uipc_socket2.c revision 1.57 1 /* $NetBSD: uipc_socket2.c,v 1.57 2003/09/22 12:59:59 christos Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1988, 1990, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 * @(#)uipc_socket2.c 8.2 (Berkeley) 2/14/95
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.57 2003/09/22 12:59:59 christos Exp $");
36
37 #include "opt_mbuftrace.h"
38
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/proc.h>
42 #include <sys/file.h>
43 #include <sys/buf.h>
44 #include <sys/malloc.h>
45 #include <sys/mbuf.h>
46 #include <sys/protosw.h>
47 #include <sys/poll.h>
48 #include <sys/socket.h>
49 #include <sys/socketvar.h>
50 #include <sys/signalvar.h>
51
52 /*
53 * Primitive routines for operating on sockets and socket buffers
54 */
55
56 /* strings for sleep message: */
57 const char netcon[] = "netcon";
58 const char netcls[] = "netcls";
59 const char netio[] = "netio";
60 const char netlck[] = "netlck";
61
62 /*
63 * Procedures to manipulate state flags of socket
64 * and do appropriate wakeups. Normal sequence from the
65 * active (originating) side is that soisconnecting() is
66 * called during processing of connect() call,
67 * resulting in an eventual call to soisconnected() if/when the
68 * connection is established. When the connection is torn down
69 * soisdisconnecting() is called during processing of disconnect() call,
70 * and soisdisconnected() is called when the connection to the peer
71 * is totally severed. The semantics of these routines are such that
72 * connectionless protocols can call soisconnected() and soisdisconnected()
73 * only, bypassing the in-progress calls when setting up a ``connection''
74 * takes no time.
75 *
76 * From the passive side, a socket is created with
77 * two queues of sockets: so_q0 for connections in progress
78 * and so_q for connections already made and awaiting user acceptance.
79 * As a protocol is preparing incoming connections, it creates a socket
80 * structure queued on so_q0 by calling sonewconn(). When the connection
81 * is established, soisconnected() is called, and transfers the
82 * socket structure to so_q, making it available to accept().
83 *
84 * If a socket is closed with sockets on either
85 * so_q0 or so_q, these sockets are dropped.
86 *
87 * If higher level protocols are implemented in
88 * the kernel, the wakeups done here will sometimes
89 * cause software-interrupt process scheduling.
90 */
91
92 void
93 soisconnecting(struct socket *so)
94 {
95
96 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
97 so->so_state |= SS_ISCONNECTING;
98 }
99
100 void
101 soisconnected(struct socket *so)
102 {
103 struct socket *head;
104
105 head = so->so_head;
106 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
107 so->so_state |= SS_ISCONNECTED;
108 if (head && soqremque(so, 0)) {
109 soqinsque(head, so, 1);
110 sorwakeup(head);
111 wakeup((caddr_t)&head->so_timeo);
112 } else {
113 wakeup((caddr_t)&so->so_timeo);
114 sorwakeup(so);
115 sowwakeup(so);
116 }
117 }
118
119 void
120 soisdisconnecting(struct socket *so)
121 {
122
123 so->so_state &= ~SS_ISCONNECTING;
124 so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
125 wakeup((caddr_t)&so->so_timeo);
126 sowwakeup(so);
127 sorwakeup(so);
128 }
129
130 void
131 soisdisconnected(struct socket *so)
132 {
133
134 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
135 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
136 wakeup((caddr_t)&so->so_timeo);
137 sowwakeup(so);
138 sorwakeup(so);
139 }
140
141 /*
142 * When an attempt at a new connection is noted on a socket
143 * which accepts connections, sonewconn is called. If the
144 * connection is possible (subject to space constraints, etc.)
145 * then we allocate a new structure, propoerly linked into the
146 * data structure of the original socket, and return this.
147 * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
148 *
149 * Currently, sonewconn() is defined as sonewconn1() in socketvar.h
150 * to catch calls that are missing the (new) second parameter.
