uipc_socket2.c revision 1.55 1 /* $NetBSD: uipc_socket2.c,v 1.55 2003/09/06 22:03:10 christos Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1988, 1990, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 * @(#)uipc_socket2.c 8.2 (Berkeley) 2/14/95
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.55 2003/09/06 22:03:10 christos Exp $");
36
37 #include "opt_mbuftrace.h"
38
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/proc.h>
42 #include <sys/file.h>
43 #include <sys/buf.h>
44 #include <sys/malloc.h>
45 #include <sys/mbuf.h>
46 #include <sys/protosw.h>
47 #include <sys/poll.h>
48 #include <sys/socket.h>
49 #include <sys/socketvar.h>
50 #include <sys/signalvar.h>
51
52 /*
53 * Primitive routines for operating on sockets and socket buffers
54 */
55
56 /* strings for sleep message: */
57 const char netcon[] = "netcon";
58 const char netcls[] = "netcls";
59 const char netio[] = "netio";
60 const char netlck[] = "netlck";
61
62 /*
63 * Procedures to manipulate state flags of socket
64 * and do appropriate wakeups. Normal sequence from the
65 * active (originating) side is that soisconnecting() is
66 * called during processing of connect() call,
67 * resulting in an eventual call to soisconnected() if/when the
68 * connection is established. When the connection is torn down
69 * soisdisconnecting() is called during processing of disconnect() call,
70 * and soisdisconnected() is called when the connection to the peer
71 * is totally severed. The semantics of these routines are such that
72 * connectionless protocols can call soisconnected() and soisdisconnected()
73 * only, bypassing the in-progress calls when setting up a ``connection''
74 * takes no time.
75 *
76 * From the passive side, a socket is created with
77 * two queues of sockets: so_q0 for connections in progress
78 * and so_q for connections already made and awaiting user acceptance.
79 * As a protocol is preparing incoming connections, it creates a socket
80 * structure queued on so_q0 by calling sonewconn(). When the connection
81 * is established, soisconnected() is called, and transfers the
82 * socket structure to so_q, making it available to accept().
83 *
84 * If a socket is closed with sockets on either
85 * so_q0 or so_q, these sockets are dropped.
86 *
87 * If higher level protocols are implemented in
88 * the kernel, the wakeups done here will sometimes
89 * cause software-interrupt process scheduling.
90 */
91
92 void
93 soisconnecting(struct socket *so)
94 {
95
96 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
97 so->so_state |= SS_ISCONNECTING;
98 }
99
100 void
101 soisconnected(struct socket *so)
102 {
103 struct socket *head;
104
105 head = so->so_head;
106 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
107 so->so_state |= SS_ISCONNECTED;
108 if (head && soqremque(so, 0)) {
109 soqinsque(head, so, 1);
110 sorwakeup(head);
111 wakeup((caddr_t)&head->so_timeo);
112 } else {
113 wakeup((caddr_t)&so->so_timeo);
114 sorwakeup(so);
115 sowwakeup(so);
116 }
117 }
118
119 void
120 soisdisconnecting(struct socket *so)
121 {
122
123 so->so_state &= ~SS_ISCONNECTING;
124 so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
125 wakeup((caddr_t)&so->so_timeo);
126 sowwakeup(so);
127 sorwakeup(so);
128 }
129
130 void
131 soisdisconnected(struct socket *so)
132 {
133
134 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
135 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
136 wakeup((caddr_t)&so->so_timeo);
137 sowwakeup(so);
138 sorwakeup(so);
139 }
140
141 /*
142 * When an attempt at a new connection is noted on a socket
143 * which accepts connections, sonewconn is called. If the
144 * connection is possible (subject to space constraints, etc.)
145 * then we allocate a new structure, propoerly linked into the
146 * data structure of the original socket, and return this.
147 * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
148 *
149 * Currently, sonewconn() is defined as sonewconn1() in socketvar.h
150 * to catch calls that are missing the (new) second parameter.
