uipc_socket2.c revision 1.54 1 /* $NetBSD: uipc_socket2.c,v 1.54 2003/08/07 16:31:59 agc Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1988, 1990, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 * @(#)uipc_socket2.c 8.2 (Berkeley) 2/14/95
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.54 2003/08/07 16:31:59 agc Exp $");
36
37 #include "opt_mbuftrace.h"
38
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/proc.h>
42 #include <sys/file.h>
43 #include <sys/buf.h>
44 #include <sys/malloc.h>
45 #include <sys/mbuf.h>
46 #include <sys/protosw.h>
47 #include <sys/socket.h>
48 #include <sys/socketvar.h>
49 #include <sys/signalvar.h>
50
51 /*
52 * Primitive routines for operating on sockets and socket buffers
53 */
54
55 /* strings for sleep message: */
56 const char netcon[] = "netcon";
57 const char netcls[] = "netcls";
58 const char netio[] = "netio";
59 const char netlck[] = "netlck";
60
61 /*
62 * Procedures to manipulate state flags of socket
63 * and do appropriate wakeups. Normal sequence from the
64 * active (originating) side is that soisconnecting() is
65 * called during processing of connect() call,
66 * resulting in an eventual call to soisconnected() if/when the
67 * connection is established. When the connection is torn down
68 * soisdisconnecting() is called during processing of disconnect() call,
69 * and soisdisconnected() is called when the connection to the peer
70 * is totally severed. The semantics of these routines are such that
71 * connectionless protocols can call soisconnected() and soisdisconnected()
72 * only, bypassing the in-progress calls when setting up a ``connection''
73 * takes no time.
74 *
75 * From the passive side, a socket is created with
76 * two queues of sockets: so_q0 for connections in progress
77 * and so_q for connections already made and awaiting user acceptance.
78 * As a protocol is preparing incoming connections, it creates a socket
79 * structure queued on so_q0 by calling sonewconn(). When the connection
80 * is established, soisconnected() is called, and transfers the
81 * socket structure to so_q, making it available to accept().
82 *
83 * If a socket is closed with sockets on either
84 * so_q0 or so_q, these sockets are dropped.
85 *
86 * If higher level protocols are implemented in
87 * the kernel, the wakeups done here will sometimes
88 * cause software-interrupt process scheduling.
89 */
90
91 void
92 soisconnecting(struct socket *so)
93 {
94
95 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
96 so->so_state |= SS_ISCONNECTING;
97 }
98
99 void
100 soisconnected(struct socket *so)
101 {
102 struct socket *head;
103
104 head = so->so_head;
105 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
106 so->so_state |= SS_ISCONNECTED;
107 if (head && soqremque(so, 0)) {
108 soqinsque(head, so, 1);
109 sorwakeup(head);
110 wakeup((caddr_t)&head->so_timeo);
111 } else {
112 wakeup((caddr_t)&so->so_timeo);
113 sorwakeup(so);
114 sowwakeup(so);
115 }
116 }
117
118 void
119 soisdisconnecting(struct socket *so)
120 {
121
122 so->so_state &= ~SS_ISCONNECTING;
123 so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
124 wakeup((caddr_t)&so->so_timeo);
125 sowwakeup(so);
126 sorwakeup(so);
127 }
128
129 void
130 soisdisconnected(struct socket *so)
131 {
132
133 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
134 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
135 wakeup((caddr_t)&so->so_timeo);
136 sowwakeup(so);
137 sorwakeup(so);
138 }
139
140 /*
141 * When an attempt at a new connection is noted on a socket
142 * which accepts connections, sonewconn is called. If the
143 * connection is possible (subject to space constraints, etc.)
144 * then we allocate a new structure, propoerly linked into the
145 * data structure of the original socket, and return this.
146 * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
147 *
148 * Currently, sonewconn() is defined as sonewconn1() in socketvar.h
149 * to catch calls that are missing the (new) second parameter.