151 */
152 struct socket *
153 sonewconn1(struct socket *head, int connstatus)
154 {
155 struct socket *so;
156 int soqueue;
157
158 soqueue = connstatus ? 1 : 0;
159 if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
160 return ((struct socket *)0);
161 so = pool_get(&socket_pool, PR_NOWAIT);
162 if (so == NULL)
163 return (NULL);
164 memset((caddr_t)so, 0, sizeof(*so));
165 so->so_type = head->so_type;
166 so->so_options = head->so_options &~ SO_ACCEPTCONN;
167 so->so_linger = head->so_linger;
168 so->so_state = head->so_state | SS_NOFDREF;
169 so->so_proto = head->so_proto;
170 so->so_timeo = head->so_timeo;
171 so->so_pgid = head->so_pgid;
172 so->so_send = head->so_send;
173 so->so_receive = head->so_receive;
174 so->so_uid = head->so_uid;
175 #ifdef MBUFTRACE
176 so->so_mowner = head->so_mowner;
177 so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
178 so->so_snd.sb_mowner = head->so_snd.sb_mowner;
179 #endif
180 (void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
181 soqinsque(head, so, soqueue);
182 if ((*so->so_proto->pr_usrreq)(so, PRU_ATTACH,
183 (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
184 (struct proc *)0)) {
185 (void) soqremque(so, soqueue);
186 pool_put(&socket_pool, so);
187 return (NULL);
188 }
189 if (connstatus) {
190 sorwakeup(head);
191 wakeup((caddr_t)&head->so_timeo);
192 so->so_state |= connstatus;
193 }
194 return (so);
195 }
196
197 void
198 soqinsque(struct socket *head, struct socket *so, int q)
199 {
200
201 #ifdef DIAGNOSTIC
202 if (so->so_onq != NULL)
203 panic("soqinsque");
204 #endif
205
206 so->so_head = head;
207 if (q == 0) {
208 head->so_q0len++;
209 so->so_onq = &head->so_q0;
210 } else {
211 head->so_qlen++;
212 so->so_onq = &head->so_q;
213 }
214 TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
215 }
216
217 int
218 soqremque(struct socket *so, int q)
219 {
220 struct socket *head;
221
222 head = so->so_head;
223 if (q == 0) {
224 if (so->so_onq != &head->so_q0)
225 return (0);
226 head->so_q0len--;
227 } else {
228 if (so->so_onq != &head->so_q)
229 return (0);
230 head->so_qlen--;
231 }
232 TAILQ_REMOVE(so->so_onq, so, so_qe);
233 so->so_onq = NULL;
234 so->so_head = NULL;
235 return (1);
236 }
237
238 /*
239 * Socantsendmore indicates that no more data will be sent on the
240 * socket; it would normally be applied to a socket when the user
241 * informs the system that no more data is to be sent, by the protocol
242 * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data
243 * will be received, and will normally be applied to the socket by a
244 * protocol when it detects that the peer will send no more data.
245 * Data queued for reading in the socket may yet be read.
246 */
247
248 void
249 socantsendmore(struct socket *so)
250 {
251
252 so->so_state |= SS_CANTSENDMORE;
253 sowwakeup(so);
254 }
255
256 void
257 socantrcvmore(struct socket *so)
258 {
259
260 so->so_state |= SS_CANTRCVMORE;
261 sorwakeup(so);
262 }
263
264 /*
265 * Wait for data to arrive at/drain from a socket buffer.
266 */
267 int
268 sbwait(struct sockbuf *sb)
269 {
270
271 sb->sb_flags |= SB_WAIT;
272 return (tsleep((caddr_t)&sb->sb_cc,
273 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, netio,
274 sb->sb_timeo));
275 }
276
277 /*
278 * Lock a sockbuf already known to be locked;
279 * return any error returned from sleep (EINTR).
280 */
281 int
282 sb_lock(struct sockbuf *sb)
283 {
284 int error;
285
286 while (sb->sb_flags & SB_LOCK) {
287 sb->sb_flags |= SB_WANT;
288 error = tsleep((caddr_t)&sb->sb_flags,
289 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK|PCATCH,
290 netlck, 0);
291 if (error)
292 return (error);
293 }
294 sb->sb_flags |= SB_LOCK;
295 return (0);
296 }
297
298 /*
299 * Wakeup processes waiting on a socket buffer.
300 * Do asynchronous notification via SIGIO
301 * if the socket buffer has the SB_ASYNC flag set.