151 */
152 struct socket *
153 sonewconn1(struct socket *head, int connstatus)
154 {
155 struct socket *so;
156 int soqueue;
157
158 soqueue = connstatus ? 1 : 0;
159 if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
160 return ((struct socket *)0);
161 so = pool_get(&socket_pool, PR_NOWAIT);
162 if (so == NULL)
163 return (NULL);
164 memset((caddr_t)so, 0, sizeof(*so));
165 so->so_type = head->so_type;
166 so->so_options = head->so_options &~ SO_ACCEPTCONN;
167 so->so_linger = head->so_linger;
168 so->so_state = head->so_state | SS_NOFDREF;
169 so->so_proto = head->so_proto;
170 so->so_timeo = head->so_timeo;
171 so->so_pgid = head->so_pgid;
172 so->so_send = head->so_send;
173 so->so_receive = head->so_receive;
174 so->so_uid = head->so_uid;
175 #ifdef MBUFTRACE
176 so->so_mowner = head->so_mowner;
177 so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
178 so->so_snd.sb_mowner = head->so_snd.sb_mowner;
179 #endif
180 (void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
181 soqinsque(head, so, soqueue);
182 if ((*so->so_proto->pr_usrreq)(so, PRU_ATTACH,
183 (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
184 (struct proc *)0)) {
185 (void) soqremque(so, soqueue);
186 pool_put(&socket_pool, so);
187 return (NULL);
188 }
189 if (connstatus) {
190 sorwakeup(head);
191 wakeup((caddr_t)&head->so_timeo);
192 so->so_state |= connstatus;
193 }
194 return (so);
195 }
196
197 void
198 soqinsque(struct socket *head, struct socket *so, int q)
199 {
200
201 #ifdef DIAGNOSTIC
202 if (so->so_onq != NULL)
203 panic("soqinsque");
204 #endif
205
206 so->so_head = head;
207 if (q == 0) {
208 head->so_q0len++;
209 so->so_onq = &head->so_q0;
210 } else {
211 head->so_qlen++;
212 so->so_onq = &head->so_q;
213 }
214 TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
215 }
216
217 int
218 soqremque(struct socket *so, int q)
219 {
220 struct socket *head;
221
222 head = so->so_head;
223 if (q == 0) {
224 if (so->so_onq != &head->so_q0)
225 return (0);
226 head->so_q0len--;
227 } else {
228 if (so->so_onq != &head->so_q)
229 return (0);
230 head->so_qlen--;
231 }
232 TAILQ_REMOVE(so->so_onq, so, so_qe);
233 so->so_onq = NULL;
234 so->so_head = NULL;
235 return (1);
236 }
237
238 /*
239 * Socantsendmore indicates that no more data will be sent on the
240 * socket; it would normally be applied to a socket when the user
241 * informs the system that no more data is to be sent, by the protocol
242 * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data
243 * will be received, and will normally be applied to the socket by a
244 * protocol when it detects that the peer will send no more data.
245 * Data queued for reading in the socket may yet be read.
246 */
247
248 void
249 socantsendmore(struct socket *so)
250 {
251
252 so->so_state |= SS_CANTSENDMORE;
253 sowwakeup(so);
254 }
255
256 void
257 socantrcvmore(struct socket *so)
258 {
259
260 so->so_state |= SS_CANTRCVMORE;
261 sorwakeup(so);
262 }
263
264 /*
265 * Wait for data to arrive at/drain from a socket buffer.
266 */
267 int
268 sbwait(struct sockbuf *sb)
269 {
270
271 sb->sb_flags |= SB_WAIT;
272 return (tsleep((caddr_t)&sb->sb_cc,
273 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, netio,
274 sb->sb_timeo));
275 }
276
277 /*
278 * Lock a sockbuf already known to be locked;
279 * return any error returned from sleep (EINTR).
280 */
281 int
282 sb_lock(struct sockbuf *sb)
283 {
284 int error;
285
286 while (sb->sb_flags & SB_LOCK) {
287 sb->sb_flags |= SB_WANT;
288 error = tsleep((caddr_t)&sb->sb_flags,
289 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK|PCATCH,
290 netlck, 0);
291 if (error)
292 return (error);
293 }
294 sb->sb_flags |= SB_LOCK;
295 return (0);
296 }
297
298 /*
299 * Wakeup processes waiting on a socket buffer.
300 * Do asynchronous notification via SIGIO
301 * if the socket buffer has the SB_ASYNC flag set.
