uipc_socket2.c revision 1.56 1 /* $NetBSD: uipc_socket2.c,v 1.56 2003/09/21 19:17:11 jdolecek Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1988, 1990, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 * @(#)uipc_socket2.c 8.2 (Berkeley) 2/14/95
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.56 2003/09/21 19:17:11 jdolecek Exp $");
36
37 #include "opt_mbuftrace.h"
38
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/proc.h>
42 #include <sys/file.h>
43 #include <sys/buf.h>
44 #include <sys/malloc.h>
45 #include <sys/mbuf.h>
46 #include <sys/protosw.h>
47 #include <sys/poll.h>
48 #include <sys/socket.h>
49 #include <sys/socketvar.h>
50 #include <sys/signalvar.h>
51
52 /*
53 * Primitive routines for operating on sockets and socket buffers
54 */
55
56 /* strings for sleep message: */
57 const char netcon[] = "netcon";
58 const char netcls[] = "netcls";
59 const char netio[] = "netio";
60 const char netlck[] = "netlck";
61
62 /*
63 * Procedures to manipulate state flags of socket
64 * and do appropriate wakeups. Normal sequence from the
65 * active (originating) side is that soisconnecting() is
66 * called during processing of connect() call,
67 * resulting in an eventual call to soisconnected() if/when the
68 * connection is established. When the connection is torn down
69 * soisdisconnecting() is called during processing of disconnect() call,
70 * and soisdisconnected() is called when the connection to the peer
71 * is totally severed. The semantics of these routines are such that
72 * connectionless protocols can call soisconnected() and soisdisconnected()
73 * only, bypassing the in-progress calls when setting up a ``connection''
74 * takes no time.
75 *
76 * From the passive side, a socket is created with
77 * two queues of sockets: so_q0 for connections in progress
78 * and so_q for connections already made and awaiting user acceptance.
79 * As a protocol is preparing incoming connections, it creates a socket
80 * structure queued on so_q0 by calling sonewconn(). When the connection
81 * is established, soisconnected() is called, and transfers the
82 * socket structure to so_q, making it available to accept().
83 *
84 * If a socket is closed with sockets on either
85 * so_q0 or so_q, these sockets are dropped.
86 *
87 * If higher level protocols are implemented in
88 * the kernel, the wakeups done here will sometimes
89 * cause software-interrupt process scheduling.
90 */
91
92 void
93 soisconnecting(struct socket *so)
94 {
95
96 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
97 so->so_state |= SS_ISCONNECTING;
98 }
99
100 void
101 soisconnected(struct socket *so)
102 {
103 struct socket *head;
104
105 head = so->so_head;
106 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
107 so->so_state |= SS_ISCONNECTED;
108 if (head && soqremque(so, 0)) {
109 soqinsque(head, so, 1);
110 sorwakeup(head);
111 wakeup((caddr_t)&head->so_timeo);
112 } else {
113 wakeup((caddr_t)&so->so_timeo);
114 sorwakeup(so);
115 sowwakeup(so);
116 }
117 }
118
119 void
120 soisdisconnecting(struct socket *so)
121 {
122
123 so->so_state &= ~SS_ISCONNECTING;
124 so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
125 wakeup((caddr_t)&so->so_timeo);
126 sowwakeup(so);
127 sorwakeup(so);
128 }
129
130 void
131 soisdisconnected(struct socket *so)
132 {
133
134 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
135 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
136 wakeup((caddr_t)&so->so_timeo);
137 sowwakeup(so);
138 sorwakeup(so);
139 }
140
141 /*
142 * When an attempt at a new connection is noted on a socket
143 * which accepts connections, sonewconn is called. If the
144 * connection is possible (subject to space constraints, etc.)
145 * then we allocate a new structure, propoerly linked into the
146 * data structure of the original socket, and return this.
147 * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
148 *
149 * Currently, sonewconn() is defined as sonewconn1() in socketvar.h
150 * to catch calls that are missing the (new) second parameter.