302 */
303 void
304 sowakeup(struct socket *so, struct sockbuf *sb, int code)
305 {
306 selnotify(&sb->sb_sel, 0);
307 sb->sb_flags &= ~SB_SEL;
308 if (sb->sb_flags & SB_WAIT) {
309 sb->sb_flags &= ~SB_WAIT;
310 wakeup((caddr_t)&sb->sb_cc);
311 }
312 if (sb->sb_flags & SB_ASYNC) {
313 int band;
314 if (code == POLL_IN)
315 band = POLLIN|POLLRDNORM;
316 else
317 band = POLLOUT|POLLWRNORM;
318 fownsignal(so->so_pgid, SIGIO, code, band, so);
319 }
320 if (sb->sb_flags & SB_UPCALL)
321 (*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT);
322 }
323
324 /*
325 * Socket buffer (struct sockbuf) utility routines.
326 *
327 * Each socket contains two socket buffers: one for sending data and
328 * one for receiving data. Each buffer contains a queue of mbufs,
329 * information about the number of mbufs and amount of data in the
330 * queue, and other fields allowing poll() statements and notification
331 * on data availability to be implemented.
332 *
333 * Data stored in a socket buffer is maintained as a list of records.
334 * Each record is a list of mbufs chained together with the m_next
335 * field. Records are chained together with the m_nextpkt field. The upper
336 * level routine soreceive() expects the following conventions to be
337 * observed when placing information in the receive buffer:
338 *
339 * 1. If the protocol requires each message be preceded by the sender's
340 * name, then a record containing that name must be present before
341 * any associated data (mbuf's must be of type MT_SONAME).
342 * 2. If the protocol supports the exchange of ``access rights'' (really
343 * just additional data associated with the message), and there are
344 * ``rights'' to be received, then a record containing this data
345 * should be present (mbuf's must be of type MT_CONTROL).
346 * 3. If a name or rights record exists, then it must be followed by
347 * a data record, perhaps of zero length.
348 *
349 * Before using a new socket structure it is first necessary to reserve
350 * buffer space to the socket, by calling sbreserve(). This should commit
351 * some of the available buffer space in the system buffer pool for the
352 * socket (currently, it does nothing but enforce limits). The space
353 * should be released by calling sbrelease() when the socket is destroyed.
354 */
355
356 int
357 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
358 {
359
360 if (sbreserve(&so->so_snd, sndcc) == 0)
361 goto bad;
362 if (sbreserve(&so->so_rcv, rcvcc) == 0)
363 goto bad2;
364 if (so->so_rcv.sb_lowat == 0)
365 so->so_rcv.sb_lowat = 1;
366 if (so->so_snd.sb_lowat == 0)
367 so->so_snd.sb_lowat = MCLBYTES;
368 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
369 so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
370 return (0);
371 bad2:
372 sbrelease(&so->so_snd);
373 bad:
374 return (ENOBUFS);
375 }
376
377 /*
378 * Allot mbufs to a sockbuf.
379 * Attempt to scale mbmax so that mbcnt doesn't become limiting
380 * if buffering efficiency is near the normal case.
381 */
382 int
383 sbreserve(struct sockbuf *sb, u_long cc)
384 {
385
386 if (cc == 0 ||
387 (u_quad_t) cc > (u_quad_t) sb_max * MCLBYTES / (MSIZE + MCLBYTES))
388 return (0);
389 sb->sb_hiwat = cc;
390 sb->sb_mbmax = min(cc * 2, sb_max);
391 if (sb->sb_lowat > sb->sb_hiwat)
392 sb->sb_lowat = sb->sb_hiwat;
393 return (1);
394 }
395
396 /*
397 * Free mbufs held by a socket, and reserved mbuf space.
398 */
399 void
400 sbrelease(struct sockbuf *sb)
401 {
402
403 sbflush(sb);
404 sb->sb_hiwat = sb->sb_mbmax = 0;
405 }
406
407 /*
408 * Routines to add and remove
409 * data from an mbuf queue.
410 *
411 * The routines sbappend() or sbappendrecord() are normally called to
412 * append new mbufs to a socket buffer, after checking that adequate
413 * space is available, comparing the function sbspace() with the amount
414 * of data to be added. sbappendrecord() differs from sbappend() in
415 * that data supplied is treated as the beginning of a new record.