302 */
303 void
304 sowakeup(struct socket *so, struct sockbuf *sb, int code)
305 {
306 struct proc *p;
307
308 selnotify(&sb->sb_sel, 0);
309 sb->sb_flags &= ~SB_SEL;
310 if (sb->sb_flags & SB_WAIT) {
311 sb->sb_flags &= ~SB_WAIT;
312 wakeup((caddr_t)&sb->sb_cc);
313 }
314 if (sb->sb_flags & SB_ASYNC) {
315 ksiginfo_t ksi;
316 memset(&ksi, 0, sizeof(ksi));
317 ksi.ksi_signo = SIGIO;
318 ksi.ksi_code = code;
319 if (code == POLL_IN) {
320 if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
321 ksi.ksi_band = (POLLPRI | POLLRDBAND);
322 else
323 ksi.ksi_band = (POLLIN | POLLRDNORM);
324 } else {
325 if (so->so_oobmark)
326 ksi.ksi_band = (POLLPRI | POLLWRBAND);
327 else
328 ksi.ksi_band = (POLLOUT | POLLWRNORM);
329 }
330 if (so->so_pgid < 0)
331 kgsignal(-so->so_pgid, &ksi, so);
332 else if (so->so_pgid > 0 && (p = pfind(so->so_pgid)) != 0)
333 kpsignal(p, &ksi, so);
334 }
335 if (sb->sb_flags & SB_UPCALL)
336 (*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT);
337 }
338
339 /*
340 * Socket buffer (struct sockbuf) utility routines.
341 *
342 * Each socket contains two socket buffers: one for sending data and
343 * one for receiving data. Each buffer contains a queue of mbufs,
344 * information about the number of mbufs and amount of data in the
345 * queue, and other fields allowing poll() statements and notification
346 * on data availability to be implemented.
347 *
348 * Data stored in a socket buffer is maintained as a list of records.
349 * Each record is a list of mbufs chained together with the m_next
350 * field. Records are chained together with the m_nextpkt field. The upper
351 * level routine soreceive() expects the following conventions to be
352 * observed when placing information in the receive buffer:
353 *
354 * 1. If the protocol requires each message be preceded by the sender's
355 * name, then a record containing that name must be present before
356 * any associated data (mbuf's must be of type MT_SONAME).
357 * 2. If the protocol supports the exchange of ``access rights'' (really
358 * just additional data associated with the message), and there are
359 * ``rights'' to be received, then a record containing this data
360 * should be present (mbuf's must be of type MT_CONTROL).
361 * 3. If a name or rights record exists, then it must be followed by
362 * a data record, perhaps of zero length.
363 *
364 * Before using a new socket structure it is first necessary to reserve
365 * buffer space to the socket, by calling sbreserve(). This should commit
366 * some of the available buffer space in the system buffer pool for the
367 * socket (currently, it does nothing but enforce limits). The space
368 * should be released by calling sbrelease() when the socket is destroyed.
369 */
370
371 int
372 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
373 {
374
375 if (sbreserve(&so->so_snd, sndcc) == 0)
376 goto bad;
377 if (sbreserve(&so->so_rcv, rcvcc) == 0)
378 goto bad2;
379 if (so->so_rcv.sb_lowat == 0)
380 so->so_rcv.sb_lowat = 1;
381 if (so->so_snd.sb_lowat == 0)
382 so->so_snd.sb_lowat = MCLBYTES;
383 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
384 so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
385 return (0);
386 bad2:
387 sbrelease(&so->so_snd);
388 bad:
389 return (ENOBUFS);
390 }
391
392 /*
393 * Allot mbufs to a sockbuf.
394 * Attempt to scale mbmax so that mbcnt doesn't become limiting
395 * if buffering efficiency is near the normal case.
396 */
397 int
398 sbreserve(struct sockbuf *sb, u_long cc)
399 {
400
401 if (cc == 0 ||
402 (u_quad_t) cc > (u_quad_t) sb_max * MCLBYTES / (MSIZE + MCLBYTES))
403 return (0);
404 sb->sb_hiwat = cc;
405 sb->sb_mbmax = min(cc * 2, sb_max);
406 if (sb->sb_lowat > sb->sb_hiwat)
407 sb->sb_lowat = sb->sb_hiwat;
408 return (1);
409 }
410
411 /*
412 * Free mbufs held by a socket, and reserved mbuf space.
