Home | History | Annotate | Line # | Download | only in kern
uipc_socket2.c revision 1.54
      1 /*	$NetBSD: uipc_socket2.c,v 1.54 2003/08/07 16:31:59 agc Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1988, 1990, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the University nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  *
     31  *	@(#)uipc_socket2.c	8.2 (Berkeley) 2/14/95
     32  */
     33 
     34 #include <sys/cdefs.h>
     35 __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.54 2003/08/07 16:31:59 agc Exp $");
     36 
     37 #include "opt_mbuftrace.h"
     38 
     39 #include <sys/param.h>
     40 #include <sys/systm.h>
     41 #include <sys/proc.h>
     42 #include <sys/file.h>
     43 #include <sys/buf.h>
     44 #include <sys/malloc.h>
     45 #include <sys/mbuf.h>
     46 #include <sys/protosw.h>
     47 #include <sys/socket.h>
     48 #include <sys/socketvar.h>
     49 #include <sys/signalvar.h>
     50 
     51 /*
     52  * Primitive routines for operating on sockets and socket buffers
     53  */
     54 
     55 /* strings for sleep message: */
     56 const char	netcon[] = "netcon";
     57 const char	netcls[] = "netcls";
     58 const char	netio[] = "netio";
     59 const char	netlck[] = "netlck";
     60 
     61 /*
     62  * Procedures to manipulate state flags of socket
     63  * and do appropriate wakeups.  Normal sequence from the
     64  * active (originating) side is that soisconnecting() is
     65  * called during processing of connect() call,
     66  * resulting in an eventual call to soisconnected() if/when the
     67  * connection is established.  When the connection is torn down
     68  * soisdisconnecting() is called during processing of disconnect() call,
     69  * and soisdisconnected() is called when the connection to the peer
     70  * is totally severed.  The semantics of these routines are such that
     71  * connectionless protocols can call soisconnected() and soisdisconnected()
     72  * only, bypassing the in-progress calls when setting up a ``connection''
     73  * takes no time.
     74  *
     75  * From the passive side, a socket is created with
     76  * two queues of sockets: so_q0 for connections in progress
     77  * and so_q for connections already made and awaiting user acceptance.
     78  * As a protocol is preparing incoming connections, it creates a socket
     79  * structure queued on so_q0 by calling sonewconn().  When the connection
     80  * is established, soisconnected() is called, and transfers the
     81  * socket structure to so_q, making it available to accept().
     82  *
     83  * If a socket is closed with sockets on either
     84  * so_q0 or so_q, these sockets are dropped.
     85  *
     86  * If higher level protocols are implemented in
     87  * the kernel, the wakeups done here will sometimes
     88  * cause software-interrupt process scheduling.
     89  */
     90 
     91 void
     92 soisconnecting(struct socket *so)
     93 {
     94 
     95 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
     96 	so->so_state |= SS_ISCONNECTING;
     97 }
     98 
     99 void
    100 soisconnected(struct socket *so)
    101 {
    102 	struct socket	*head;
    103 
    104 	head = so->so_head;
    105 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
    106 	so->so_state |= SS_ISCONNECTED;
    107 	if (head && soqremque(so, 0)) {
    108 		soqinsque(head, so, 1);
    109 		sorwakeup(head);
    110 		wakeup((caddr_t)&head->so_timeo);
    111 	} else {
    112 		wakeup((caddr_t)&so->so_timeo);
    113 		sorwakeup(so);
    114 		sowwakeup(so);
    115 	}
    116 }
    117 
    118 void
    119 soisdisconnecting(struct socket *so)
    120 {
    121 
    122 	so->so_state &= ~SS_ISCONNECTING;
    123 	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
    124 	wakeup((caddr_t)&so->so_timeo);
    125 	sowwakeup(so);
    126 	sorwakeup(so);
    127 }
    128 
    129 void
    130 soisdisconnected(struct socket *so)
    131 {
    132 
    133 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
    134 	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
    135 	wakeup((caddr_t)&so->so_timeo);
    136 	sowwakeup(so);
    137 	sorwakeup(so);
    138 }
    139 
    140 /*
    141  * When an attempt at a new connection is noted on a socket
    142  * which accepts connections, sonewconn is called.  If the
    143  * connection is possible (subject to space constraints, etc.)