416 * To place a sender's address, optional access rights, and data in a
417 * socket receive buffer, sbappendaddr() should be used. To place
418 * access rights and data in a socket receive buffer, sbappendrights()
419 * should be used. In either case, the new data begins a new record.
420 * Note that unlike sbappend() and sbappendrecord(), these routines check
421 * for the caller that there will be enough space to store the data.
422 * Each fails if there is not enough space, or if it cannot find mbufs
423 * to store additional information in.
424 *
425 * Reliable protocols may use the socket send buffer to hold data
426 * awaiting acknowledgement. Data is normally copied from a socket
427 * send buffer in a protocol with m_copy for output to a peer,
428 * and then removing the data from the socket buffer with sbdrop()
429 * or sbdroprecord() when the data is acknowledged by the peer.
430 */
431
432 #ifdef SOCKBUF_DEBUG
433 void
434 sblastrecordchk(struct sockbuf *sb, const char *where)
435 {
436 struct mbuf *m = sb->sb_mb;
437
438 while (m && m->m_nextpkt)
439 m = m->m_nextpkt;
440
441 if (m != sb->sb_lastrecord) {
442 printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
443 sb->sb_mb, sb->sb_lastrecord, m);
444 printf("packet chain:\n");
445 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
446 printf("\t%p\n", m);
447 panic("sblastrecordchk from %s", where);
448 }
449 }
450
451 void
452 sblastmbufchk(struct sockbuf *sb, const char *where)
453 {
454 struct mbuf *m = sb->sb_mb;
455 struct mbuf *n;
456
457 while (m && m->m_nextpkt)
458 m = m->m_nextpkt;
459
460 while (m && m->m_next)
461 m = m->m_next;
462
463 if (m != sb->sb_mbtail) {
464 printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
465 sb->sb_mb, sb->sb_mbtail, m);
466 printf("packet tree:\n");
467 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
468 printf("\t");
469 for (n = m; n != NULL; n = n->m_next)
470 printf("%p ", n);
471 printf("\n");
472 }
473 panic("sblastmbufchk from %s", where);
474 }
475 }
476 #endif /* SOCKBUF_DEBUG */
477
478 #define SBLINKRECORD(sb, m0) \
479 do { \
480 if ((sb)->sb_lastrecord != NULL) \
481 (sb)->sb_lastrecord->m_nextpkt = (m0); \
482 else \
483 (sb)->sb_mb = (m0); \
484 (sb)->sb_lastrecord = (m0); \
485 } while (/*CONSTCOND*/0)
486
487 /*
488 * Append mbuf chain m to the last record in the
489 * socket buffer sb. The additional space associated
490 * the mbuf chain is recorded in sb. Empty mbufs are
491 * discarded and mbufs are compacted where possible.
492 */
493 void
494 sbappend(struct sockbuf *sb, struct mbuf *m)
495 {
496 struct mbuf *n;
497
498 if (m == 0)
499 return;
500
501 #ifdef MBUFTRACE
502 m_claim(m, sb->sb_mowner);
503 #endif
504
505 SBLASTRECORDCHK(sb, "sbappend 1");
506
507 if ((n = sb->sb_lastrecord) != NULL) {
508 /*
509 * XXX Would like to simply use sb_mbtail here, but
510 * XXX I need to verify that I won't miss an EOR that
511 * XXX way.
512 */
513 do {
514 if (n->m_flags & M_EOR) {
515 sbappendrecord(sb, m); /* XXXXXX!!!! */
516 return;
517 }
518 } while (n->m_next && (n = n->m_next));
519 } else {
520 /*
521 * If this is the first record in the socket buffer, it's
522 * also the last record.
523 */
524 sb->sb_lastrecord = m;
525 }
526 sbcompress(sb, m, n);
527 SBLASTRECORDCHK(sb, "sbappend 2");
528 }
529
530 /*
531 * This version of sbappend() should only be used when the caller
532 * absolutely knows that there will never be more than one record
533 * in the socket buffer, that is, a stream protocol (such as TCP).