151 */
152 struct socket *
153 sonewconn1(struct socket *head, int connstatus)
154 {
155 struct socket *so;
156 int soqueue;
157
158 soqueue = connstatus ? 1 : 0;
159 if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
160 return ((struct socket *)0);
161 so = pool_get(&socket_pool, PR_NOWAIT);
162 if (so == NULL)
163 return (NULL);
164 memset((caddr_t)so, 0, sizeof(*so));
165 so->so_type = head->so_type;
166 so->so_options = head->so_options &~ SO_ACCEPTCONN;
167 so->so_linger = head->so_linger;
168 so->so_state = head->so_state | SS_NOFDREF;
169 so->so_proto = head->so_proto;
170 so->so_timeo = head->so_timeo;
171 so->so_pgid = head->so_pgid;
172 so->so_send = head->so_send;
173 so->so_receive = head->so_receive;
174 so->so_uid = head->so_uid;
175 #ifdef MBUFTRACE
176 so->so_mowner = head->so_mowner;
177 so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
178 so->so_snd.sb_mowner = head->so_snd.sb_mowner;
179 #endif
180 (void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
181 soqinsque(head, so, soqueue);
182 if ((*so->so_proto->pr_usrreq)(so, PRU_ATTACH,
183 (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
184 (struct proc *)0)) {
185 (void) soqremque(so, soqueue);
186 pool_put(&socket_pool, so);
187 return (NULL);
188 }
189 if (connstatus) {
190 sorwakeup(head);
191 wakeup((caddr_t)&head->so_timeo);
192 so->so_state |= connstatus;
193 }
194 return (so);
195 }
196
197 void
198 soqinsque(struct socket *head, struct socket *so, int q)
199 {
200
201 #ifdef DIAGNOSTIC
202 if (so->so_onq != NULL)
203 panic("soqinsque");
204 #endif
205
206 so->so_head = head;
207 if (q == 0) {
208 head->so_q0len++;
209 so->so_onq = &head->so_q0;
210 } else {
211 head->so_qlen++;
212 so->so_onq = &head->so_q;
213 }
214 TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
215 }
216
217 int
218 soqremque(struct socket *so, int q)
219 {
220 struct socket *head;
221
222 head = so->so_head;
223 if (q == 0) {
224 if (so->so_onq != &head->so_q0)
225 return (0);
226 head->so_q0len--;
227 } else {
228 if (so->so_onq != &head->so_q)
229 return (0);
230 head->so_qlen--;
231 }
232 TAILQ_REMOVE(so->so_onq, so, so_qe);
233 so->so_onq = NULL;
234 so->so_head = NULL;
235 return (1);
236 }
237
238 /*
239 * Socantsendmore indicates that no more data will be sent on the
240 * socket; it would normally be applied to a socket when the user
241 * informs the system that no more data is to be sent, by the protocol
242 * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data
243 * will be received, and will normally be applied to the socket by a
244 * protocol when it detects that the peer will send no more data.
245 * Data queued for reading in the socket may yet be read.
246 */
247
248 void
249 socantsendmore(struct socket *so)
250 {
251
252 so->so_state |= SS_CANTSENDMORE;
253 sowwakeup(so);
254 }
255
256 void
257 socantrcvmore(struct socket *so)
258 {
259
260 so->so_state |= SS_CANTRCVMORE;
261 sorwakeup(so);
262 }
263
264 /*
265 * Wait for data to arrive at/drain from a socket buffer.
266 */
267 int
268 sbwait(struct sockbuf *sb)
269 {
270
271 sb->sb_flags |= SB_WAIT;
272 return (tsleep((caddr_t)&sb->sb_cc,
273 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, netio,
274 sb->sb_timeo));
275 }
276
277 /*
278 * Lock a sockbuf already known to be locked;
279 * return any error returned from sleep (EINTR).
280 */
281 int
282 sb_lock(struct sockbuf *sb)
283 {
284 int error;
285
286 while (sb->sb_flags & SB_LOCK) {
287 sb->sb_flags |= SB_WANT;
288 error = tsleep((caddr_t)&sb->sb_flags,
289 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK|PCATCH,
290 netlck, 0);
291 if (error)
292 return (error);
293 }
294 sb->sb_flags |= SB_LOCK;
295 return (0);
296 }
297
298 /*
299 * Wakeup processes waiting on a socket buffer.
300 * Do asynchronous notification via SIGIO
301 * if the socket buffer has the SB_ASYNC flag set.