    144  * then we allocate a new structure, propoerly linked into the
    145  * data structure of the original socket, and return this.
    146  * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
    147  *
    148  * Currently, sonewconn() is defined as sonewconn1() in socketvar.h
    149  * to catch calls that are missing the (new) second parameter.
    150  */
    151 struct socket *
    152 sonewconn1(struct socket *head, int connstatus)
    153 {
    154 	struct socket	*so;
    155 	int		soqueue;
    156 
    157 	soqueue = connstatus ? 1 : 0;
    158 	if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
    159 		return ((struct socket *)0);
    160 	so = pool_get(&socket_pool, PR_NOWAIT);
    161 	if (so == NULL)
    162 		return (NULL);
    163 	memset((caddr_t)so, 0, sizeof(*so));
    164 	so->so_type = head->so_type;
    165 	so->so_options = head->so_options &~ SO_ACCEPTCONN;
    166 	so->so_linger = head->so_linger;
    167 	so->so_state = head->so_state | SS_NOFDREF;
    168 	so->so_proto = head->so_proto;
    169 	so->so_timeo = head->so_timeo;
    170 	so->so_pgid = head->so_pgid;
    171 	so->so_send = head->so_send;
    172 	so->so_receive = head->so_receive;
    173 	so->so_uid = head->so_uid;
    174 #ifdef MBUFTRACE
    175 	so->so_mowner = head->so_mowner;
    176 	so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
    177 	so->so_snd.sb_mowner = head->so_snd.sb_mowner;
    178 #endif
    179 	(void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
    180 	soqinsque(head, so, soqueue);
    181 	if ((*so->so_proto->pr_usrreq)(so, PRU_ATTACH,
    182 	    (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
    183 	    (struct proc *)0)) {
    184 		(void) soqremque(so, soqueue);
    185 		pool_put(&socket_pool, so);
    186 		return (NULL);
    187 	}
    188 	if (connstatus) {
    189 		sorwakeup(head);
    190 		wakeup((caddr_t)&head->so_timeo);
    191 		so->so_state |= connstatus;
    192 	}
    193 	return (so);
    194 }
    195 
    196 void
    197 soqinsque(struct socket *head, struct socket *so, int q)
    198 {
    199 
    200 #ifdef DIAGNOSTIC
    201 	if (so->so_onq != NULL)
    202 		panic("soqinsque");
    203 #endif
    204 
    205 	so->so_head = head;
    206 	if (q == 0) {
    207 		head->so_q0len++;
    208 		so->so_onq = &head->so_q0;
    209 	} else {
    210 		head->so_qlen++;
    211 		so->so_onq = &head->so_q;
    212 	}
    213 	TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
    214 }
    215 
    216 int
    217 soqremque(struct socket *so, int q)
    218 {
    219 	struct socket	*head;
    220 
    221 	head = so->so_head;
    222 	if (q == 0) {
    223 		if (so->so_onq != &head->so_q0)
    224 			return (0);
    225 		head->so_q0len--;
    226 	} else {
    227 		if (so->so_onq != &head->so_q)
    228 			return (0);
    229 		head->so_qlen--;
    230 	}
    231 	TAILQ_REMOVE(so->so_onq, so, so_qe);
    232 	so->so_onq = NULL;
    233 	so->so_head = NULL;
    234 	return (1);
    235 }
    236 
    237 /*
    238  * Socantsendmore indicates that no more data will be sent on the
    239  * socket; it would normally be applied to a socket when the user
    240  * informs the system that no more data is to be sent, by the protocol
    241  * code (in case PRU_SHUTDOWN).  Socantrcvmore indicates that no more data
    242  * will be received, and will normally be applied to the socket by a
    243  * protocol when it detects that the peer will send no more data.
    244  * Data queued for reading in the socket may yet be read.
    245  */
    246 
    247 void
    248 socantsendmore(struct socket *so)
    249 {
    250 
    251 	so->so_state |= SS_CANTSENDMORE;
    252 	sowwakeup(so);
    253 }
    254 
    255 void
    256 socantrcvmore(struct socket *so)
    257 {
    258 
    259 	so->so_state |= SS_CANTRCVMORE;
    260 	sorwakeup(so);
    261 }
    262 
    263 /*
    264  * Wait for data to arrive at/drain from a socket buffer.