534 */
535 void
536 sbappendstream(struct sockbuf *sb, struct mbuf *m)
537 {
538
539 KDASSERT(m->m_nextpkt == NULL);
540 KASSERT(sb->sb_mb == sb->sb_lastrecord);
541
542 SBLASTMBUFCHK(sb, __func__);
543
544 #ifdef MBUFTRACE
545 m_claim(m, sb->sb_mowner);
546 #endif
547
548 sbcompress(sb, m, sb->sb_mbtail);
549
550 sb->sb_lastrecord = sb->sb_mb;
551 SBLASTRECORDCHK(sb, __func__);
552 }
553
554 #ifdef SOCKBUF_DEBUG
555 void
556 sbcheck(struct sockbuf *sb)
557 {
558 struct mbuf *m;
559 u_long len, mbcnt;
560
561 len = 0;
562 mbcnt = 0;
563 for (m = sb->sb_mb; m; m = m->m_next) {
564 len += m->m_len;
565 mbcnt += MSIZE;
566 if (m->m_flags & M_EXT)
567 mbcnt += m->m_ext.ext_size;
568 if (m->m_nextpkt)
569 panic("sbcheck nextpkt");
570 }
571 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
572 printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
573 mbcnt, sb->sb_mbcnt);
574 panic("sbcheck");
575 }
576 }
577 #endif
578
579 /*
580 * As above, except the mbuf chain
581 * begins a new record.
582 */
583 void
584 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
585 {
586 struct mbuf *m;
587
588 if (m0 == 0)
589 return;
590
591 #ifdef MBUFTRACE
592 m_claim(m0, sb->sb_mowner);
593 #endif
594 /*
595 * Put the first mbuf on the queue.
596 * Note this permits zero length records.
597 */
598 sballoc(sb, m0);
599 SBLASTRECORDCHK(sb, "sbappendrecord 1");
600 SBLINKRECORD(sb, m0);
601 m = m0->m_next;
602 m0->m_next = 0;
603 if (m && (m0->m_flags & M_EOR)) {
604 m0->m_flags &= ~M_EOR;
605 m->m_flags |= M_EOR;
606 }
607 sbcompress(sb, m, m0);
608 SBLASTRECORDCHK(sb, "sbappendrecord 2");
609 }
610
611 /*
612 * As above except that OOB data
613 * is inserted at the beginning of the sockbuf,
614 * but after any other OOB data.
615 */
616 void
617 sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
618 {
619 struct mbuf *m, **mp;
620
621 if (m0 == 0)
622 return;
623
624 SBLASTRECORDCHK(sb, "sbinsertoob 1");
625
626 for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
627 again:
628 switch (m->m_type) {
629
630 case MT_OOBDATA:
631 continue; /* WANT next train */
632
633 case MT_CONTROL:
634 if ((m = m->m_next) != NULL)
635 goto again; /* inspect THIS train further */
636 }
637 break;
638 }
639 /*
640 * Put the first mbuf on the queue.
641 * Note this permits zero length records.
642 */
643 sballoc(sb, m0);
644 m0->m_nextpkt = *mp;
645 if (*mp == NULL) {
646 /* m0 is actually the new tail */
647 sb->sb_lastrecord = m0;
648 }
649 *mp = m0;
650 m = m0->m_next;
651 m0->m_next = 0;
652 if (m && (m0->m_flags & M_EOR)) {
653 m0->m_flags &= ~M_EOR;
654 m->m_flags |= M_EOR;
655 }
656 sbcompress(sb, m, m0);
657 SBLASTRECORDCHK(sb, "sbinsertoob 2");
658 }
659
660 /*
661 * Append address and data, and optionally, control (ancillary) data
662 * to the receive queue of a socket. If present,
663 * m0 must include a packet header with total length.
664 * Returns 0 if no space in sockbuf or insufficient mbufs.