413 */
414 void
415 sbrelease(struct sockbuf *sb)
416 {
417
418 sbflush(sb);
419 sb->sb_hiwat = sb->sb_mbmax = 0;
420 }
421
422 /*
423 * Routines to add and remove
424 * data from an mbuf queue.
425 *
426 * The routines sbappend() or sbappendrecord() are normally called to
427 * append new mbufs to a socket buffer, after checking that adequate
428 * space is available, comparing the function sbspace() with the amount
429 * of data to be added. sbappendrecord() differs from sbappend() in
430 * that data supplied is treated as the beginning of a new record.
431 * To place a sender's address, optional access rights, and data in a
432 * socket receive buffer, sbappendaddr() should be used. To place
433 * access rights and data in a socket receive buffer, sbappendrights()
434 * should be used. In either case, the new data begins a new record.
435 * Note that unlike sbappend() and sbappendrecord(), these routines check
436 * for the caller that there will be enough space to store the data.
437 * Each fails if there is not enough space, or if it cannot find mbufs
438 * to store additional information in.
439 *
440 * Reliable protocols may use the socket send buffer to hold data
441 * awaiting acknowledgement. Data is normally copied from a socket
442 * send buffer in a protocol with m_copy for output to a peer,
443 * and then removing the data from the socket buffer with sbdrop()
444 * or sbdroprecord() when the data is acknowledged by the peer.
445 */
446
447 #ifdef SOCKBUF_DEBUG
448 void
449 sblastrecordchk(struct sockbuf *sb, const char *where)
450 {
451 struct mbuf *m = sb->sb_mb;
452
453 while (m && m->m_nextpkt)
454 m = m->m_nextpkt;
455
456 if (m != sb->sb_lastrecord) {
457 printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
458 sb->sb_mb, sb->sb_lastrecord, m);
459 printf("packet chain:\n");
460 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
461 printf("\t%p\n", m);
462 panic("sblastrecordchk from %s", where);
463 }
464 }
465
466 void
467 sblastmbufchk(struct sockbuf *sb, const char *where)
468 {
469 struct mbuf *m = sb->sb_mb;
470 struct mbuf *n;
471
472 while (m && m->m_nextpkt)
473 m = m->m_nextpkt;
474
475 while (m && m->m_next)
476 m = m->m_next;
477
478 if (m != sb->sb_mbtail) {
479 printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
480 sb->sb_mb, sb->sb_mbtail, m);
481 printf("packet tree:\n");
482 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
483 printf("\t");
484 for (n = m; n != NULL; n = n->m_next)
485 printf("%p ", n);
486 printf("\n");
487 }
488 panic("sblastmbufchk from %s", where);
489 }
490 }
491 #endif /* SOCKBUF_DEBUG */
492
493 #define SBLINKRECORD(sb, m0) \
494 do { \
495 if ((sb)->sb_lastrecord != NULL) \
496 (sb)->sb_lastrecord->m_nextpkt = (m0); \
497 else \
498 (sb)->sb_mb = (m0); \
499 (sb)->sb_lastrecord = (m0); \
500 } while (/*CONSTCOND*/0)
501
502 /*
503 * Append mbuf chain m to the last record in the
504 * socket buffer sb. The additional space associated
505 * the mbuf chain is recorded in sb. Empty mbufs are
506 * discarded and mbufs are compacted where possible.
507 */
508 void
509 sbappend(struct sockbuf *sb, struct mbuf *m)
510 {
511 struct mbuf *n;
512
513 if (m == 0)
514 return;
515
516 #ifdef MBUFTRACE
517 m_claim(m, sb->sb_mowner);
518 #endif
519
520 SBLASTRECORDCHK(sb, "sbappend 1");
521
522 if ((n = sb->sb_lastrecord) != NULL) {
523 /*
524 * XXX Would like to simply use sb_mbtail here, but
525 * XXX I need to verify that I won't miss an EOR that
526 * XXX way.
527 */
528 do {
529 if (n->m_flags & M_EOR) {
530 sbappendrecord(sb, m); /* XXXXXX!!!! */
531 return;
532 }
533 } while (n->m_next && (n = n->m_next));
534 } else {
535 /*
536 * If this is the first record in the socket buffer, it's
537 * also the last record.