150 */
151 struct socket *
152 sonewconn1(struct socket *head, int connstatus)
153 {
154 struct socket *so;
155 int soqueue;
156
157 soqueue = connstatus ? 1 : 0;
158 if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
159 return ((struct socket *)0);
160 so = pool_get(&socket_pool, PR_NOWAIT);
161 if (so == NULL)
162 return (NULL);
163 memset((caddr_t)so, 0, sizeof(*so));
164 so->so_type = head->so_type;
165 so->so_options = head->so_options &~ SO_ACCEPTCONN;
166 so->so_linger = head->so_linger;
167 so->so_state = head->so_state | SS_NOFDREF;
168 so->so_proto = head->so_proto;
169 so->so_timeo = head->so_timeo;
170 so->so_pgid = head->so_pgid;
171 so->so_send = head->so_send;
172 so->so_receive = head->so_receive;
173 so->so_uid = head->so_uid;
174 #ifdef MBUFTRACE
175 so->so_mowner = head->so_mowner;
176 so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
177 so->so_snd.sb_mowner = head->so_snd.sb_mowner;
178 #endif
179 (void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
180 soqinsque(head, so, soqueue);
181 if ((*so->so_proto->pr_usrreq)(so, PRU_ATTACH,
182 (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
183 (struct proc *)0)) {
184 (void) soqremque(so, soqueue);
185 pool_put(&socket_pool, so);
186 return (NULL);
187 }
188 if (connstatus) {
189 sorwakeup(head);
190 wakeup((caddr_t)&head->so_timeo);
191 so->so_state |= connstatus;
192 }
193 return (so);
194 }
195
196 void
197 soqinsque(struct socket *head, struct socket *so, int q)
198 {
199
200 #ifdef DIAGNOSTIC
201 if (so->so_onq != NULL)
202 panic("soqinsque");
203 #endif
204
205 so->so_head = head;
206 if (q == 0) {
207 head->so_q0len++;
208 so->so_onq = &head->so_q0;
209 } else {
210 head->so_qlen++;
211 so->so_onq = &head->so_q;
212 }
213 TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
214 }
215
216 int
217 soqremque(struct socket *so, int q)
218 {
219 struct socket *head;
220
221 head = so->so_head;
222 if (q == 0) {
223 if (so->so_onq != &head->so_q0)
224 return (0);
225 head->so_q0len--;
226 } else {
227 if (so->so_onq != &head->so_q)
228 return (0);
229 head->so_qlen--;
230 }
231 TAILQ_REMOVE(so->so_onq, so, so_qe);
232 so->so_onq = NULL;
233 so->so_head = NULL;
234 return (1);
235 }
236
237 /*
238 * Socantsendmore indicates that no more data will be sent on the
239 * socket; it would normally be applied to a socket when the user
240 * informs the system that no more data is to be sent, by the protocol
241 * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data
242 * will be received, and will normally be applied to the socket by a
243 * protocol when it detects that the peer will send no more data.
244 * Data queued for reading in the socket may yet be read.
245 */
246
247 void
248 socantsendmore(struct socket *so)
249 {
250
251 so->so_state |= SS_CANTSENDMORE;
252 sowwakeup(so);
253 }
254
255 void
256 socantrcvmore(struct socket *so)
257 {
258
259 so->so_state |= SS_CANTRCVMORE;
260 sorwakeup(so);
261 }
262
263 /*
264 * Wait for data to arrive at/drain from a socket buffer.
265 */
266 int
267 sbwait(struct sockbuf *sb)
268 {
269
270 sb->sb_flags |= SB_WAIT;
271 return (tsleep((caddr_t)&sb->sb_cc,
272 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, netio,
273 sb->sb_timeo));
274 }
275
276 /*
277 * Lock a sockbuf already known to be locked;
278 * return any error returned from sleep (EINTR).
279 */
280 int
281 sb_lock(struct sockbuf *sb)
282 {
283 int error;
284
285 while (sb->sb_flags & SB_LOCK) {
286 sb->sb_flags |= SB_WANT;
287 error = tsleep((caddr_t)&sb->sb_flags,
288 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK|PCATCH,
289 netlck, 0);
290 if (error)
291 return (error);
292 }
293 sb->sb_flags |= SB_LOCK;
294 return (0);
295 }
296
297 /*
298 * Wakeup processes waiting on a socket buffer.
299 * Do asynchronous notification via SIGIO
300 * if the socket buffer has the SB_ASYNC flag set.