    265  */
    266 int
    267 sbwait(struct sockbuf *sb)
    268 {
    269 
    270 	sb->sb_flags |= SB_WAIT;
    271 	return (tsleep((caddr_t)&sb->sb_cc,
    272 	    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, netio,
    273 	    sb->sb_timeo));
    274 }
    275 
    276 /*
    277  * Lock a sockbuf already known to be locked;
    278  * return any error returned from sleep (EINTR).
    279  */
    280 int
    281 sb_lock(struct sockbuf *sb)
    282 {
    283 	int	error;
    284 
    285 	while (sb->sb_flags & SB_LOCK) {
    286 		sb->sb_flags |= SB_WANT;
    287 		error = tsleep((caddr_t)&sb->sb_flags,
    288 		    (sb->sb_flags & SB_NOINTR) ?  PSOCK : PSOCK|PCATCH,
    289 		    netlck, 0);
    290 		if (error)
    291 			return (error);
    292 	}
    293 	sb->sb_flags |= SB_LOCK;
    294 	return (0);
    295 }
    296 
    297 /*
    298  * Wakeup processes waiting on a socket buffer.
    299  * Do asynchronous notification via SIGIO
    300  * if the socket buffer has the SB_ASYNC flag set.
    301  */
    302 void
    303 sowakeup(struct socket *so, struct sockbuf *sb)
    304 {
    305 	struct proc	*p;
    306 
    307 	selnotify(&sb->sb_sel, 0);
    308 	sb->sb_flags &= ~SB_SEL;
    309 	if (sb->sb_flags & SB_WAIT) {
    310 		sb->sb_flags &= ~SB_WAIT;
    311 		wakeup((caddr_t)&sb->sb_cc);
    312 	}
    313 	if (sb->sb_flags & SB_ASYNC) {
    314 		if (so->so_pgid < 0)
    315 			gsignal(-so->so_pgid, SIGIO);
    316 		else if (so->so_pgid > 0 && (p = pfind(so->so_pgid)) != 0)
    317 			psignal(p, SIGIO);
    318 	}
    319 	if (sb->sb_flags & SB_UPCALL)
    320 		(*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT);
    321 }
    322 
    323 /*
    324  * Socket buffer (struct sockbuf) utility routines.
    325  *
    326  * Each socket contains two socket buffers: one for sending data and
    327  * one for receiving data.  Each buffer contains a queue of mbufs,
    328  * information about the number of mbufs and amount of data in the
    329  * queue, and other fields allowing poll() statements and notification
    330  * on data availability to be implemented.
    331  *
    332  * Data stored in a socket buffer is maintained as a list of records.
    333  * Each record is a list of mbufs chained together with the m_next
    334  * field.  Records are chained together with the m_nextpkt field. The upper
    335  * level routine soreceive() expects the following conventions to be
    336  * observed when placing information in the receive buffer:
    337  *
    338  * 1. If the protocol requires each message be preceded by the sender's
    339  *    name, then a record containing that name must be present before
    340  *    any associated data (mbuf's must be of type MT_SONAME).
    341  * 2. If the protocol supports the exchange of ``access rights'' (really
    342  *    just additional data associated with the message), and there are
    343  *    ``rights'' to be received, then a record containing this data
    344  *    should be present (mbuf's must be of type MT_CONTROL).
    345  * 3. If a name or rights record exists, then it must be followed by
    346  *    a data record, perhaps of zero length.
    347  *
    348  * Before using a new socket structure it is first necessary to reserve
    349  * buffer space to the socket, by calling sbreserve().  This should commit
    350  * some of the available buffer space in the system buffer pool for the
    351  * socket (currently, it does nothing but enforce limits).  The space
    352  * should be released by calling sbrelease() when the socket is destroyed.