538 */
539 sb->sb_lastrecord = m;
540 }
541 sbcompress(sb, m, n);
542 SBLASTRECORDCHK(sb, "sbappend 2");
543 }
544
545 /*
546 * This version of sbappend() should only be used when the caller
547 * absolutely knows that there will never be more than one record
548 * in the socket buffer, that is, a stream protocol (such as TCP).
549 */
550 void
551 sbappendstream(struct sockbuf *sb, struct mbuf *m)
552 {
553
554 KDASSERT(m->m_nextpkt == NULL);
555 KASSERT(sb->sb_mb == sb->sb_lastrecord);
556
557 SBLASTMBUFCHK(sb, __func__);
558
559 #ifdef MBUFTRACE
560 m_claim(m, sb->sb_mowner);
561 #endif
562
563 sbcompress(sb, m, sb->sb_mbtail);
564
565 sb->sb_lastrecord = sb->sb_mb;
566 SBLASTRECORDCHK(sb, __func__);
567 }
568
569 #ifdef SOCKBUF_DEBUG
570 void
571 sbcheck(struct sockbuf *sb)
572 {
573 struct mbuf *m;
574 u_long len, mbcnt;
575
576 len = 0;
577 mbcnt = 0;
578 for (m = sb->sb_mb; m; m = m->m_next) {
579 len += m->m_len;
580 mbcnt += MSIZE;
581 if (m->m_flags & M_EXT)
582 mbcnt += m->m_ext.ext_size;
583 if (m->m_nextpkt)
584 panic("sbcheck nextpkt");
585 }
586 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
587 printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
588 mbcnt, sb->sb_mbcnt);
589 panic("sbcheck");
590 }
591 }
592 #endif
593
594 /*
595 * As above, except the mbuf chain
596 * begins a new record.
597 */
598 void
599 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
600 {
601 struct mbuf *m;
602
603 if (m0 == 0)
604 return;
605
606 #ifdef MBUFTRACE
607 m_claim(m0, sb->sb_mowner);
608 #endif
609 /*
610 * Put the first mbuf on the queue.
611 * Note this permits zero length records.
612 */
613 sballoc(sb, m0);
614 SBLASTRECORDCHK(sb, "sbappendrecord 1");
615 SBLINKRECORD(sb, m0);
616 m = m0->m_next;
617 m0->m_next = 0;
618 if (m && (m0->m_flags & M_EOR)) {
619 m0->m_flags &= ~M_EOR;
620 m->m_flags |= M_EOR;
621 }
622 sbcompress(sb, m, m0);
623 SBLASTRECORDCHK(sb, "sbappendrecord 2");
624 }
625
626 /*
627 * As above except that OOB data
628 * is inserted at the beginning of the sockbuf,
629 * but after any other OOB data.
630 */
631 void
632 sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
633 {
634 struct mbuf *m, **mp;
635
636 if (m0 == 0)
637 return;
638
639 SBLASTRECORDCHK(sb, "sbinsertoob 1");
640
641 for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
642 again:
643 switch (m->m_type) {
644
645 case MT_OOBDATA:
646 continue; /* WANT next train */
647
648 case MT_CONTROL:
649 if ((m = m->m_next) != NULL)
650 goto again; /* inspect THIS train further */
651 }
652 break;
653 }
654 /*
655 * Put the first mbuf on the queue.
656 * Note this permits zero length records.
657 */
658 sballoc(sb, m0);
659 m0->m_nextpkt = *mp;
660 if (*mp == NULL) {
661 /* m0 is actually the new tail */
662 sb->sb_lastrecord = m0;
663 }
664 *mp = m0;
665 m = m0->m_next;
666 m0->m_next = 0;
667 if (m && (m0->m_flags & M_EOR)) {
668 m0->m_flags &= ~M_EOR;
669 m->m_flags |= M_EOR;
670 }
671 sbcompress(sb, m, m0);
672 SBLASTRECORDCHK(sb, "sbinsertoob 2");
673 }
674
675 /*
676 * Append address and data, and optionally, control (ancillary) data
677 * to the receive queue of a socket. If present,
678 * m0 must include a packet header with total length.
679 * Returns 0 if no space in sockbuf or insufficient mbufs.