301 */
302 void
303 sowakeup(struct socket *so, struct sockbuf *sb)
304 {
305 struct proc *p;
306
307 selnotify(&sb->sb_sel, 0);
308 sb->sb_flags &= ~SB_SEL;
309 if (sb->sb_flags & SB_WAIT) {
310 sb->sb_flags &= ~SB_WAIT;
311 wakeup((caddr_t)&sb->sb_cc);
312 }
313 if (sb->sb_flags & SB_ASYNC) {
314 if (so->so_pgid < 0)
315 gsignal(-so->so_pgid, SIGIO);
316 else if (so->so_pgid > 0 && (p = pfind(so->so_pgid)) != 0)
317 psignal(p, SIGIO);
318 }
319 if (sb->sb_flags & SB_UPCALL)
320 (*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT);
321 }
322
323 /*
324 * Socket buffer (struct sockbuf) utility routines.
325 *
326 * Each socket contains two socket buffers: one for sending data and
327 * one for receiving data. Each buffer contains a queue of mbufs,
328 * information about the number of mbufs and amount of data in the
329 * queue, and other fields allowing poll() statements and notification
330 * on data availability to be implemented.
331 *
332 * Data stored in a socket buffer is maintained as a list of records.
333 * Each record is a list of mbufs chained together with the m_next
334 * field. Records are chained together with the m_nextpkt field. The upper
335 * level routine soreceive() expects the following conventions to be
336 * observed when placing information in the receive buffer:
337 *
338 * 1. If the protocol requires each message be preceded by the sender's
339 * name, then a record containing that name must be present before
340 * any associated data (mbuf's must be of type MT_SONAME).
341 * 2. If the protocol supports the exchange of ``access rights'' (really
342 * just additional data associated with the message), and there are
343 * ``rights'' to be received, then a record containing this data
344 * should be present (mbuf's must be of type MT_CONTROL).
345 * 3. If a name or rights record exists, then it must be followed by
346 * a data record, perhaps of zero length.
347 *
348 * Before using a new socket structure it is first necessary to reserve
349 * buffer space to the socket, by calling sbreserve(). This should commit
350 * some of the available buffer space in the system buffer pool for the
351 * socket (currently, it does nothing but enforce limits). The space
352 * should be released by calling sbrelease() when the socket is destroyed.
353 */
354
355 int
356 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
357 {
358
359 if (sbreserve(&so->so_snd, sndcc) == 0)
360 goto bad;
361 if (sbreserve(&so->so_rcv, rcvcc) == 0)
362 goto bad2;
363 if (so->so_rcv.sb_lowat == 0)
364 so->so_rcv.sb_lowat = 1;
365 if (so->so_snd.sb_lowat == 0)
366 so->so_snd.sb_lowat = MCLBYTES;
367 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
368 so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
369 return (0);
370 bad2:
371 sbrelease(&so->so_snd);
372 bad:
373 return (ENOBUFS);
374 }
375
376 /*
377 * Allot mbufs to a sockbuf.
378 * Attempt to scale mbmax so that mbcnt doesn't become limiting
379 * if buffering efficiency is near the normal case.
380 */
381 int
382 sbreserve(struct sockbuf *sb, u_long cc)
383 {
384
385 if (cc == 0 ||
386 (u_quad_t) cc > (u_quad_t) sb_max * MCLBYTES / (MSIZE + MCLBYTES))
387 return (0);
388 sb->sb_hiwat = cc;
389 sb->sb_mbmax = min(cc * 2, sb_max);
390 if (sb->sb_lowat > sb->sb_hiwat)
391 sb->sb_lowat = sb->sb_hiwat;
392 return (1);
393 }
394
395 /*
396 * Free mbufs held by a socket, and reserved mbuf space.
397 */
398 void
399 sbrelease(struct sockbuf *sb)
400 {
401
402 sbflush(sb);
403 sb->sb_hiwat = sb->sb_mbmax = 0;
404 }
405
406 /*
407 * Routines to add and remove
408 * data from an mbuf queue.
409 *
410 * The routines sbappend() or sbappendrecord() are normally called to
411 * append new mbufs to a socket buffer, after checking that adequate
412 * space is available, comparing the function sbspace() with the amount
413 * of data to be added. sbappendrecord() differs from sbappend() in
414 * that data supplied is treated as the beginning of a new record.