302 */
303 void
304 sowakeup(struct socket *so, struct sockbuf *sb, int code)
305 {
306 selnotify(&sb->sb_sel, 0);
307 sb->sb_flags &= ~SB_SEL;
308 if (sb->sb_flags & SB_WAIT) {
309 sb->sb_flags &= ~SB_WAIT;
310 wakeup((caddr_t)&sb->sb_cc);
311 }
312 if (sb->sb_flags & SB_ASYNC) {
313 int band;
314 if (code == POLL_IN) {
315 if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
316 band = (POLLPRI | POLLRDBAND);
317 else
318 band = (POLLIN | POLLRDNORM);
319 } else {
320 if (so->so_oobmark)
321 band = (POLLPRI | POLLWRBAND);
322 else
323 band = (POLLOUT | POLLWRNORM);
324 }
325 fownsignal(so->so_pgid, code, band, so);
326 }
327 if (sb->sb_flags & SB_UPCALL)
328 (*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT);
329 }
330
331 /*
332 * Socket buffer (struct sockbuf) utility routines.
333 *
334 * Each socket contains two socket buffers: one for sending data and
335 * one for receiving data. Each buffer contains a queue of mbufs,
336 * information about the number of mbufs and amount of data in the
337 * queue, and other fields allowing poll() statements and notification
338 * on data availability to be implemented.
339 *
340 * Data stored in a socket buffer is maintained as a list of records.
341 * Each record is a list of mbufs chained together with the m_next
342 * field. Records are chained together with the m_nextpkt field. The upper
343 * level routine soreceive() expects the following conventions to be
344 * observed when placing information in the receive buffer:
345 *
346 * 1. If the protocol requires each message be preceded by the sender's
347 * name, then a record containing that name must be present before
348 * any associated data (mbuf's must be of type MT_SONAME).
349 * 2. If the protocol supports the exchange of ``access rights'' (really
350 * just additional data associated with the message), and there are
351 * ``rights'' to be received, then a record containing this data
352 * should be present (mbuf's must be of type MT_CONTROL).
353 * 3. If a name or rights record exists, then it must be followed by
354 * a data record, perhaps of zero length.
355 *
356 * Before using a new socket structure it is first necessary to reserve
357 * buffer space to the socket, by calling sbreserve(). This should commit
358 * some of the available buffer space in the system buffer pool for the
359 * socket (currently, it does nothing but enforce limits). The space
360 * should be released by calling sbrelease() when the socket is destroyed.
361 */
362
363 int
364 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
365 {
366
367 if (sbreserve(&so->so_snd, sndcc) == 0)
368 goto bad;
369 if (sbreserve(&so->so_rcv, rcvcc) == 0)
370 goto bad2;
371 if (so->so_rcv.sb_lowat == 0)
372 so->so_rcv.sb_lowat = 1;
373 if (so->so_snd.sb_lowat == 0)
374 so->so_snd.sb_lowat = MCLBYTES;
375 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
376 so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
377 return (0);
378 bad2:
379 sbrelease(&so->so_snd);
380 bad:
381 return (ENOBUFS);
382 }
383
384 /*
385 * Allot mbufs to a sockbuf.
386 * Attempt to scale mbmax so that mbcnt doesn't become limiting
387 * if buffering efficiency is near the normal case.
388 */
389 int
390 sbreserve(struct sockbuf *sb, u_long cc)
391 {
392
393 if (cc == 0 ||
394 (u_quad_t) cc > (u_quad_t) sb_max * MCLBYTES / (MSIZE + MCLBYTES))
395 return (0);
396 sb->sb_hiwat = cc;
397 sb->sb_mbmax = min(cc * 2, sb_max);
398 if (sb->sb_lowat > sb->sb_hiwat)
399 sb->sb_lowat = sb->sb_hiwat;
400 return (1);
401 }
402
403 /*
404 * Free mbufs held by a socket, and reserved mbuf space.
405 */
406 void
407 sbrelease(struct sockbuf *sb)
408 {
409
410 sbflush(sb);
411 sb->sb_hiwat = sb->sb_mbmax = 0;
412 }
413
414 /*
415 * Routines to add and remove
416 * data from an mbuf queue.