    353  */
    354 
    355 int
    356 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
    357 {
    358 
    359 	if (sbreserve(&so->so_snd, sndcc) == 0)
    360 		goto bad;
    361 	if (sbreserve(&so->so_rcv, rcvcc) == 0)
    362 		goto bad2;
    363 	if (so->so_rcv.sb_lowat == 0)
    364 		so->so_rcv.sb_lowat = 1;
    365 	if (so->so_snd.sb_lowat == 0)
    366 		so->so_snd.sb_lowat = MCLBYTES;
    367 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
    368 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
    369 	return (0);
    370  bad2:
    371 	sbrelease(&so->so_snd);
    372  bad:
    373 	return (ENOBUFS);
    374 }
    375 
    376 /*
    377  * Allot mbufs to a sockbuf.
    378  * Attempt to scale mbmax so that mbcnt doesn't become limiting
    379  * if buffering efficiency is near the normal case.
    380  */
    381 int
    382 sbreserve(struct sockbuf *sb, u_long cc)
    383 {
    384 
    385 	if (cc == 0 ||
    386 	    (u_quad_t) cc > (u_quad_t) sb_max * MCLBYTES / (MSIZE + MCLBYTES))
    387 		return (0);
    388 	sb->sb_hiwat = cc;
    389 	sb->sb_mbmax = min(cc * 2, sb_max);
    390 	if (sb->sb_lowat > sb->sb_hiwat)
    391 		sb->sb_lowat = sb->sb_hiwat;
    392 	return (1);
    393 }
    394 
    395 /*
    396  * Free mbufs held by a socket, and reserved mbuf space.
    397  */
    398 void
    399 sbrelease(struct sockbuf *sb)
    400 {
    401 
    402 	sbflush(sb);
    403 	sb->sb_hiwat = sb->sb_mbmax = 0;
    404 }
    405 
    406 /*
    407  * Routines to add and remove
    408  * data from an mbuf queue.
    409  *
    410  * The routines sbappend() or sbappendrecord() are normally called to
    411  * append new mbufs to a socket buffer, after checking that adequate
    412  * space is available, comparing the function sbspace() with the amount
    413  * of data to be added.  sbappendrecord() differs from sbappend() in
    414  * that data supplied is treated as the beginning of a new record.
    415  * To place a sender's address, optional access rights, and data in a
    416  * socket receive buffer, sbappendaddr() should be used.  To place
    417  * access rights and data in a socket receive buffer, sbappendrights()
    418  * should be used.  In either case, the new data begins a new record.
    419  * Note that unlike sbappend() and sbappendrecord(), these routines check
    420  * for the caller that there will be enough space to store the data.
    421  * Each fails if there is not enough space, or if it cannot find mbufs
    422  * to store additional information in.
    423  *
    424  * Reliable protocols may use the socket send buffer to hold data
    425  * awaiting acknowledgement.  Data is normally copied from a socket
    426  * send buffer in a protocol with m_copy for output to a peer,
    427  * and then removing the data from the socket buffer with sbdrop()
    428  * or sbdroprecord() when the data is acknowledged by the peer.
    429  */
    430 
    431 #ifdef SOCKBUF_DEBUG
    432 void
    433 sblastrecordchk(struct sockbuf *sb, const char *where)
    434 {
    435 	struct mbuf *m = sb->sb_mb;
    436 
    437 	while (m && m->m_nextpkt)
    438 		m = m->m_nextpkt;
    439 
    440 	if (m != sb->sb_lastrecord) {
    441 		printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
    442 		    sb->sb_mb, sb->sb_lastrecord, m);
    443 		printf("packet chain:\n");
    444 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
    445 			printf("\t%p\n", m);
    446 		panic("sblastrecordchk from %s", where);
    447 	}
    448 }
    449 
    450 void
    451 sblastmbufchk(struct sockbuf *sb, const char *where)
    452 {
    453 	struct mbuf *m = sb->sb_mb;
    454 	struct mbuf *n;
    455 
    456 	while (m && m->m_nextpkt)
    457 		m = m->m_nextpkt;
    458 
    459 	while (m && m->m_next)
    460 		m = m->m_next;
    461 
    462 	if (m != sb->sb_mbtail) {
    463 		printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
    464 		    sb->sb_mb, sb->sb_mbtail, m);
    465 		printf("packet tree:\n");
    466 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
    467 			printf("\t");
    468 			for (n = m; n != NULL; n = n->m_next)
    469 				printf("%p ", n);
    470 			printf("\n");
    471 		}
    472 		panic("sblastmbufchk from %s", where);
    473 	}
    474 }
    475 #endif /* SOCKBUF_DEBUG */
    476 
    477 #define	SBLINKRECORD(sb, m0)						\
    478 do {									\
    479 	if ((sb)->sb_lastrecord != NULL)				\
    480 		(sb)->sb_lastrecord->m_nextpkt = (m0);			\
    481 	else								\
    482 		(sb)->sb_mb = (m0);					\
    483 	(sb)->sb_lastrecord = (m0);					\
    484 } while (/*CONSTCOND*/0)
    485 
    486 /*
    487  * Append mbuf chain m to the last record in the
    488  * socket buffer sb.  The additional space associated
    489  * the mbuf chain is recorded in sb.  Empty mbufs are
    490  * discarded and mbufs are compacted where possible.