415 * To place a sender's address, optional access rights, and data in a
416 * socket receive buffer, sbappendaddr() should be used. To place
417 * access rights and data in a socket receive buffer, sbappendrights()
418 * should be used. In either case, the new data begins a new record.
419 * Note that unlike sbappend() and sbappendrecord(), these routines check
420 * for the caller that there will be enough space to store the data.
421 * Each fails if there is not enough space, or if it cannot find mbufs
422 * to store additional information in.
423 *
424 * Reliable protocols may use the socket send buffer to hold data
425 * awaiting acknowledgement. Data is normally copied from a socket
426 * send buffer in a protocol with m_copy for output to a peer,
427 * and then removing the data from the socket buffer with sbdrop()
428 * or sbdroprecord() when the data is acknowledged by the peer.
429 */
430
431 #ifdef SOCKBUF_DEBUG
432 void
433 sblastrecordchk(struct sockbuf *sb, const char *where)
434 {
435 struct mbuf *m = sb->sb_mb;
436
437 while (m && m->m_nextpkt)
438 m = m->m_nextpkt;
439
440 if (m != sb->sb_lastrecord) {
441 printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
442 sb->sb_mb, sb->sb_lastrecord, m);
443 printf("packet chain:\n");
444 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
445 printf("\t%p\n", m);
446 panic("sblastrecordchk from %s", where);
447 }
448 }
449
450 void
451 sblastmbufchk(struct sockbuf *sb, const char *where)
452 {
453 struct mbuf *m = sb->sb_mb;
454 struct mbuf *n;
455
456 while (m && m->m_nextpkt)
457 m = m->m_nextpkt;
458
459 while (m && m->m_next)
460 m = m->m_next;
461
462 if (m != sb->sb_mbtail) {
463 printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
464 sb->sb_mb, sb->sb_mbtail, m);
465 printf("packet tree:\n");
466 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
467 printf("\t");
468 for (n = m; n != NULL; n = n->m_next)
469 printf("%p ", n);
470 printf("\n");
471 }
472 panic("sblastmbufchk from %s", where);
473 }
474 }
475 #endif /* SOCKBUF_DEBUG */
476
477 #define SBLINKRECORD(sb, m0) \
478 do { \
479 if ((sb)->sb_lastrecord != NULL) \
480 (sb)->sb_lastrecord->m_nextpkt = (m0); \
481 else \
482 (sb)->sb_mb = (m0); \
483 (sb)->sb_lastrecord = (m0); \
484 } while (/*CONSTCOND*/0)
485
486 /*
487 * Append mbuf chain m to the last record in the
488 * socket buffer sb. The additional space associated
489 * the mbuf chain is recorded in sb. Empty mbufs are
490 * discarded and mbufs are compacted where possible.
491 */
492 void
493 sbappend(struct sockbuf *sb, struct mbuf *m)
494 {
495 struct mbuf *n;
496
497 if (m == 0)
498 return;
499
500 #ifdef MBUFTRACE
501 m_claim(m, sb->sb_mowner);
502 #endif
503
504 SBLASTRECORDCHK(sb, "sbappend 1");
505
506 if ((n = sb->sb_lastrecord) != NULL) {
507 /*
508 * XXX Would like to simply use sb_mbtail here, but
509 * XXX I need to verify that I won't miss an EOR that
510 * XXX way.
511 */
512 do {
513 if (n->m_flags & M_EOR) {
514 sbappendrecord(sb, m); /* XXXXXX!!!! */
515 return;
516 }
517 } while (n->m_next && (n = n->m_next));
518 } else {
519 /*
520 * If this is the first record in the socket buffer, it's
521 * also the last record.
522 */
523 sb->sb_lastrecord = m;
524 }
525 sbcompress(sb, m, n);
526 SBLASTRECORDCHK(sb, "sbappend 2");
527 }
528
529 /*
530 * This version of sbappend() should only be used when the caller
531 * absolutely knows that there will never be more than one record
532 * in the socket buffer, that is, a stream protocol (such as TCP).