417 *
418 * The routines sbappend() or sbappendrecord() are normally called to
419 * append new mbufs to a socket buffer, after checking that adequate
420 * space is available, comparing the function sbspace() with the amount
421 * of data to be added. sbappendrecord() differs from sbappend() in
422 * that data supplied is treated as the beginning of a new record.
423 * To place a sender's address, optional access rights, and data in a
424 * socket receive buffer, sbappendaddr() should be used. To place
425 * access rights and data in a socket receive buffer, sbappendrights()
426 * should be used. In either case, the new data begins a new record.
427 * Note that unlike sbappend() and sbappendrecord(), these routines check
428 * for the caller that there will be enough space to store the data.
429 * Each fails if there is not enough space, or if it cannot find mbufs
430 * to store additional information in.
431 *
432 * Reliable protocols may use the socket send buffer to hold data
433 * awaiting acknowledgement. Data is normally copied from a socket
434 * send buffer in a protocol with m_copy for output to a peer,
435 * and then removing the data from the socket buffer with sbdrop()
436 * or sbdroprecord() when the data is acknowledged by the peer.
437 */
438
439 #ifdef SOCKBUF_DEBUG
440 void
441 sblastrecordchk(struct sockbuf *sb, const char *where)
442 {
443 struct mbuf *m = sb->sb_mb;
444
445 while (m && m->m_nextpkt)
446 m = m->m_nextpkt;
447
448 if (m != sb->sb_lastrecord) {
449 printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
450 sb->sb_mb, sb->sb_lastrecord, m);
451 printf("packet chain:\n");
452 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
453 printf("\t%p\n", m);
454 panic("sblastrecordchk from %s", where);
455 }
456 }
457
458 void
459 sblastmbufchk(struct sockbuf *sb, const char *where)
460 {
461 struct mbuf *m = sb->sb_mb;
462 struct mbuf *n;
463
464 while (m && m->m_nextpkt)
465 m = m->m_nextpkt;
466
467 while (m && m->m_next)
468 m = m->m_next;
469
470 if (m != sb->sb_mbtail) {
471 printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
472 sb->sb_mb, sb->sb_mbtail, m);
473 printf("packet tree:\n");
474 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
475 printf("\t");
476 for (n = m; n != NULL; n = n->m_next)
477 printf("%p ", n);
478 printf("\n");
479 }
480 panic("sblastmbufchk from %s", where);
481 }
482 }
483 #endif /* SOCKBUF_DEBUG */
484
485 #define SBLINKRECORD(sb, m0) \
486 do { \
487 if ((sb)->sb_lastrecord != NULL) \
488 (sb)->sb_lastrecord->m_nextpkt = (m0); \
489 else \
490 (sb)->sb_mb = (m0); \
491 (sb)->sb_lastrecord = (m0); \
492 } while (/*CONSTCOND*/0)
493
494 /*
495 * Append mbuf chain m to the last record in the
496 * socket buffer sb. The additional space associated
497 * the mbuf chain is recorded in sb. Empty mbufs are
498 * discarded and mbufs are compacted where possible.
499 */
500 void
501 sbappend(struct sockbuf *sb, struct mbuf *m)
502 {
503 struct mbuf *n;
504
505 if (m == 0)
506 return;
507
508 #ifdef MBUFTRACE
509 m_claim(m, sb->sb_mowner);
510 #endif
511
512 SBLASTRECORDCHK(sb, "sbappend 1");
513
514 if ((n = sb->sb_lastrecord) != NULL) {
515 /*
516 * XXX Would like to simply use sb_mbtail here, but
517 * XXX I need to verify that I won't miss an EOR that
518 * XXX way.
519 */
520 do {
521 if (n->m_flags & M_EOR) {
522 sbappendrecord(sb, m); /* XXXXXX!!!! */
523 return;
524 }
525 } while (n->m_next && (n = n->m_next));
526 } else {
527 /*
528 * If this is the first record in the socket buffer, it's
529 * also the last record.
530 */
531 sb->sb_lastrecord = m;
532 }
533 sbcompress(sb, m, n);
534 SBLASTRECORDCHK(sb, "sbappend 2");
535 }
536
537 /*
538 * This version of sbappend() should only be used when the caller
539 * absolutely knows that there will never be more than one record
540 * in the socket buffer, that is, a stream protocol (such as TCP).
