;
367 if (so->so_rcv.sb_lowat == 0)
368 so->so_rcv.sb_lowat = 1;
369 if (so->so_snd.sb_lowat == 0)
370 so->so_snd.sb_lowat = MCLBYTES;
371 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
372 so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
373 return (0);
374 bad2:
375 sbrelease(&so->so_snd);
376 bad:
377 return (ENOBUFS);
378 }
379
380 /*
381 * Allot mbufs to a sockbuf.
382 * Attempt to scale mbmax so that mbcnt doesn't become limiting
383 * if buffering efficiency is near the normal case.
384 */
385 int
386 sbreserve(struct sockbuf *sb, u_long cc)
387 {
388
389 if (cc == 0 ||
390 (u_quad_t) cc > (u_quad_t) sb_max * MCLBYTES / (MSIZE + MCLBYTES))
391 return (0);
392 sb->sb_hiwat = cc;
393 sb->sb_mbmax = min(cc * 2, sb_max);
394 if (sb->sb_lowat > sb->sb_hiwat)
395 sb->sb_lowat = sb->sb_hiwat;
396 return (1);
397 }
398
399 /*
400 * Free mbufs held by a socket, and reserved mbuf space.
401 */
402 void
403 sbrelease(struct sockbuf *sb)
404 {
405
406 sbflush(sb);
407 sb->sb_hiwat = sb->sb_mbmax = 0;
408 }
409
410 /*
411 * Routines to add and remove
412 * data from an mbuf queue.
413 *
414 * The routines sbappend() or sbappendrecord() are normally called to
415 * append new mbufs to a socket buffer, after checking that adequate
416 * space is available, comparing the function sbspace() with the amount
417 * of data to be added. sbappendrecord() differs from sbappend() in
418 * that data supplied is treated as the beginning of a new record.
419 * To place a sender's address, optional access rights, and data in a
420 * socket receive buffer, sbappendaddr() should be used. To place
421 * access rights and data in a socket receive buffer, sbappendrights()
422 * should be used. In either case, the new data begins a new record.
423 * Note that unlike sbappend() and sbappendrecord(), these routines check
424 * for the caller that there will be enough space to store the data.
425 * Each fails if there is not enough space, or if it cannot find mbufs
426 * to store additional information in.
427 *
428 * Reliable protocols may use the socket send buffer to hold data
429 * awaiting acknowledgement. Data is normally copied from a socket
430 * send buffer in a protocol with m_copy for output to a peer,
431 * and then removing the data from the socket buffer with sbdrop()
432 * or sbdroprecord() when the data is acknowledged by the peer.
433 */
434
435 #ifdef SOCKBUF_DEBUG
436 void
437 sblastrecordchk(struct sockbuf *sb, const char *where)
438 {
439 struct mbuf *m = sb->sb_mb;
440
441 while (m && m->m_nextpkt)
442 m = m->m_nextpkt;
443
444 if (m != sb->sb_lastrecord) {
445 printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
446 sb->sb_mb, sb->sb_lastrecord, m);
447 printf("packet chain:\n");
448 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
449 printf("\t%p\n", m);
450 panic("sblastrecordchk from %s", where);
451 }
452 }
453
454 void
455 sblastmbufchk(struct sockbuf *sb, const char *where)
456 {
457 struct mbuf *m = sb->sb_mb;
458 struct mbuf *n;
459
460 while (m && m->m_nextpkt)
461 m = m->m_nextpkt;
462
463 while (m && m->m_next)
464 m = m->m_next;
465
466 if (m != sb->sb_mbtail) {
467 printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
468 sb->sb_mb, sb->sb_mbtail, m);
469 printf("packet tree:\n");
470 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
471 printf("\t");
472 for (n = m; n != NULL; n = n->m_next)
473 printf("%p ", n);
474 printf("\n");
475 }
476 panic("sblastmbufchk from %s", where);
477 }
478 }
479 #endif /* SOCKBUF_DEBUG */
480
481 #define SBLINKRECORD(sb, m0) \
482 do { \
483 if ((sb)->sb_lastrecord != NULL) \
484 (sb)->sb_lastrecord->m_nextpkt = (m0); \
485 else \
486 (sb)->sb_mb = (m0); \
487 (sb)->sb_lastrecord = (m0); \
488 } while (/*CONSTCOND*/0)
489
490 /*
491 * Append mbuf chain m to the last record in the
492 * socket buffer sb. The additional space associated
493 * the mbuf chain is recorded in sb. Empty mbufs are
494 * discarded and mbufs are compacted where possible.