533 */
534 void
535 sbappendstream(struct sockbuf *sb, struct mbuf *m)
536 {
537
538 KDASSERT(m->m_nextpkt == NULL);
539 KASSERT(sb->sb_mb == sb->sb_lastrecord);
540
541 SBLASTMBUFCHK(sb, __func__);
542
543 #ifdef MBUFTRACE
544 m_claim(m, sb->sb_mowner);
545 #endif
546
547 sbcompress(sb, m, sb->sb_mbtail);
548
549 sb->sb_lastrecord = sb->sb_mb;
550 SBLASTRECORDCHK(sb, __func__);
551 }
552
553 #ifdef SOCKBUF_DEBUG
554 void
555 sbcheck(struct sockbuf *sb)
556 {
557 struct mbuf *m;
558 u_long len, mbcnt;
559
560 len = 0;
561 mbcnt = 0;
562 for (m = sb->sb_mb; m; m = m->m_next) {
563 len += m->m_len;
564 mbcnt += MSIZE;
565 if (m->m_flags & M_EXT)
566 mbcnt += m->m_ext.ext_size;
567 if (m->m_nextpkt)
568 panic("sbcheck nextpkt");
569 }
570 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
571 printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
572 mbcnt, sb->sb_mbcnt);
573 panic("sbcheck");
574 }
575 }
576 #endif
577
578 /*
579 * As above, except the mbuf chain
580 * begins a new record.
581 */
582 void
583 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
584 {
585 struct mbuf *m;
586
587 if (m0 == 0)
588 return;
589
590 #ifdef MBUFTRACE
591 m_claim(m0, sb->sb_mowner);
592 #endif
593 /*
594 * Put the first mbuf on the queue.
595 * Note this permits zero length records.
596 */
597 sballoc(sb, m0);
598 SBLASTRECORDCHK(sb, "sbappendrecord 1");
599 SBLINKRECORD(sb, m0);
600 m = m0->m_next;
601 m0->m_next = 0;
602 if (m && (m0->m_flags & M_EOR)) {
603 m0->m_flags &= ~M_EOR;
604 m->m_flags |= M_EOR;
605 }
606 sbcompress(sb, m, m0);
607 SBLASTRECORDCHK(sb, "sbappendrecord 2");
608 }
609
610 /*
611 * As above except that OOB data
612 * is inserted at the beginning of the sockbuf,
613 * but after any other OOB data.
614 */
615 void
616 sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
617 {
618 struct mbuf *m, **mp;
619
620 if (m0 == 0)
621 return;
622
623 SBLASTRECORDCHK(sb, "sbinsertoob 1");
624
625 for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
626 again:
627 switch (m->m_type) {
628
629 case MT_OOBDATA:
630 continue; /* WANT next train */
631
632 case MT_CONTROL:
633 if ((m = m->m_next) != NULL)
634 goto again; /* inspect THIS train further */
635 }
636 break;
637 }
638 /*
639 * Put the first mbuf on the queue.
640 * Note this permits zero length records.
641 */
642 sballoc(sb, m0);
643 m0->m_nextpkt = *mp;
644 if (*mp == NULL) {
645 /* m0 is actually the new tail */
646 sb->sb_lastrecord = m0;
647 }
648 *mp = m0;
649 m = m0->m_next;
650 m0->m_next = 0;
651 if (m && (m0->m_flags & M_EOR)) {
652 m0->m_flags &= ~M_EOR;
653 m->m_flags |= M_EOR;
654 }
655 sbcompress(sb, m, m0);
656 SBLASTRECORDCHK(sb, "sbinsertoob 2");
657 }
658
659 /*
660 * Append address and data, and optionally, control (ancillary) data
661 * to the receive queue of a socket. If present,
662 * m0 must include a packet header with total length.
663 * Returns 0 if no space in sockbuf or insufficient mbufs.
