uipc_socket2.c revision 1.6 1 /*
2 * Copyright (c) 1982, 1986, 1988, 1990 Regents of the University of California.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 * from: @(#)uipc_socket2.c 7.17 (Berkeley) 5/4/91
34 * $Id: uipc_socket2.c,v 1.6 1994/04/25 08:08:58 mycroft Exp $
35 */
36
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/proc.h>
40 #include <sys/file.h>
41 #include <sys/buf.h>
42 #include <sys/malloc.h>
43 #include <sys/select.h>
44 #include <sys/mbuf.h>
45 #include <sys/protosw.h>
46 #include <sys/socket.h>
47 #include <sys/socketvar.h>
48
49 /*
50 * Primitive routines for operating on sockets and socket buffers
51 */
52
53 /* strings for sleep message: */
54 char netio[] = "netio";
55 char netcon[] = "netcon";
56 char netcls[] = "netcls";
57
58 u_long sb_max = SB_MAX; /* patchable */
59
60 /*
61 * Procedures to manipulate state flags of socket
62 * and do appropriate wakeups. Normal sequence from the
63 * active (originating) side is that soisconnecting() is
64 * called during processing of connect() call,
65 * resulting in an eventual call to soisconnected() if/when the
66 * connection is established. When the connection is torn down
67 * soisdisconnecting() is called during processing of disconnect() call,
68 * and soisdisconnected() is called when the connection to the peer
69 * is totally severed. The semantics of these routines are such that
70 * connectionless protocols can call soisconnected() and soisdisconnected()
71 * only, bypassing the in-progress calls when setting up a ``connection''
72 * takes no time.
73 *
74 * From the passive side, a socket is created with
75 * two queues of sockets: so_q0 for connections in progress
76 * and so_q for connections already made and awaiting user acceptance.
77 * As a protocol is preparing incoming connections, it creates a socket
78 * structure queued on so_q0 by calling sonewconn(). When the connection
79 * is established, soisconnected() is called, and transfers the
80 * socket structure to so_q, making it available to accept().
81 *
82 * If a socket is closed with sockets on either
83 * so_q0 or so_q, these sockets are dropped.
84 *
85 * If higher level protocols are implemented in
86 * the kernel, the wakeups done here will sometimes
87 * cause software-interrupt process scheduling.
88 */
89
90 soisconnecting(so)
91 register struct socket *so;
92 {
93
94 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
95 so->so_state |= SS_ISCONNECTING;
96 }
97
98 soisconnected(so)
99 register struct socket *so;
100 {
101 register struct socket *head = so->so_head;
102
103 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
104 so->so_state |= SS_ISCONNECTED;
105 if (head && soqremque(so, 0)) {
106 soqinsque(head, so, 1);
107 sorwakeup(head);
108 wakeup((caddr_t)&head->so_timeo);
109 } else {
110 wakeup((caddr_t)&so->so_timeo);
111 sorwakeup(so);
112 sowwakeup(so);
113 }
114 }
115
116 soisdisconnecting(so)
117 register struct socket *so;
118 {
119
120 so->so_state &= ~SS_ISCONNECTING;
121 so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
122 wakeup((caddr_t)&so->so_timeo);
123 sowwakeup(so);
124 sorwakeup(so);
125 }
126
127 soisdisconnected(so)
128 register struct socket *so;
129 {
130
131 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
132 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE);
133 wakeup((caddr_t)&so->so_timeo);
134 sowwakeup(so);
135 sorwakeup(so);
136 }
137
138 /*
139 * When an attempt at a new connection is noted on a socket
140 * which accepts connections, sonewconn is called. If the
141 * connection is possible (subject to space constraints, etc.)
142 * then we allocate a new structure, propoerly linked into the
143 * data structure of the original socket, and return this.
144 * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
145 *
146 * Currently, sonewconn() is defined as sonewconn1() in socketvar.h
147 * to catch calls that are missing the (new) second parameter.