665 */
666 int
667 sbappendaddr(struct sockbuf *sb, struct sockaddr *asa, struct mbuf *m0,
668 struct mbuf *control)
669 {
670 struct mbuf *m, *n, *nlast;
671 int space, len;
672
673 space = asa->sa_len;
674
675 if (m0 != NULL) {
676 if ((m0->m_flags & M_PKTHDR) == 0)
677 panic("sbappendaddr");
678 space += m0->m_pkthdr.len;
679 #ifdef MBUFTRACE
680 m_claim(m0, sb->sb_mowner);
681 #endif
682 }
683 for (n = control; n; n = n->m_next) {
684 space += n->m_len;
685 MCLAIM(n, sb->sb_mowner);
686 if (n->m_next == 0) /* keep pointer to last control buf */
687 break;
688 }
689 if (space > sbspace(sb))
690 return (0);
691 MGET(m, M_DONTWAIT, MT_SONAME);
692 if (m == 0)
693 return (0);
694 MCLAIM(m, sb->sb_mowner);
695 /*
696 * XXX avoid 'comparison always true' warning which isn't easily
697 * avoided.
698 */
699 len = asa->sa_len;
700 if (len > MLEN) {
701 MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
702 if ((m->m_flags & M_EXT) == 0) {
703 m_free(m);
704 return (0);
705 }
706 }
707 m->m_len = asa->sa_len;
708 memcpy(mtod(m, caddr_t), (caddr_t)asa, asa->sa_len);
709 if (n)
710 n->m_next = m0; /* concatenate data to control */
711 else
712 control = m0;
713 m->m_next = control;
714
715 SBLASTRECORDCHK(sb, "sbappendaddr 1");
716
717 for (n = m; n->m_next != NULL; n = n->m_next)
718 sballoc(sb, n);
719 sballoc(sb, n);
720 nlast = n;
721 SBLINKRECORD(sb, m);
722
723 sb->sb_mbtail = nlast;
724 SBLASTMBUFCHK(sb, "sbappendaddr");
725
726 SBLASTRECORDCHK(sb, "sbappendaddr 2");
727
728 return (1);
729 }
730
731 int
732 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
733 {
734 struct mbuf *m, *mlast, *n;
735 int space;
736
737 space = 0;
738 if (control == 0)
739 panic("sbappendcontrol");
740 for (m = control; ; m = m->m_next) {
741 space += m->m_len;
742 MCLAIM(m, sb->sb_mowner);
743 if (m->m_next == 0)
744 break;
745 }
746 n = m; /* save pointer to last control buffer */
747 for (m = m0; m; m = m->m_next) {
748 MCLAIM(m, sb->sb_mowner);
749 space += m->m_len;
750 }
751 if (space > sbspace(sb))
752 return (0);
753 n->m_next = m0; /* concatenate data to control */
754
755 SBLASTRECORDCHK(sb, "sbappendcontrol 1");
756
757 for (m = control; m->m_next != NULL; m = m->m_next)
758 sballoc(sb, m);
759 sballoc(sb, m);
760 mlast = m;
761 SBLINKRECORD(sb, control);
762
763 sb->sb_mbtail = mlast;
764 SBLASTMBUFCHK(sb, "sbappendcontrol");
765
766 SBLASTRECORDCHK(sb, "sbappendcontrol 2");
767
768 return (1);
769 }
770
771 /*
772 * Compress mbuf chain m into the socket
773 * buffer sb following mbuf n. If n
774 * is null, the buffer is presumed empty.
775 */
776 void
777 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
778 {
779 int eor;
780 struct mbuf *o;
781
782 eor = 0;
783 while (m) {
784 eor |= m->m_flags & M_EOR;
785 if (m->m_len == 0 &&
786 (eor == 0 ||
787 (((o = m->m_next) || (o = n)) &&
788 o->m_type == m->m_type))) {
789 if (sb->sb_lastrecord == m)
790 sb->sb_lastrecord = m->m_next;
791 m = m_free(m);
792 continue;
793 }
794 if (n && (n->m_flags & M_EOR) == 0 &&
795 /* M_TRAILINGSPACE() checks buffer writeability */
796 m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
797 m->m_len <= M_TRAILINGSPACE(n) &&
798 n->m_type == m->m_type) {
799 memcpy(mtod(n, caddr_t) + n->m_len, mtod(m, caddr_t),
800 (unsigned)m->m_len);
801 n->m_len += m->m_len;
802 sb->sb_cc += m->m_len;
803 m = m_free(m);
804 continue;
805 }
806 if (n)
807 n->m_next = m;
808 else
809 sb->sb_mb = m;
810 sb->sb_mbtail = m;
811 sballoc(sb, m);
812 n = m;
813 m->m_flags &= ~M_EOR;
814 m = m->m_next;
815 n->m_next = 0;
816 }
817 if (eor) {
818 if (n)
819 n->m_flags |= eor;
820 else
821 printf("semi-panic: sbcompress\n");
822 }
823 SBLASTMBUFCHK(sb, __func__);
824 }
825
826 /*
827 * Free all mbufs in a sockbuf.