664 */
665 int
666 sbappendaddr(struct sockbuf *sb, struct sockaddr *asa, struct mbuf *m0,
667 struct mbuf *control)
668 {
669 struct mbuf *m, *n, *nlast;
670 int space, len;
671
672 space = asa->sa_len;
673
674 if (m0 != NULL) {
675 if ((m0->m_flags & M_PKTHDR) == 0)
676 panic("sbappendaddr");
677 space += m0->m_pkthdr.len;
678 #ifdef MBUFTRACE
679 m_claim(m0, sb->sb_mowner);
680 #endif
681 }
682 for (n = control; n; n = n->m_next) {
683 space += n->m_len;
684 MCLAIM(n, sb->sb_mowner);
685 if (n->m_next == 0) /* keep pointer to last control buf */
686 break;
687 }
688 if (space > sbspace(sb))
689 return (0);
690 MGET(m, M_DONTWAIT, MT_SONAME);
691 if (m == 0)
692 return (0);
693 MCLAIM(m, sb->sb_mowner);
694 /*
695 * XXX avoid 'comparison always true' warning which isn't easily
696 * avoided.
697 */
698 len = asa->sa_len;
699 if (len > MLEN) {
700 MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
701 if ((m->m_flags & M_EXT) == 0) {
702 m_free(m);
703 return (0);
704 }
705 }
706 m->m_len = asa->sa_len;
707 memcpy(mtod(m, caddr_t), (caddr_t)asa, asa->sa_len);
708 if (n)
709 n->m_next = m0; /* concatenate data to control */
710 else
711 control = m0;
712 m->m_next = control;
713
714 SBLASTRECORDCHK(sb, "sbappendaddr 1");
715
716 for (n = m; n->m_next != NULL; n = n->m_next)
717 sballoc(sb, n);
718 sballoc(sb, n);
719 nlast = n;
720 SBLINKRECORD(sb, m);
721
722 sb->sb_mbtail = nlast;
723 SBLASTMBUFCHK(sb, "sbappendaddr");
724
725 SBLASTRECORDCHK(sb, "sbappendaddr 2");
726
727 return (1);
728 }
729
730 int
731 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
732 {
733 struct mbuf *m, *mlast, *n;
734 int space;
735
736 space = 0;
737 if (control == 0)
738 panic("sbappendcontrol");
739 for (m = control; ; m = m->m_next) {
740 space += m->m_len;
741 MCLAIM(m, sb->sb_mowner);
742 if (m->m_next == 0)
743 break;
744 }
745 n = m; /* save pointer to last control buffer */
746 for (m = m0; m; m = m->m_next) {
747 MCLAIM(m, sb->sb_mowner);
748 space += m->m_len;
749 }
750 if (space > sbspace(sb))
751 return (0);
752 n->m_next = m0; /* concatenate data to control */
753
754 SBLASTRECORDCHK(sb, "sbappendcontrol 1");
755
756 for (m = control; m->m_next != NULL; m = m->m_next)
757 sballoc(sb, m);
758 sballoc(sb, m);
759 mlast = m;
760 SBLINKRECORD(sb, control);
761
762 sb->sb_mbtail = mlast;
763 SBLASTMBUFCHK(sb, "sbappendcontrol");
764
765 SBLASTRECORDCHK(sb, "sbappendcontrol 2");
766
767 return (1);
768 }
769
770 /*
771 * Compress mbuf chain m into the socket
772 * buffer sb following mbuf n. If n
773 * is null, the buffer is presumed empty.
774 */
775 void
776 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
777 {
778 int eor;
779 struct mbuf *o;
780
781 eor = 0;
782 while (m) {
783 eor |= m->m_flags & M_EOR;
784 if (m->m_len == 0 &&
785 (eor == 0 ||
786 (((o = m->m_next) || (o = n)) &&
787 o->m_type == m->m_type))) {
788 if (sb->sb_lastrecord == m)
789 sb->sb_lastrecord = m->m_next;
790 m = m_free(m);
791 continue;
792 }
793 if (n && (n->m_flags & M_EOR) == 0 &&
794 /* M_TRAILINGSPACE() checks buffer writeability */
795 m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
796 m->m_len <= M_TRAILINGSPACE(n) &&
797 n->m_type == m->m_type) {
798 memcpy(mtod(n, caddr_t) + n->m_len, mtod(m, caddr_t),
799 (unsigned)m->m_len);
800 n->m_len += m->m_len;
801 sb->sb_cc += m->m_len;
802 m = m_free(m);
803 continue;
804 }
805 if (n)
806 n->m_next = m;
807 else
808 sb->sb_mb = m;
809 sb->sb_mbtail = m;
810 sballoc(sb, m);
811 n = m;
812 m->m_flags &= ~M_EOR;
813 m = m->m_next;
814 n->m_next = 0;
815 }
816 if (eor) {
817 if (n)
818 n->m_flags |= eor;
819 else
820 printf("semi-panic: sbcompress\n");
821 }
822 SBLASTMBUFCHK(sb, __func__);
823 }
824
825 /*
826 * Free all mbufs in a sockbuf.