148 */
149 struct socket *
150 sonewconn1(head, connstatus)
151 register struct socket *head;
152 int connstatus;
153 {
154 register struct socket *so;
155 int soqueue = connstatus ? 1 : 0;
156
157 if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
158 return ((struct socket *)0);
159 MALLOC(so, struct socket *, sizeof(*so), M_SOCKET, M_DONTWAIT);
160 if (so == NULL)
161 return ((struct socket *)0);
162 bzero((caddr_t)so, sizeof(*so));
163 so->so_type = head->so_type;
164 so->so_options = head->so_options &~ SO_ACCEPTCONN;
165 so->so_linger = head->so_linger;
166 so->so_state = head->so_state | SS_NOFDREF;
167 so->so_proto = head->so_proto;
168 so->so_timeo = head->so_timeo;
169 so->so_pgid = head->so_pgid;
170 (void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
171 soqinsque(head, so, soqueue);
172 if ((*so->so_proto->pr_usrreq)(so, PRU_ATTACH,
173 (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0)) {
174 (void) soqremque(so, soqueue);
175 (void) free((caddr_t)so, M_SOCKET);
176 return ((struct socket *)0);
177 }
178 if (connstatus) {
179 sorwakeup(head);
180 wakeup((caddr_t)&head->so_timeo);
181 so->so_state |= connstatus;
182 }
183 return (so);
184 }
185
186 soqinsque(head, so, q)
187 register struct socket *head, *so;
188 int q;
189 {
190
191 register struct socket **prev;
192 so->so_head = head;
193 if (q == 0) {
194 head->so_q0len++;
195 so->so_q0 = 0;
196 for (prev = &(head->so_q0); *prev; )
197 prev = &((*prev)->so_q0);
198 } else {
199 head->so_qlen++;
200 so->so_q = 0;
201 for (prev = &(head->so_q); *prev; )
202 prev = &((*prev)->so_q);
203 }
204 *prev = so;
205 }
206
207 soqremque(so, q)
208 register struct socket *so;
209 int q;
210 {
211 register struct socket *head, *prev, *next;
212
213 head = so->so_head;
214 prev = head;
215 for (;;) {
216 next = q ? prev->so_q : prev->so_q0;
217 if (next == so)
218 break;
219 if (next == 0)
220 return (0);
221 prev = next;
222 }
223 if (q == 0) {
224 prev->so_q0 = next->so_q0;
225 head->so_q0len--;
226 } else {
227 prev->so_q = next->so_q;
228 head->so_qlen--;
229 }
230 next->so_q0 = next->so_q = 0;
231 next->so_head = 0;
232 return (1);
233 }
234
235 /*
236 * Socantsendmore indicates that no more data will be sent on the
237 * socket; it would normally be applied to a socket when the user
238 * informs the system that no more data is to be sent, by the protocol
239 * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data
240 * will be received, and will normally be applied to the socket by a
241 * protocol when it detects that the peer will send no more data.
242 * Data queued for reading in the socket may yet be read.
243 */
244
245 void
246 socantsendmore(so)
247 struct socket *so;
248 {
249
250 so->so_state |= SS_CANTSENDMORE;
251 sowwakeup(so);
252 }
253
254 void
255 socantrcvmore(so)
256 struct socket *so;
257 {
258
259 so->so_state |= SS_CANTRCVMORE;
260 sorwakeup(so);
261 }
262
263 /*
264 * Socket select/wakeup routines.
265 */
266
267 /*
268 * Wait for data to arrive at/drain from a socket buffer.
269 */
270 sbwait(sb)
271 struct sockbuf *sb;
272 {
273
274 sb->sb_flags |= SB_WAIT;
275 return (tsleep((caddr_t)&sb->sb_cc,
276 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, netio,
277 sb->sb_timeo));
278 }
279
280 /*
281 * Lock a sockbuf already known to be locked;
282 * return any error returned from sleep (EINTR).
283 */
284 sb_lock(sb)
285 register struct sockbuf *sb;
286 {
287 int error;
288
289 while (sb->sb_flags & SB_LOCK) {
290 sb->sb_flags |= SB_WANT;
291 if (error = tsleep((caddr_t)&sb->sb_flags,
292 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK|PCATCH,
293 netio, 0))
294 return (error);
295 }
296 sb->sb_flags |= SB_LOCK;
297 return (0);
298 }
299
300 /*
301 * Wakeup processes waiting on a socket buffer.
302 * Do asynchronous notification via SIGIO
303 * if the socket has the SS_ASYNC flag set.