    491  */
    492 void
    493 sbappend(struct sockbuf *sb, struct mbuf *m)
    494 {
    495 	struct mbuf	*n;
    496 
    497 	if (m == 0)
    498 		return;
    499 
    500 #ifdef MBUFTRACE
    501 	m_claim(m, sb->sb_mowner);
    502 #endif
    503 
    504 	SBLASTRECORDCHK(sb, "sbappend 1");
    505 
    506 	if ((n = sb->sb_lastrecord) != NULL) {
    507 		/*
    508 		 * XXX Would like to simply use sb_mbtail here, but
    509 		 * XXX I need to verify that I won't miss an EOR that
    510 		 * XXX way.
    511 		 */
    512 		do {
    513 			if (n->m_flags & M_EOR) {
    514 				sbappendrecord(sb, m); /* XXXXXX!!!! */
    515 				return;
    516 			}
    517 		} while (n->m_next && (n = n->m_next));
    518 	} else {
    519 		/*
    520 		 * If this is the first record in the socket buffer, it's
    521 		 * also the last record.
    522 		 */
    523 		sb->sb_lastrecord = m;
    524 	}
    525 	sbcompress(sb, m, n);
    526 	SBLASTRECORDCHK(sb, "sbappend 2");
    527 }
    528 
    529 /*
    530  * This version of sbappend() should only be used when the caller
    531  * absolutely knows that there will never be more than one record
    532  * in the socket buffer, that is, a stream protocol (such as TCP).
    533  */
    534 void
    535 sbappendstream(struct sockbuf *sb, struct mbuf *m)
    536 {
    537 
    538 	KDASSERT(m->m_nextpkt == NULL);
    539 	KASSERT(sb->sb_mb == sb->sb_lastrecord);
    540 
    541 	SBLASTMBUFCHK(sb, __func__);
    542 
    543 #ifdef MBUFTRACE
    544 	m_claim(m, sb->sb_mowner);
    545 #endif
    546 
    547 	sbcompress(sb, m, sb->sb_mbtail);
    548 
    549 	sb->sb_lastrecord = sb->sb_mb;
    550 	SBLASTRECORDCHK(sb, __func__);
    551 }
    552 
    553 #ifdef SOCKBUF_DEBUG
    554 void
    555 sbcheck(struct sockbuf *sb)
    556 {
    557 	struct mbuf	*m;
    558 	u_long		len, mbcnt;
    559 
    560 	len = 0;
    561 	mbcnt = 0;
    562 	for (m = sb->sb_mb; m; m = m->m_next) {
    563 		len += m->m_len;
    564 		mbcnt += MSIZE;
    565 		if (m->m_flags & M_EXT)
    566 			mbcnt += m->m_ext.ext_size;
    567 		if (m->m_nextpkt)
    568 			panic("sbcheck nextpkt");
    569 	}
    570 	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
    571 		printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
    572 		    mbcnt, sb->sb_mbcnt);
    573 		panic("sbcheck");
    574 	}
    575 }
    576 #endif
    577 
    578 /*
    579  * As above, except the mbuf chain
    580  * begins a new record.
    581  */
    582 void
    583 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
    584 {
    585 	struct mbuf	*m;
    586 
    587 	if (m0 == 0)
    588 		return;
    589 
    590 #ifdef MBUFTRACE
    591 	m_claim(m0, sb->sb_mowner);
    592 #endif
    593 	/*
    594 	 * Put the first mbuf on the queue.