495 */
496 void
497 sbappend(struct sockbuf *sb, struct mbuf *m)
498 {
499 struct mbuf *n;
500
501 if (m == 0)
502 return;
503
504 #ifdef MBUFTRACE
505 m_claim(m, sb->sb_mowner);
506 #endif
507
508 SBLASTRECORDCHK(sb, "sbappend 1");
509
510 if ((n = sb->sb_lastrecord) != NULL) {
511 /*
512 * XXX Would like to simply use sb_mbtail here, but
513 * XXX I need to verify that I won't miss an EOR that
514 * XXX way.
515 */
516 do {
517 if (n->m_flags & M_EOR) {
518 sbappendrecord(sb, m); /* XXXXXX!!!! */
519 return;
520 }
521 } while (n->m_next && (n = n->m_next));
522 } else {
523 /*
524 * If this is the first record in the socket buffer, it's
525 * also the last record.
526 */
527 sb->sb_lastrecord = m;
528 }
529 sbcompress(sb, m, n);
530 SBLASTRECORDCHK(sb, "sbappend 2");
531 }
532
533 /*
534 * This version of sbappend() should only be used when the caller
535 * absolutely knows that there will never be more than one record
536 * in the socket buffer, that is, a stream protocol (such as TCP).
537 */
538 void
539 sbappendstream(struct sockbuf *sb, struct mbuf *m)
540 {
541
542 KDASSERT(m->m_nextpkt == NULL);
543 KASSERT(sb->sb_mb == sb->sb_lastrecord);
544
545 SBLASTMBUFCHK(sb, __func__);
546
547 #ifdef MBUFTRACE
548 m_claim(m, sb->sb_mowner);
549 #endif
550
551 sbcompress(sb, m, sb->sb_mbtail);
552
553 sb->sb_lastrecord = sb->sb_mb;
554 SBLASTRECORDCHK(sb, __func__);
555 }
556
557 #ifdef SOCKBUF_DEBUG
558 void
559 sbcheck(struct sockbuf *sb)
560 {
561 struct mbuf *m;
562 u_long len, mbcnt;
563
564 len = 0;
565 mbcnt = 0;
566 for (m = sb->sb_mb; m; m = m->m_next) {
567 len += m->m_len;
568 mbcnt += MSIZE;
569 if (m->m_flags & M_EXT)
570 mbcnt += m->m_ext.ext_size;
571 if (m->m_nextpkt)
572 panic("sbcheck nextpkt");
573 }
574 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
575 printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
576 mbcnt, sb->sb_mbcnt);
577 panic("sbcheck");
578 }
579 }
580 #endif
581
582 /*
583 * As above, except the mbuf chain
584 * begins a new record.
585 */
586 void
587 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
588 {
589 struct mbuf *m;
590
591 if (m0 == 0)
592 return;
593
594 #ifdef MBUFTRACE
595 m_claim(m0, sb->sb_mowner);
596 #endif
597 /*
598 * Put the first mbuf on the queue.
599 * Note this permits zero length records.
600 */
601 sballoc(sb, m0);
602 SBLASTRECORDCHK(sb, "sbappendrecord 1");
603 SBLINKRECORD(sb, m0);
604 m = m0->m_next;
605 m0->m_next = 0;
606 if (m && (m0->m_flags & M_EOR)) {
607 m0->m_flags &= ~M_EOR;
608 m->m_flags |= M_EOR;
609 }
610 sbcompress(sb, m, m0);
611 SBLASTRECORDCHK(sb, "sbappendrecord 2");
612 }
613
614 /*
615 * As above except that OOB data
616 * is inserted at the beginning of the sockbuf,
617 * but after any other OOB data.
618 */
619 void
620 sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
621 {
622 struct mbuf *m, **mp;
623
624 if (m0 == 0)
625 return;
626
627 SBLASTRECORDCHK(sb, "sbinsertoob 1");
628
629 for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
630 again:
631 switch (m->m_type) {
632
633 case MT_OOBDATA:
634 continue; /* WANT next train */
635
636 case MT_CONTROL:
637 if ((m = m->m_next) != NULL)
638 goto again; /* inspect THIS train further */
639 }
640 break;
641 }
642 /*
643 * Put the first mbuf on the queue.
644 * Note this permits zero length records.