304 */
305 sowakeup(so, sb)
306 register struct socket *so;
307 register struct sockbuf *sb;
308 {
309 struct proc *p;
310
311 selwakeup(&sb->sb_sel);
312 sb->sb_flags &= ~SB_SEL;
313 if (sb->sb_flags & SB_WAIT) {
314 sb->sb_flags &= ~SB_WAIT;
315 wakeup((caddr_t)&sb->sb_cc);
316 }
317 if (so->so_state & SS_ASYNC) {
318 if (so->so_pgid < 0)
319 gsignal(-so->so_pgid, SIGIO);
320 else if (so->so_pgid > 0 && (p = pfind(so->so_pgid)) != 0)
321 psignal(p, SIGIO);
322 }
323 }
324
325 /*
326 * Socket buffer (struct sockbuf) utility routines.
327 *
328 * Each socket contains two socket buffers: one for sending data and
329 * one for receiving data. Each buffer contains a queue of mbufs,
330 * information about the number of mbufs and amount of data in the
331 * queue, and other fields allowing select() statements and notification
332 * on data availability to be implemented.
333 *
334 * Data stored in a socket buffer is maintained as a list of records.
335 * Each record is a list of mbufs chained together with the m_next
336 * field. Records are chained together with the m_nextpkt field. The upper
337 * level routine soreceive() expects the following conventions to be
338 * observed when placing information in the receive buffer:
339 *
340 * 1. If the protocol requires each message be preceded by the sender's
341 * name, then a record containing that name must be present before
342 * any associated data (mbuf's must be of type MT_SONAME).
343 * 2. If the protocol supports the exchange of ``access rights'' (really
344 * just additional data associated with the message), and there are
345 * ``rights'' to be received, then a record containing this data
346 * should be present (mbuf's must be of type MT_RIGHTS).
347 * 3. If a name or rights record exists, then it must be followed by
348 * a data record, perhaps of zero length.
349 *
350 * Before using a new socket structure it is first necessary to reserve
351 * buffer space to the socket, by calling sbreserve(). This should commit
352 * some of the available buffer space in the system buffer pool for the
353 * socket (currently, it does nothing but enforce limits). The space
354 * should be released by calling sbrelease() when the socket is destroyed.
355 */
356
357 soreserve(so, sndcc, rcvcc)
358 register struct socket *so;
359 u_long sndcc, rcvcc;
360 {
361
362 if (sbreserve(&so->so_snd, sndcc) == 0)
363 goto bad;
364 if (sbreserve(&so->so_rcv, rcvcc) == 0)
365 goto bad2;
366 if (so->so_rcv.sb_lowat == 0)
367 so->so_rcv.sb_lowat = 1;
368 if (so->so_snd.sb_lowat == 0)
369 so->so_snd.sb_lowat = MCLBYTES;
370 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
371 so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
372 return (0);
373 bad2:
374 sbrelease(&so->so_snd);
375 bad:
376 return (ENOBUFS);
377 }
378
379 /*
380 * Allot mbufs to a sockbuf.
381 * Attempt to scale mbmax so that mbcnt doesn't become limiting
382 * if buffering efficiency is near the normal case.
383 */
384 sbreserve(sb, cc)
385 struct sockbuf *sb;
386 u_long cc;
387 {
388
389 if (cc > sb_max * MCLBYTES / (MSIZE + MCLBYTES))
390 return (0);
391 sb->sb_hiwat = cc;
392 sb->sb_mbmax = min(cc * 2, sb_max);
393 if (sb->sb_lowat > sb->sb_hiwat)
394 sb->sb_lowat = sb->sb_hiwat;
395 return (1);
396 }
397
398 /*
399 * Free mbufs held by a socket, and reserved mbuf space.
400 */
401 sbrelease(sb)
402 struct sockbuf *sb;
403 {
404
405 sbflush(sb);
406 sb->sb_hiwat = sb->sb_mbmax = 0;
407 }
408
409 /*
410 * Routines to add and remove
411 * data from an mbuf queue.
412 *
413 * The routines sbappend() or sbappendrecord() are normally called to
414 * append new mbufs to a socket buffer, after checking that adequate
415 * space is available, comparing the function sbspace() with the amount
416 * of data to be added. sbappendrecord() differs from sbappend() in
417 * that data supplied is treated as the beginning of a new record.
418 * To place a sender's address, optional access rights, and data in a
419 * socket receive buffer, sbappendaddr() should be used. To place
420 * access rights and data in a socket receive buffer, sbappendrights()
421 * should be used. In either case, the new data begins a new record.
422 * Note that unlike sbappend() and sbappendrecord(), these routines check
423 * for the caller that there will be enough space to store the data.
424 * Each fails if there is not enough space, or if it cannot find mbufs
425 * to store additional information in.