680 */
681 int
682 sbappendaddr(struct sockbuf *sb, struct sockaddr *asa, struct mbuf *m0,
683 struct mbuf *control)
684 {
685 struct mbuf *m, *n, *nlast;
686 int space, len;
687
688 space = asa->sa_len;
689
690 if (m0 != NULL) {
691 if ((m0->m_flags & M_PKTHDR) == 0)
692 panic("sbappendaddr");
693 space += m0->m_pkthdr.len;
694 #ifdef MBUFTRACE
695 m_claim(m0, sb->sb_mowner);
696 #endif
697 }
698 for (n = control; n; n = n->m_next) {
699 space += n->m_len;
700 MCLAIM(n, sb->sb_mowner);
701 if (n->m_next == 0) /* keep pointer to last control buf */
702 break;
703 }
704 if (space > sbspace(sb))
705 return (0);
706 MGET(m, M_DONTWAIT, MT_SONAME);
707 if (m == 0)
708 return (0);
709 MCLAIM(m, sb->sb_mowner);
710 /*
711 * XXX avoid 'comparison always true' warning which isn't easily
712 * avoided.
713 */
714 len = asa->sa_len;
715 if (len > MLEN) {
716 MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
717 if ((m->m_flags & M_EXT) == 0) {
718 m_free(m);
719 return (0);
720 }
721 }
722 m->m_len = asa->sa_len;
723 memcpy(mtod(m, caddr_t), (caddr_t)asa, asa->sa_len);
724 if (n)
725 n->m_next = m0; /* concatenate data to control */
726 else
727 control = m0;
728 m->m_next = control;
729
730 SBLASTRECORDCHK(sb, "sbappendaddr 1");
731
732 for (n = m; n->m_next != NULL; n = n->m_next)
733 sballoc(sb, n);
734 sballoc(sb, n);
735 nlast = n;
736 SBLINKRECORD(sb, m);
737
738 sb->sb_mbtail = nlast;
739 SBLASTMBUFCHK(sb, "sbappendaddr");
740
741 SBLASTRECORDCHK(sb, "sbappendaddr 2");
742
743 return (1);
744 }
745
746 int
747 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
748 {
749 struct mbuf *m, *mlast, *n;
750 int space;
751
752 space = 0;
753 if (control == 0)
754 panic("sbappendcontrol");
755 for (m = control; ; m = m->m_next) {
756 space += m->m_len;
757 MCLAIM(m, sb->sb_mowner);
758 if (m->m_next == 0)
759 break;
760 }
761 n = m; /* save pointer to last control buffer */
762 for (m = m0; m; m = m->m_next) {
763 MCLAIM(m, sb->sb_mowner);
764 space += m->m_len;
765 }
766 if (space > sbspace(sb))
767 return (0);
768 n->m_next = m0; /* concatenate data to control */
769
770 SBLASTRECORDCHK(sb, "sbappendcontrol 1");
771
772 for (m = control; m->m_next != NULL; m = m->m_next)
773 sballoc(sb, m);
774 sballoc(sb, m);
775 mlast = m;
776 SBLINKRECORD(sb, control);
777
778 sb->sb_mbtail = mlast;
779 SBLASTMBUFCHK(sb, "sbappendcontrol");
780
781 SBLASTRECORDCHK(sb, "sbappendcontrol 2");
782
783 return (1);
784 }
785
786 /*
787 * Compress mbuf chain m into the socket
788 * buffer sb following mbuf n. If n
789 * is null, the buffer is presumed empty.
790 */
791 void
792 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
793 {
794 int eor;
795 struct mbuf *o;
796
797 eor = 0;
798 while (m) {
799 eor |= m->m_flags & M_EOR;
800 if (m->m_len == 0 &&
801 (eor == 0 ||
802 (((o = m->m_next) || (o = n)) &&
803 o->m_type == m->m_type))) {
804 if (sb->sb_lastrecord == m)
805 sb->sb_lastrecord = m->m_next;
806 m = m_free(m);
807 continue;
808 }
809 if (n && (n->m_flags & M_EOR) == 0 &&
810 /* M_TRAILINGSPACE() checks buffer writeability */
811 m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
812 m->m_len <= M_TRAILINGSPACE(n) &&
813 n->m_type == m->m_type) {
814 memcpy(mtod(n, caddr_t) + n->m_len, mtod(m, caddr_t),
815 (unsigned)m->m_len);
816 n->m_len += m->m_len;
817 sb->sb_cc += m->m_len;
818 m = m_free(m);
819 continue;
820 }
821 if (n)
822 n->m_next = m;
823 else
824 sb->sb_mb = m;
825 sb->sb_mbtail = m;
826 sballoc(sb, m);
827 n = m;
828 m->m_flags &= ~M_EOR;
829 m = m->m_next;
830 n->m_next = 0;
831 }
832 if (eor) {
833 if (n)
834 n->m_flags |= eor;
835 else
836 printf("semi-panic: sbcompress\n");
837 }
838 SBLASTMBUFCHK(sb, __func__);
839 }
840
841 /*
842 * Free all mbufs in a sockbuf.