    595 	 * Note this permits zero length records.
    596 	 */
    597 	sballoc(sb, m0);
    598 	SBLASTRECORDCHK(sb, "sbappendrecord 1");
    599 	SBLINKRECORD(sb, m0);
    600 	m = m0->m_next;
    601 	m0->m_next = 0;
    602 	if (m && (m0->m_flags & M_EOR)) {
    603 		m0->m_flags &= ~M_EOR;
    604 		m->m_flags |= M_EOR;
    605 	}
    606 	sbcompress(sb, m, m0);
    607 	SBLASTRECORDCHK(sb, "sbappendrecord 2");
    608 }
    609 
    610 /*
    611  * As above except that OOB data
    612  * is inserted at the beginning of the sockbuf,
    613  * but after any other OOB data.
    614  */
    615 void
    616 sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
    617 {
    618 	struct mbuf	*m, **mp;
    619 
    620 	if (m0 == 0)
    621 		return;
    622 
    623 	SBLASTRECORDCHK(sb, "sbinsertoob 1");
    624 
    625 	for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
    626 	    again:
    627 		switch (m->m_type) {
    628 
    629 		case MT_OOBDATA:
    630 			continue;		/* WANT next train */
    631 
    632 		case MT_CONTROL:
    633 			if ((m = m->m_next) != NULL)
    634 				goto again;	/* inspect THIS train further */
    635 		}
    636 		break;
    637 	}
    638 	/*
    639 	 * Put the first mbuf on the queue.
    640 	 * Note this permits zero length records.
    641 	 */
    642 	sballoc(sb, m0);
    643 	m0->m_nextpkt = *mp;
    644 	if (*mp == NULL) {
    645 		/* m0 is actually the new tail */
    646 		sb->sb_lastrecord = m0;
    647 	}
    648 	*mp = m0;
    649 	m = m0->m_next;
    650 	m0->m_next = 0;
    651 	if (m && (m0->m_flags & M_EOR)) {
    652 		m0->m_flags &= ~M_EOR;
    653 		m->m_flags |= M_EOR;
    654 	}
    655 	sbcompress(sb, m, m0);
    656 	SBLASTRECORDCHK(sb, "sbinsertoob 2");
    657 }
    658 
    659 /*
    660  * Append address and data, and optionally, control (ancillary) data
    661  * to the receive queue of a socket.  If present,
    662  * m0 must include a packet header with total length.
    663  * Returns 0 if no space in sockbuf or insufficient mbufs.
    664  */
    665 int
    666 sbappendaddr(struct sockbuf *sb, struct sockaddr *asa, struct mbuf *m0,
    667 	struct mbuf *control)
    668 {
    669 	struct mbuf	*m, *n, *nlast;
    670 	int		space, len;
    671 
    672 	space = asa->sa_len;
    673 
    674 	if (m0 != NULL) {
    675 		if ((m0->m_flags & M_PKTHDR) == 0)
    676 			panic("sbappendaddr");
    677 		space += m0->m_pkthdr.len;
    678 #ifdef MBUFTRACE
    679 		m_claim(m0, sb->sb_mowner);
    680 #endif
    681 	}
    682 	for (n = control; n; n = n->m_next) {
    683 		space += n->m_len;
    684 		MCLAIM(n, sb->sb_mowner);
    685 		if (n->m_next == 0)	/* keep pointer to last control buf */
    686 			break;
    687 	}
    688 	if (space > sbspace(sb))
    689 		return (0);
    690 	MGET(m, M_DONTWAIT, MT_SONAME);
    691 	if (m == 0)
    692 		return (0);
    693 	MCLAIM(m, sb->sb_mowner);
    694 	/*
    695 	 * XXX avoid 'comparison always true' warning which isn't easily
    696 	 * avoided.