426 *
427 * Reliable protocols may use the socket send buffer to hold data
428 * awaiting acknowledgement. Data is normally copied from a socket
429 * send buffer in a protocol with m_copy for output to a peer,
430 * and then removing the data from the socket buffer with sbdrop()
431 * or sbdroprecord() when the data is acknowledged by the peer.
432 */
433
434 /*
435 * Append mbuf chain m to the last record in the
436 * socket buffer sb. The additional space associated
437 * the mbuf chain is recorded in sb. Empty mbufs are
438 * discarded and mbufs are compacted where possible.
439 */
440 sbappend(sb, m)
441 struct sockbuf *sb;
442 struct mbuf *m;
443 {
444 register struct mbuf *n;
445
446 if (m == 0)
447 return;
448 if (n = sb->sb_mb) {
449 while (n->m_nextpkt)
450 n = n->m_nextpkt;
451 do {
452 if (n->m_flags & M_EOR) {
453 sbappendrecord(sb, m); /* XXXXXX!!!! */
454 return;
455 }
456 } while (n->m_next && (n = n->m_next));
457 }
458 sbcompress(sb, m, n);
459 }
460
461 #ifdef SOCKBUF_DEBUG
462 sbcheck(sb)
463 register struct sockbuf *sb;
464 {
465 register struct mbuf *m;
466 register int len = 0, mbcnt = 0;
467
468 for (m = sb->sb_mb; m; m = m->m_next) {
469 len += m->m_len;
470 mbcnt += MSIZE;
471 if (m->m_flags & M_EXT)
472 mbcnt += m->m_ext.ext_size;
473 if (m->m_nextpkt)
474 panic("sbcheck nextpkt");
475 }
476 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
477 printf("cc %d != %d || mbcnt %d != %d\n", len, sb->sb_cc,
478 mbcnt, sb->sb_mbcnt);
479 panic("sbcheck");
480 }
481 }
482 #endif
483
484 /*
485 * As above, except the mbuf chain
486 * begins a new record.
487 */
488 sbappendrecord(sb, m0)
489 register struct sockbuf *sb;
490 register struct mbuf *m0;
491 {
492 register struct mbuf *m;
493
494 if (m0 == 0)
495 return;
496 if (m = sb->sb_mb)
497 while (m->m_nextpkt)
498 m = m->m_nextpkt;
499 /*
500 * Put the first mbuf on the queue.
501 * Note this permits zero length records.
502 */
503 sballoc(sb, m0);
504 if (m)
505 m->m_nextpkt = m0;
506 else
507 sb->sb_mb = m0;
508 m = m0->m_next;
509 m0->m_next = 0;
510 if (m && (m0->m_flags & M_EOR)) {
511 m0->m_flags &= ~M_EOR;
512 m->m_flags |= M_EOR;
513 }
514 sbcompress(sb, m, m0);
515 }
516
517 /*
518 * As above except that OOB data
519 * is inserted at the beginning of the sockbuf,
520 * but after any other OOB data.
521 */
522 sbinsertoob(sb, m0)
523 register struct sockbuf *sb;
524 register struct mbuf *m0;
525 {
526 register struct mbuf *m;
527 register struct mbuf **mp;
528
529 if (m0 == 0)
530 return;
531 for (mp = &sb->sb_mb; m = *mp; mp = &((*mp)->m_nextpkt)) {
532 again:
533 switch (m->m_type) {
534
535 case MT_OOBDATA:
536 continue; /* WANT next train */
537
538 case MT_CONTROL:
539 if (m = m->m_next)
540 goto again; /* inspect THIS train further */
541 }
542 break;
543 }
544 /*
545 * Put the first mbuf on the queue.
546 * Note this permits zero length records.
547 */
548 sballoc(sb, m0);
549 m0->m_nextpkt = *mp;
550 *mp = m0;
551 m = m0->m_next;
552 m0->m_next = 0;
553 if (m && (m0->m_flags & M_EOR)) {
554 m0->m_flags &= ~M_EOR;
555 m->m_flags |= M_EOR;
556 }
557 sbcompress(sb, m, m0);
558 }
559
560 /*
561 * Append address and data, and optionally, control (ancillary) data
562 * to the receive queue of a socket. If present,
563 * m0 must include a packet header with total length.
564 * Returns 0 if no space in sockbuf or insufficient mbufs.