541 */
542 void
543 sbappendstream(struct sockbuf *sb, struct mbuf *m)
544 {
545
546 KDASSERT(m->m_nextpkt == NULL);
547 KASSERT(sb->sb_mb == sb->sb_lastrecord);
548
549 SBLASTMBUFCHK(sb, __func__);
550
551 #ifdef MBUFTRACE
552 m_claim(m, sb->sb_mowner);
553 #endif
554
555 sbcompress(sb, m, sb->sb_mbtail);
556
557 sb->sb_lastrecord = sb->sb_mb;
558 SBLASTRECORDCHK(sb, __func__);
559 }
560
561 #ifdef SOCKBUF_DEBUG
562 void
563 sbcheck(struct sockbuf *sb)
564 {
565 struct mbuf *m;
566 u_long len, mbcnt;
567
568 len = 0;
569 mbcnt = 0;
570 for (m = sb->sb_mb; m; m = m->m_next) {
571 len += m->m_len;
572 mbcnt += MSIZE;
573 if (m->m_flags & M_EXT)
574 mbcnt += m->m_ext.ext_size;
575 if (m->m_nextpkt)
576 panic("sbcheck nextpkt");
577 }
578 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
579 printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
580 mbcnt, sb->sb_mbcnt);
581 panic("sbcheck");
582 }
583 }
584 #endif
585
586 /*
587 * As above, except the mbuf chain
588 * begins a new record.
589 */
590 void
591 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
592 {
593 struct mbuf *m;
594
595 if (m0 == 0)
596 return;
597
598 #ifdef MBUFTRACE
599 m_claim(m0, sb->sb_mowner);
600 #endif
601 /*
602 * Put the first mbuf on the queue.
603 * Note this permits zero length records.
604 */
605 sballoc(sb, m0);
606 SBLASTRECORDCHK(sb, "sbappendrecord 1");
607 SBLINKRECORD(sb, m0);
608 m = m0->m_next;
609 m0->m_next = 0;
610 if (m && (m0->m_flags & M_EOR)) {
611 m0->m_flags &= ~M_EOR;
612 m->m_flags |= M_EOR;
613 }
614 sbcompress(sb, m, m0);
615 SBLASTRECORDCHK(sb, "sbappendrecord 2");
616 }
617
618 /*
619 * As above except that OOB data
620 * is inserted at the beginning of the sockbuf,
621 * but after any other OOB data.
622 */
623 void
624 sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
625 {
626 struct mbuf *m, **mp;
627
628 if (m0 == 0)
629 return;
630
631 SBLASTRECORDCHK(sb, "sbinsertoob 1");
632
633 for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
634 again:
635 switch (m->m_type) {
636
637 case MT_OOBDATA:
638 continue; /* WANT next train */
639
640 case MT_CONTROL:
641 if ((m = m->m_next) != NULL)
642 goto again; /* inspect THIS train further */
643 }
644 break;
645 }
646 /*
647 * Put the first mbuf on the queue.
648 * Note this permits zero length records.
649 */
650 sballoc(sb, m0);
651 m0->m_nextpkt = *mp;
652 if (*mp == NULL) {
653 /* m0 is actually the new tail */
654 sb->sb_lastrecord = m0;
655 }
656 *mp = m0;
657 m = m0->m_next;
658 m0->m_next = 0;
659 if (m && (m0->m_flags & M_EOR)) {
660 m0->m_flags &= ~M_EOR;
661 m->m_flags |= M_EOR;
662 }
663 sbcompress(sb, m, m0);
664 SBLASTRECORDCHK(sb, "sbinsertoob 2");
665 }
666
667 /*
668 * Append address and data, and optionally, control (ancillary) data
669 * to the receive queue of a socket. If present,
670 * m0 must include a packet header with total length.
671 * Returns 0 if no space in sockbuf or insufficient mbufs.