645 */
646 sballoc(sb, m0);
647 m0->m_nextpkt = *mp;
648 if (*mp == NULL) {
649 /* m0 is actually the new tail */
650 sb->sb_lastrecord = m0;
651 }
652 *mp = m0;
653 m = m0->m_next;
654 m0->m_next = 0;
655 if (m && (m0->m_flags & M_EOR)) {
656 m0->m_flags &= ~M_EOR;
657 m->m_flags |= M_EOR;
658 }
659 sbcompress(sb, m, m0);
660 SBLASTRECORDCHK(sb, "sbinsertoob 2");
661 }
662
663 /*
664 * Append address and data, and optionally, control (ancillary) data
665 * to the receive queue of a socket. If present,
666 * m0 must include a packet header with total length.
667 * Returns 0 if no space in sockbuf or insufficient mbufs.
668 */
669 int
670 sbappendaddr(struct sockbuf *sb, struct sockaddr *asa, struct mbuf *m0,
671 struct mbuf *control)
672 {
673 struct mbuf *m, *n, *nlast;
674 int space, len;
675
676 space = asa->sa_len;
677
678 if (m0 != NULL) {
679 if ((m0->m_flags & M_PKTHDR) == 0)
680 panic("sbappendaddr");
681 space += m0->m_pkthdr.len;
682 #ifdef MBUFTRACE
683 m_claim(m0, sb->sb_mowner);
684 #endif
685 }
686 for (n = control; n; n = n->m_next) {
687 space += n->m_len;
688 MCLAIM(n, sb->sb_mowner);
689 if (n->m_next == 0) /* keep pointer to last control buf */
690 break;
691 }
692 if (space > sbspace(sb))
693 return (0);
694 MGET(m, M_DONTWAIT, MT_SONAME);
695 if (m == 0)
696 return (0);
697 MCLAIM(m, sb->sb_mowner);
698 /*
699 * XXX avoid 'comparison always true' warning which isn't easily
700 * avoided.
701 */
702 len = asa->sa_len;
703 if (len > MLEN) {
704 MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
705 if ((m->m_flags & M_EXT) == 0) {
706 m_free(m);
707 return (0);
708 }
709 }
710 m->m_len = asa->sa_len;
711 memcpy(mtod(m, caddr_t), (caddr_t)asa, asa->sa_len);
712 if (n)
713 n->m_next = m0; /* concatenate data to control */
714 else
715 control = m0;
716 m->m_next = control;
717
718 SBLASTRECORDCHK(sb, "sbappendaddr 1");
719
720 for (n = m; n->m_next != NULL; n = n->m_next)
721 sballoc(sb, n);
722 sballoc(sb, n);
723 nlast = n;
724 SBLINKRECORD(sb, m);
725
726 sb->sb_mbtail = nlast;
727 SBLASTMBUFCHK(sb, "sbappendaddr");
728
729 SBLASTRECORDCHK(sb, "sbappendaddr 2");
730
731 return (1);
732 }
733
734 int
735 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
736 {
737 struct mbuf *m, *mlast, *n;
738 int space;
739
740 space = 0;
741 if (control == 0)
742 panic("sbappendcontrol");
743 for (m = control; ; m = m->m_next) {
744 space += m->m_len;
745 MCLAIM(m, sb->sb_mowner);
746 if (m->m_next == 0)
747 break;
748 }
749 n = m; /* save pointer to last control buffer */
750 for (m = m0; m; m = m->m_next) {
751 MCLAIM(m, sb->sb_mowner);
752 space += m->m_len;
753 }
754 if (space > sbspace(sb))
755 return (0);
756 n->m_next = m0; /* concatenate data to control */
757
758 SBLASTRECORDCHK(sb, "sbappendcontrol 1");
759
760 for (m = control; m->m_next != NULL; m = m->m_next)
761 sballoc(sb, m);
762 sballoc(sb, m);
763 mlast = m;
764 SBLINKRECORD(sb, control);
765
766 sb->sb_mbtail = mlast;
767 SBLASTMBUFCHK(sb, "sbappendcontrol");
768
769 SBLASTRECORDCHK(sb, "sbappendcontrol 2");
770
771 return (1);
772 }
773
774 /*
775 * Compress mbuf chain m into the socket
776 * buffer sb following mbuf n. If n
777 * is null, the buffer is presumed empty.