828 * Check that all resources are reclaimed.
829 */
830 void
831 sbflush(struct sockbuf *sb)
832 {
833
834 KASSERT((sb->sb_flags & SB_LOCK) == 0);
835
836 while (sb->sb_mbcnt)
837 sbdrop(sb, (int)sb->sb_cc);
838
839 KASSERT(sb->sb_cc == 0);
840 KASSERT(sb->sb_mb == NULL);
841 KASSERT(sb->sb_mbtail == NULL);
842 KASSERT(sb->sb_lastrecord == NULL);
843 }
844
845 /*
846 * Drop data from (the front of) a sockbuf.
847 */
848 void
849 sbdrop(struct sockbuf *sb, int len)
850 {
851 struct mbuf *m, *mn, *next;
852
853 next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
854 while (len > 0) {
855 if (m == 0) {
856 if (next == 0)
857 panic("sbdrop");
858 m = next;
859 next = m->m_nextpkt;
860 continue;
861 }
862 if (m->m_len > len) {
863 m->m_len -= len;
864 m->m_data += len;
865 sb->sb_cc -= len;
866 break;
867 }
868 len -= m->m_len;
869 sbfree(sb, m);
870 MFREE(m, mn);
871 m = mn;
872 }
873 while (m && m->m_len == 0) {
874 sbfree(sb, m);
875 MFREE(m, mn);
876 m = mn;
877 }
878 if (m) {
879 sb->sb_mb = m;
880 m->m_nextpkt = next;
881 } else
882 sb->sb_mb = next;
883 /*
884 * First part is an inline SB_EMPTY_FIXUP(). Second part
885 * makes sure sb_lastrecord is up-to-date if we dropped
886 * part of the last record.
887 */
888 m = sb->sb_mb;
889 if (m == NULL) {
890 sb->sb_mbtail = NULL;
891 sb->sb_lastrecord = NULL;
892 } else if (m->m_nextpkt == NULL)
893 sb->sb_lastrecord = m;
894 }
895
896 /*
897 * Drop a record off the front of a sockbuf
898 * and move the next record to the front.
899 */
900 void
901 sbdroprecord(struct sockbuf *sb)
902 {
903 struct mbuf *m, *mn;
904
905 m = sb->sb_mb;
906 if (m) {
907 sb->sb_mb = m->m_nextpkt;
908 do {
909 sbfree(sb, m);
910 MFREE(m, mn);
911 } while ((m = mn) != NULL);
912 }
913 SB_EMPTY_FIXUP(sb);
914 }
915
916 /*
917 * Create a "control" mbuf containing the specified data
918 * with the specified type for presentation on a socket buffer.
919 */
920 struct mbuf *
921 sbcreatecontrol(caddr_t p, int size, int type, int level)
922 {
923 struct cmsghdr *cp;
924 struct mbuf *m;
925
926 if (CMSG_SPACE(size) > MCLBYTES) {
927 printf("sbcreatecontrol: message too large %d\n", size);
928 return NULL;
929 }
930
931 if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
932 return ((struct mbuf *) NULL);
933 if (CMSG_SPACE(size) > MLEN) {
934 MCLGET(m, M_DONTWAIT);
935 if ((m->m_flags & M_EXT) == 0) {
936 m_free(m);
937 return NULL;
938 }
939 }
940 cp = mtod(m, struct cmsghdr *);
941 memcpy(CMSG_DATA(cp), p, size);
942 m->m_len = CMSG_SPACE(size);
943 cp->cmsg_len = CMSG_LEN(size);
944 cp->cmsg_level = level;
945 cp->cmsg_type = type;
946 return (m);
947 }
948