    697 	 */
    698 	len = asa->sa_len;
    699 	if (len > MLEN) {
    700 		MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
    701 		if ((m->m_flags & M_EXT) == 0) {
    702 			m_free(m);
    703 			return (0);
    704 		}
    705 	}
    706 	m->m_len = asa->sa_len;
    707 	memcpy(mtod(m, caddr_t), (caddr_t)asa, asa->sa_len);
    708 	if (n)
    709 		n->m_next = m0;		/* concatenate data to control */
    710 	else
    711 		control = m0;
    712 	m->m_next = control;
    713 
    714 	SBLASTRECORDCHK(sb, "sbappendaddr 1");
    715 
    716 	for (n = m; n->m_next != NULL; n = n->m_next)
    717 		sballoc(sb, n);
    718 	sballoc(sb, n);
    719 	nlast = n;
    720 	SBLINKRECORD(sb, m);
    721 
    722 	sb->sb_mbtail = nlast;
    723 	SBLASTMBUFCHK(sb, "sbappendaddr");
    724 
    725 	SBLASTRECORDCHK(sb, "sbappendaddr 2");
    726 
    727 	return (1);
    728 }
    729 
    730 int
    731 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
    732 {
    733 	struct mbuf	*m, *mlast, *n;
    734 	int		space;
    735 
    736 	space = 0;
    737 	if (control == 0)
    738 		panic("sbappendcontrol");
    739 	for (m = control; ; m = m->m_next) {
    740 		space += m->m_len;
    741 		MCLAIM(m, sb->sb_mowner);
    742 		if (m->m_next == 0)
    743 			break;
    744 	}
    745 	n = m;			/* save pointer to last control buffer */
    746 	for (m = m0; m; m = m->m_next) {
    747 		MCLAIM(m, sb->sb_mowner);
    748 		space += m->m_len;
    749 	}
    750 	if (space > sbspace(sb))
    751 		return (0);
    752 	n->m_next = m0;			/* concatenate data to control */
    753 
    754 	SBLASTRECORDCHK(sb, "sbappendcontrol 1");
    755 
    756 	for (m = control; m->m_next != NULL; m = m->m_next)
    757 		sballoc(sb, m);
    758 	sballoc(sb, m);
    759 	mlast = m;
    760 	SBLINKRECORD(sb, control);
    761 
    762 	sb->sb_mbtail = mlast;
    763 	SBLASTMBUFCHK(sb, "sbappendcontrol");
    764 
    765 	SBLASTRECORDCHK(sb, "sbappendcontrol 2");
    766 
    767 	return (1);
    768 }
    769 
    770 /*
    771  * Compress mbuf chain m into the socket
    772  * buffer sb following mbuf n.  If n
    773  * is null, the buffer is presumed empty.
    774  */
    775 void
    776 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
    777 {
    778 	int		eor;
    779 	struct mbuf	*o;
    780 
    781 	eor = 0;
    782 	while (m) {
    783 		eor |= m->m_flags & M_EOR;
    784 		if (m->m_len == 0 &&
    785 		    (eor == 0 ||
    786 		     (((o = m->m_next) || (o = n)) &&
    787 		      o->m_type == m->m_type))) {
    788 			if (sb->sb_lastrecord == m)
    789 				sb->sb_lastrecord = m->m_next;
    790 			m = m_free(m);
    791 			continue;
    792 		}
    793 		if (n && (n->m_flags & M_EOR) == 0 &&
    794 		    /* M_TRAILINGSPACE() checks buffer writeability */
    795 		    m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
    796 		    m->m_len <= M_TRAILINGSPACE(n) &&
    797 		    n->m_type == m->m_type) {
    798 			memcpy(mtod(n, caddr_t) + n->m_len, mtod(m, caddr_t),
    799 			    (unsigned)m->m_len);
    800 			n->m_len += m->m_len;
    801 			sb->sb_cc += m->m_len;
    802 			m = m_free(m);
    803 			continue;
    804 		}
    805 		if (n)
    806 			n->m_next = m;
    807 		else
    808 			sb->sb_mb = m;
    809 		sb->sb_mbtail = m;
    810 		sballoc(sb, m);
    811 		n = m;
    812 		m->m_flags &= ~M_EOR;
    813 		m = m->m_next;
    814 		n->m_next = 0;
    815 	}
    816 	if (eor) {
    817 		if (n)
    818 			n->m_flags |= eor;
    819 		else
    820 			printf("semi-panic: sbcompress\n");
    821 	}
    822 	SBLASTMBUFCHK(sb, __func__);
    823 }
    824 
    825 /*
    826  * Free all mbufs in a sockbuf.