778 */
779 void
780 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
781 {
782 int eor;
783 struct mbuf *o;
784
785 eor = 0;
786 while (m) {
787 eor |= m->m_flags & M_EOR;
788 if (m->m_len == 0 &&
789 (eor == 0 ||
790 (((o = m->m_next) || (o = n)) &&
791 o->m_type == m->m_type))) {
792 if (sb->sb_lastrecord == m)
793 sb->sb_lastrecord = m->m_next;
794 m = m_free(m);
795 continue;
796 }
797 if (n && (n->m_flags & M_EOR) == 0 &&
798 /* M_TRAILINGSPACE() checks buffer writeability */
799 m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
800 m->m_len <= M_TRAILINGSPACE(n) &&
801 n->m_type == m->m_type) {
802 memcpy(mtod(n, caddr_t) + n->m_len, mtod(m, caddr_t),
803 (unsigned)m->m_len);
804 n->m_len += m->m_len;
805 sb->sb_cc += m->m_len;
806 m = m_free(m);
807 continue;
808 }
809 if (n)
810 n->m_next = m;
811 else
812 sb->sb_mb = m;
813 sb->sb_mbtail = m;
814 sballoc(sb, m);
815 n = m;
816 m->m_flags &= ~M_EOR;
817 m = m->m_next;
818 n->m_next = 0;
819 }
820 if (eor) {
821 if (n)
822 n->m_flags |= eor;
823 else
824 printf("semi-panic: sbcompress\n");
825 }
826 SBLASTMBUFCHK(sb, __func__);
827 }
828
829 /*
830 * Free all mbufs in a sockbuf.
831 * Check that all resources are reclaimed.
832 */
833 void
834 sbflush(struct sockbuf *sb)
835 {
836
837 KASSERT((sb->sb_flags & SB_LOCK) == 0);
838
839 while (sb->sb_mbcnt)
840 sbdrop(sb, (int)sb->sb_cc);
841
842 KASSERT(sb->sb_cc == 0);
843 KASSERT(sb->sb_mb == NULL);
844 KASSERT(sb->sb_mbtail == NULL);
845 KASSERT(sb->sb_lastrecord == NULL);
846 }
847
848 /*
849 * Drop data from (the front of) a sockbuf.
850 */
851 void
852 sbdrop(struct sockbuf *sb, int len)
853 {
854 struct mbuf *m, *mn, *next;
855
856 next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
857 while (len > 0) {
858 if (m == 0) {
859 if (next == 0)
860 panic("sbdrop");
861 m = next;
862 next = m->m_nextpkt;
863 continue;
864 }
865 if (m->m_len > len) {
866 m->m_len -= len;
867 m->m_data += len;
868 sb->sb_cc -= len;
869 break;
870 }
871 len -= m->m_len;
872 sbfree(sb, m);
873 MFREE(m, mn);
874 m = mn;
875 }
876 while (m && m->m_len == 0) {
877 sbfree(sb, m);
878 MFREE(m, mn);
879 m = mn;
880 }
881 if (m) {
882 sb->sb_mb = m;
883 m->m_nextpkt = next;
884 } else
885 sb->sb_mb = next;
886 /*
887 * First part is an inline SB_EMPTY_FIXUP(). Second part
888 * makes sure sb_lastrecord is up-to-date if we dropped
889 * part of the last record.
890 */
891 m = sb->sb_mb;
892 if (m == NULL) {
893 sb->sb_mbtail = NULL;
894 sb->sb_lastrecord = NULL;
895 } else if (m->m_nextpkt == NULL)
896 sb->sb_lastrecord = m;
897 }
898
899 /*
900 * Drop a record off the front of a sockbuf
901 * and move the next record to the front.
902 */
903 void
904 sbdroprecord(struct sockbuf *sb)
905 {
906 struct mbuf *m, *mn;
907
908 m = sb->sb_mb;
909 if (m) {
910 sb->sb_mb = m->m_nextpkt;
911 do {
912 sbfree(sb, m);
913 MFREE(m, mn);
914 } while ((m = mn) != NULL);
915 }
916 SB_EMPTY_FIXUP(sb);
917 }
918
919 /*
920 * Create a "control" mbuf containing the specified data
921 * with the specified type for presentation on a socket buffer.
922 */
923 struct mbuf *
924 sbcreatecontrol(caddr_t p, int size, int type, int level)
925 {
926 struct cmsghdr *cp;
927 struct mbuf *m;
928
929 if (CMSG_SPACE(size) > MCLBYTES) {
930 printf("sbcreatecontrol: message too large %d\n", size);
931 return NULL;
932 }
933
934 if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
935 return ((struct mbuf *) NULL);
936 if (CMSG_SPACE(size) > MLEN) {
937 MCLGET(m, M_DONTWAIT);
938 if ((m->m_flags & M_EXT) == 0) {
939 m_free(m);
940 return NULL;
941 }
942 }
943 cp = mtod(m, struct cmsghdr *);
944 memcpy(CMSG_DATA(cp), p, size);
945 m->m_len = CMSG_SPACE(size);
946 cp->cmsg_len = CMSG_LEN(size);
947 cp->cmsg_level = level;
948 cp->cmsg_type = type;
949 return (m);
950 }
951