827 * Check that all resources are reclaimed.
828 */
829 void
830 sbflush(struct sockbuf *sb)
831 {
832
833 KASSERT((sb->sb_flags & SB_LOCK) == 0);
834
835 while (sb->sb_mbcnt)
836 sbdrop(sb, (int)sb->sb_cc);
837
838 KASSERT(sb->sb_cc == 0);
839 KASSERT(sb->sb_mb == NULL);
840 KASSERT(sb->sb_mbtail == NULL);
841 KASSERT(sb->sb_lastrecord == NULL);
842 }
843
844 /*
845 * Drop data from (the front of) a sockbuf.
846 */
847 void
848 sbdrop(struct sockbuf *sb, int len)
849 {
850 struct mbuf *m, *mn, *next;
851
852 next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
853 while (len > 0) {
854 if (m == 0) {
855 if (next == 0)
856 panic("sbdrop");
857 m = next;
858 next = m->m_nextpkt;
859 continue;
860 }
861 if (m->m_len > len) {
862 m->m_len -= len;
863 m->m_data += len;
864 sb->sb_cc -= len;
865 break;
866 }
867 len -= m->m_len;
868 sbfree(sb, m);
869 MFREE(m, mn);
870 m = mn;
871 }
872 while (m && m->m_len == 0) {
873 sbfree(sb, m);
874 MFREE(m, mn);
875 m = mn;
876 }
877 if (m) {
878 sb->sb_mb = m;
879 m->m_nextpkt = next;
880 } else
881 sb->sb_mb = next;
882 /*
883 * First part is an inline SB_EMPTY_FIXUP(). Second part
884 * makes sure sb_lastrecord is up-to-date if we dropped
885 * part of the last record.
886 */
887 m = sb->sb_mb;
888 if (m == NULL) {
889 sb->sb_mbtail = NULL;
890 sb->sb_lastrecord = NULL;
891 } else if (m->m_nextpkt == NULL)
892 sb->sb_lastrecord = m;
893 }
894
895 /*
896 * Drop a record off the front of a sockbuf
897 * and move the next record to the front.
898 */
899 void
900 sbdroprecord(struct sockbuf *sb)
901 {
902 struct mbuf *m, *mn;
903
904 m = sb->sb_mb;
905 if (m) {
906 sb->sb_mb = m->m_nextpkt;
907 do {
908 sbfree(sb, m);
909 MFREE(m, mn);
910 } while ((m = mn) != NULL);
911 }
912 SB_EMPTY_FIXUP(sb);
913 }
914
915 /*
916 * Create a "control" mbuf containing the specified data
917 * with the specified type for presentation on a socket buffer.
918 */
919 struct mbuf *
920 sbcreatecontrol(caddr_t p, int size, int type, int level)
921 {
922 struct cmsghdr *cp;
923 struct mbuf *m;
924
925 if (CMSG_SPACE(size) > MCLBYTES) {
926 printf("sbcreatecontrol: message too large %d\n", size);
927 return NULL;
928 }
929
930 if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
931 return ((struct mbuf *) NULL);
932 if (CMSG_SPACE(size) > MLEN) {
933 MCLGET(m, M_DONTWAIT);
934 if ((m->m_flags & M_EXT) == 0) {
935 m_free(m);
936 return NULL;
937 }
938 }
939 cp = mtod(m, struct cmsghdr *);
940 memcpy(CMSG_DATA(cp), p, size);
941 m->m_len = CMSG_SPACE(size);
942 cp->cmsg_len = CMSG_LEN(size);
943 cp->cmsg_level = level;
944 cp->cmsg_type = type;
945 return (m);
946 }
947