672 */
673 int
674 sbappendaddr(struct sockbuf *sb, struct sockaddr *asa, struct mbuf *m0,
675 struct mbuf *control)
676 {
677 struct mbuf *m, *n, *nlast;
678 int space, len;
679
680 space = asa->sa_len;
681
682 if (m0 != NULL) {
683 if ((m0->m_flags & M_PKTHDR) == 0)
684 panic("sbappendaddr");
685 space += m0->m_pkthdr.len;
686 #ifdef MBUFTRACE
687 m_claim(m0, sb->sb_mowner);
688 #endif
689 }
690 for (n = control; n; n = n->m_next) {
691 space += n->m_len;
692 MCLAIM(n, sb->sb_mowner);
693 if (n->m_next == 0) /* keep pointer to last control buf */
694 break;
695 }
696 if (space > sbspace(sb))
697 return (0);
698 MGET(m, M_DONTWAIT, MT_SONAME);
699 if (m == 0)
700 return (0);
701 MCLAIM(m, sb->sb_mowner);
702 /*
703 * XXX avoid 'comparison always true' warning which isn't easily
704 * avoided.
705 */
706 len = asa->sa_len;
707 if (len > MLEN) {
708 MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
709 if ((m->m_flags & M_EXT) == 0) {
710 m_free(m);
711 return (0);
712 }
713 }
714 m->m_len = asa->sa_len;
715 memcpy(mtod(m, caddr_t), (caddr_t)asa, asa->sa_len);
716 if (n)
717 n->m_next = m0; /* concatenate data to control */
718 else
719 control = m0;
720 m->m_next = control;
721
722 SBLASTRECORDCHK(sb, "sbappendaddr 1");
723
724 for (n = m; n->m_next != NULL; n = n->m_next)
725 sballoc(sb, n);
726 sballoc(sb, n);
727 nlast = n;
728 SBLINKRECORD(sb, m);
729
730 sb->sb_mbtail = nlast;
731 SBLASTMBUFCHK(sb, "sbappendaddr");
732
733 SBLASTRECORDCHK(sb, "sbappendaddr 2");
734
735 return (1);
736 }
737
738 int
739 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
740 {
741 struct mbuf *m, *mlast, *n;
742 int space;
743
744 space = 0;
745 if (control == 0)
746 panic("sbappendcontrol");
747 for (m = control; ; m = m->m_next) {
748 space += m->m_len;
749 MCLAIM(m, sb->sb_mowner);
750 if (m->m_next == 0)
751 break;
752 }
753 n = m; /* save pointer to last control buffer */
754 for (m = m0; m; m = m->m_next) {
755 MCLAIM(m, sb->sb_mowner);
756 space += m->m_len;
757 }
758 if (space > sbspace(sb))
759 return (0);
760 n->m_next = m0; /* concatenate data to control */
761
762 SBLASTRECORDCHK(sb, "sbappendcontrol 1");
763
764 for (m = control; m->m_next != NULL; m = m->m_next)
765 sballoc(sb, m);
766 sballoc(sb, m);
767 mlast = m;
768 SBLINKRECORD(sb, control);
769
770 sb->sb_mbtail = mlast;
771 SBLASTMBUFCHK(sb, "sbappendcontrol");
772
773 SBLASTRECORDCHK(sb, "sbappendcontrol 2");
774
775 return (1);
776 }
777
778 /*
779 * Compress mbuf chain m into the socket
780 * buffer sb following mbuf n. If n
781 * is null, the buffer is presumed empty.
782 */
783 void
784 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
785 {
786 int eor;
787 struct mbuf *o;
788
789 eor = 0;
790 while (m) {
791 eor |= m->m_flags & M_EOR;
792 if (m->m_len == 0 &&
793 (eor == 0 ||
794 (((o = m->m_next) || (o = n)) &&
795 o->m_type == m->m_type))) {
796 if (sb->sb_lastrecord == m)
797 sb->sb_lastrecord = m->m_next;
798 m = m_free(m);
799 continue;
800 }
801 if (n && (n->m_flags & M_EOR) == 0 &&
802 /* M_TRAILINGSPACE() checks buffer writeability */
803 m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
804 m->m_len <= M_TRAILINGSPACE(n) &&
805 n->m_type == m->m_type) {
806 memcpy(mtod(n, caddr_t) + n->m_len, mtod(m, caddr_t),
807 (unsigned)m->m_len);
808 n->m_len += m->m_len;
809 sb->sb_cc += m->m_len;
810 m = m_free(m);
811 continue;
812 }
813 if (n)
814 n->m_next = m;
815 else
816 sb->sb_mb = m;
817 sb->sb_mbtail = m;
818 sballoc(sb, m);
819 n = m;
820 m->m_flags &= ~M_EOR;
821 m = m->m_next;
822 n->m_next = 0;
823 }
824 if (eor) {
825 if (n)
826 n->m_flags |= eor;
827 else
828 printf("semi-panic: sbcompress\n");
829 }
830 SBLASTMBUFCHK(sb, __func__);
831 }
832
833 /*
834 * Free all mbufs in a sockbuf.