    827  * Check that all resources are reclaimed.
    828  */
    829 void
    830 sbflush(struct sockbuf *sb)
    831 {
    832 
    833 	KASSERT((sb->sb_flags & SB_LOCK) == 0);
    834 
    835 	while (sb->sb_mbcnt)
    836 		sbdrop(sb, (int)sb->sb_cc);
    837 
    838 	KASSERT(sb->sb_cc == 0);
    839 	KASSERT(sb->sb_mb == NULL);
    840 	KASSERT(sb->sb_mbtail == NULL);
    841 	KASSERT(sb->sb_lastrecord == NULL);
    842 }
    843 
    844 /*
    845  * Drop data from (the front of) a sockbuf.
    846  */
    847 void
    848 sbdrop(struct sockbuf *sb, int len)
    849 {
    850 	struct mbuf	*m, *mn, *next;
    851 
    852 	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
    853 	while (len > 0) {
    854 		if (m == 0) {
    855 			if (next == 0)
    856 				panic("sbdrop");
    857 			m = next;
    858 			next = m->m_nextpkt;
    859 			continue;
    860 		}
    861 		if (m->m_len > len) {
    862 			m->m_len -= len;
    863 			m->m_data += len;
    864 			sb->sb_cc -= len;
    865 			break;
    866 		}
    867 		len -= m->m_len;
    868 		sbfree(sb, m);
    869 		MFREE(m, mn);
    870 		m = mn;
    871 	}
    872 	while (m && m->m_len == 0) {
    873 		sbfree(sb, m);
    874 		MFREE(m, mn);
    875 		m = mn;
    876 	}
    877 	if (m) {
    878 		sb->sb_mb = m;
    879 		m->m_nextpkt = next;
    880 	} else
    881 		sb->sb_mb = next;
    882 	/*
    883 	 * First part is an inline SB_EMPTY_FIXUP().  Second part
    884 	 * makes sure sb_lastrecord is up-to-date if we dropped
    885 	 * part of the last record.
    886 	 */
    887 	m = sb->sb_mb;
    888 	if (m == NULL) {
    889 		sb->sb_mbtail = NULL;
    890 		sb->sb_lastrecord = NULL;
    891 	} else if (m->m_nextpkt == NULL)
    892 		sb->sb_lastrecord = m;
    893 }
    894 
    895 /*
    896  * Drop a record off the front of a sockbuf
    897  * and move the next record to the front.
    898  */
    899 void
    900 sbdroprecord(struct sockbuf *sb)
    901 {
    902 	struct mbuf	*m, *mn;
    903 
    904 	m = sb->sb_mb;
    905 	if (m) {
    906 		sb->sb_mb = m->m_nextpkt;
    907 		do {
    908 			sbfree(sb, m);
    909 			MFREE(m, mn);
    910 		} while ((m = mn) != NULL);
    911 	}
    912 	SB_EMPTY_FIXUP(sb);
    913 }
    914 
    915 /*
    916  * Create a "control" mbuf containing the specified data
    917  * with the specified type for presentation on a socket buffer.
    918  */
    919 struct mbuf *
    920 sbcreatecontrol(caddr_t p, int size, int type, int level)
    921 {
    922 	struct cmsghdr	*cp;
    923 	struct mbuf	*m;
    924 
    925 	if (CMSG_SPACE(size) > MCLBYTES) {
    926 		printf("sbcreatecontrol: message too large %d\n", size);
    927 		return NULL;
    928 	}
    929 
    930 	if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
    931 		return ((struct mbuf *) NULL);
    932 	if (CMSG_SPACE(size) > MLEN) {
    933 		MCLGET(m, M_DONTWAIT);
    934 		if ((m->m_flags & M_EXT) == 0) {
    935 			m_free(m);
    936 			return NULL;
    937 		}
    938 	}
    939 	cp = mtod(m, struct cmsghdr *);
    940 	memcpy(CMSG_DATA(cp), p, size);
    941 	m->m_len = CMSG_SPACE(size);
    942 	cp->cmsg_len = CMSG_LEN(size);
    943 	cp->cmsg_level = level;
    944 	cp->cmsg_type = type;
    945 	return (m);
    946 }
    947