843 * Check that all resources are reclaimed.
844 */
845 void
846 sbflush(struct sockbuf *sb)
847 {
848
849 KASSERT((sb->sb_flags & SB_LOCK) == 0);
850
851 while (sb->sb_mbcnt)
852 sbdrop(sb, (int)sb->sb_cc);
853
854 KASSERT(sb->sb_cc == 0);
855 KASSERT(sb->sb_mb == NULL);
856 KASSERT(sb->sb_mbtail == NULL);
857 KASSERT(sb->sb_lastrecord == NULL);
858 }
859
860 /*
861 * Drop data from (the front of) a sockbuf.
862 */
863 void
864 sbdrop(struct sockbuf *sb, int len)
865 {
866 struct mbuf *m, *mn, *next;
867
868 next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
869 while (len > 0) {
870 if (m == 0) {
871 if (next == 0)
872 panic("sbdrop");
873 m = next;
874 next = m->m_nextpkt;
875 continue;
876 }
877 if (m->m_len > len) {
878 m->m_len -= len;
879 m->m_data += len;
880 sb->sb_cc -= len;
881 break;
882 }
883 len -= m->m_len;
884 sbfree(sb, m);
885 MFREE(m, mn);
886 m = mn;
887 }
888 while (m && m->m_len == 0) {
889 sbfree(sb, m);
890 MFREE(m, mn);
891 m = mn;
892 }
893 if (m) {
894 sb->sb_mb = m;
895 m->m_nextpkt = next;
896 } else
897 sb->sb_mb = next;
898 /*
899 * First part is an inline SB_EMPTY_FIXUP(). Second part
900 * makes sure sb_lastrecord is up-to-date if we dropped
901 * part of the last record.
902 */
903 m = sb->sb_mb;
904 if (m == NULL) {
905 sb->sb_mbtail = NULL;
906 sb->sb_lastrecord = NULL;
907 } else if (m->m_nextpkt == NULL)
908 sb->sb_lastrecord = m;
909 }
910
911 /*
912 * Drop a record off the front of a sockbuf
913 * and move the next record to the front.
914 */
915 void
916 sbdroprecord(struct sockbuf *sb)
917 {
918 struct mbuf *m, *mn;
919
920 m = sb->sb_mb;
921 if (m) {
922 sb->sb_mb = m->m_nextpkt;
923 do {
924 sbfree(sb, m);
925 MFREE(m, mn);
926 } while ((m = mn) != NULL);
927 }
928 SB_EMPTY_FIXUP(sb);
929 }
930
931 /*
932 * Create a "control" mbuf containing the specified data
933 * with the specified type for presentation on a socket buffer.
934 */
935 struct mbuf *
936 sbcreatecontrol(caddr_t p, int size, int type, int level)
937 {
938 struct cmsghdr *cp;
939 struct mbuf *m;
940
941 if (CMSG_SPACE(size) > MCLBYTES) {
942 printf("sbcreatecontrol: message too large %d\n", size);
943 return NULL;
944 }
945
946 if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
947 return ((struct mbuf *) NULL);
948 if (CMSG_SPACE(size) > MLEN) {
949 MCLGET(m, M_DONTWAIT);
950 if ((m->m_flags & M_EXT) == 0) {
951 m_free(m);
952 return NULL;
953 }
954 }
955 cp = mtod(m, struct cmsghdr *);
956 memcpy(CMSG_DATA(cp), p, size);
957 m->m_len = CMSG_SPACE(size);
958 cp->cmsg_len = CMSG_LEN(size);
959 cp->cmsg_level = level;
960 cp->cmsg_type = type;
961 return (m);
962 }
963