835 * Check that all resources are reclaimed.
836 */
837 void
838 sbflush(struct sockbuf *sb)
839 {
840
841 KASSERT((sb->sb_flags & SB_LOCK) == 0);
842
843 while (sb->sb_mbcnt)
844 sbdrop(sb, (int)sb->sb_cc);
845
846 KASSERT(sb->sb_cc == 0);
847 KASSERT(sb->sb_mb == NULL);
848 KASSERT(sb->sb_mbtail == NULL);
849 KASSERT(sb->sb_lastrecord == NULL);
850 }
851
852 /*
853 * Drop data from (the front of) a sockbuf.
854 */
855 void
856 sbdrop(struct sockbuf *sb, int len)
857 {
858 struct mbuf *m, *mn, *next;
859
860 next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
861 while (len > 0) {
862 if (m == 0) {
863 if (next == 0)
864 panic("sbdrop");
865 m = next;
866 next = m->m_nextpkt;
867 continue;
868 }
869 if (m->m_len > len) {
870 m->m_len -= len;
871 m->m_data += len;
872 sb->sb_cc -= len;
873 break;
874 }
875 len -= m->m_len;
876 sbfree(sb, m);
877 MFREE(m, mn);
878 m = mn;
879 }
880 while (m && m->m_len == 0) {
881 sbfree(sb, m);
882 MFREE(m, mn);
883 m = mn;
884 }
885 if (m) {
886 sb->sb_mb = m;
887 m->m_nextpkt = next;
888 } else
889 sb->sb_mb = next;
890 /*
891 * First part is an inline SB_EMPTY_FIXUP(). Second part
892 * makes sure sb_lastrecord is up-to-date if we dropped
893 * part of the last record.
894 */
895 m = sb->sb_mb;
896 if (m == NULL) {
897 sb->sb_mbtail = NULL;
898 sb->sb_lastrecord = NULL;
899 } else if (m->m_nextpkt == NULL)
900 sb->sb_lastrecord = m;
901 }
902
903 /*
904 * Drop a record off the front of a sockbuf
905 * and move the next record to the front.
906 */
907 void
908 sbdroprecord(struct sockbuf *sb)
909 {
910 struct mbuf *m, *mn;
911
912 m = sb->sb_mb;
913 if (m) {
914 sb->sb_mb = m->m_nextpkt;
915 do {
916 sbfree(sb, m);
917 MFREE(m, mn);
918 } while ((m = mn) != NULL);
919 }
920 SB_EMPTY_FIXUP(sb);
921 }
922
923 /*
924 * Create a "control" mbuf containing the specified data
925 * with the specified type for presentation on a socket buffer.
926 */
927 struct mbuf *
928 sbcreatecontrol(caddr_t p, int size, int type, int level)
929 {
930 struct cmsghdr *cp;
931 struct mbuf *m;
932
933 if (CMSG_SPACE(size) > MCLBYTES) {
934 printf("sbcreatecontrol: message too large %d\n", size);
935 return NULL;
936 }
937
938 if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
939 return ((struct mbuf *) NULL);
940 if (CMSG_SPACE(size) > MLEN) {
941 MCLGET(m, M_DONTWAIT);
942 if ((m->m_flags & M_EXT) == 0) {
943 m_free(m);
944 return NULL;
945 }
946 }
947 cp = mtod(m, struct cmsghdr *);
948 memcpy(CMSG_DATA(cp), p, size);
949 m->m_len = CMSG_SPACE(size);
950 cp->cmsg_len = CMSG_LEN(size);
951 cp->cmsg_level = level;
952 cp->cmsg_type = type;
953 return (m);
954 }
955