565 */
566 sbappendaddr(sb, asa, m0, control)
567 register struct sockbuf *sb;
568 struct sockaddr *asa;
569 struct mbuf *m0, *control;
570 {
571 register struct mbuf *m, *n;
572 int space = asa->sa_len;
573
574 if (m0 && (m0->m_flags & M_PKTHDR) == 0)
575 panic("sbappendaddr");
576 if (m0)
577 space += m0->m_pkthdr.len;
578 for (n = control; n; n = n->m_next) {
579 space += n->m_len;
580 if (n->m_next == 0) /* keep pointer to last control buf */
581 break;
582 }
583 if (space > sbspace(sb))
584 return (0);
585 if (asa->sa_len > MLEN)
586 return (0);
587 MGET(m, M_DONTWAIT, MT_SONAME);
588 if (m == 0)
589 return (0);
590 m->m_len = asa->sa_len;
591 bcopy((caddr_t)asa, mtod(m, caddr_t), asa->sa_len);
592 if (n)
593 n->m_next = m0; /* concatenate data to control */
594 else
595 control = m0;
596 m->m_next = control;
597 for (n = m; n; n = n->m_next)
598 sballoc(sb, n);
599 if (n = sb->sb_mb) {
600 while (n->m_nextpkt)
601 n = n->m_nextpkt;
602 n->m_nextpkt = m;
603 } else
604 sb->sb_mb = m;
605 return (1);
606 }
607
608 sbappendcontrol(sb, m0, control)
609 struct sockbuf *sb;
610 struct mbuf *control, *m0;
611 {
612 register struct mbuf *m, *n;
613 int space = 0;
614
615 if (control == 0)
616 panic("sbappendcontrol");
617 for (m = control; ; m = m->m_next) {
618 space += m->m_len;
619 if (m->m_next == 0)
620 break;
621 }
622 n = m; /* save pointer to last control buffer */
623 for (m = m0; m; m = m->m_next)
624 space += m->m_len;
625 if (space > sbspace(sb))
626 return (0);
627 n->m_next = m0; /* concatenate data to control */
628 for (m = control; m; m = m->m_next)
629 sballoc(sb, m);
630 if (n = sb->sb_mb) {
631 while (n->m_nextpkt)
632 n = n->m_nextpkt;
633 n->m_nextpkt = control;
634 } else
635 sb->sb_mb = control;
636 return (1);
637 }
638
639 /*
640 * Compress mbuf chain m into the socket
641 * buffer sb following mbuf n. If n
642 * is null, the buffer is presumed empty.
643 */
644 sbcompress(sb, m, n)
645 register struct sockbuf *sb;
646 register struct mbuf *m, *n;
647 {
648 register int eor = 0;
649 register struct mbuf *o;
650
651 while (m) {
652 eor |= m->m_flags & M_EOR;
653 if (m->m_len == 0 &&
654 (eor == 0 ||
655 (((o = m->m_next) || (o = n)) &&
656 o->m_type == m->m_type))) {
657 m = m_free(m);
658 continue;
659 }
660 if (n && (n->m_flags & (M_EXT | M_EOR)) == 0 &&
661 (n->m_data + n->m_len + m->m_len) < &n->m_dat[MLEN] &&
662 n->m_type == m->m_type) {
663 bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len,
664 (unsigned)m->m_len);
665 n->m_len += m->m_len;
666 sb->sb_cc += m->m_len;
667 m = m_free(m);
668 continue;
669 }
670 if (n)
671 n->m_next = m;
672 else
673 sb->sb_mb = m;
674 sballoc(sb, m);
675 n = m;
676 m->m_flags &= ~M_EOR;
677 m = m->m_next;
678 n->m_next = 0;
679 }
680 if (eor) {
681 if (n)
682 n->m_flags |= eor;
683 else
684 printf("semi-panic: sbcompress\n");
685 }
686 }
687
688 /*
689 * Free all mbufs in a sockbuf.
690 * Check that all resources are reclaimed.
691 */
692 sbflush(sb)
693 register struct sockbuf *sb;
694 {
695
696 if (sb->sb_flags & SB_LOCK)
697 panic("sbflush");
698 while (sb->sb_mbcnt)
699 sbdrop(sb, (int)sb->sb_cc);
700 if (sb->sb_cc || sb->sb_mb)
701 panic("sbflush 2");
702 }
703
704 /*
705 * Drop data from (the front of) a sockbuf.
706 */
707 sbdrop(sb, len)
708 register struct sockbuf *sb;
709 register int len;
710 {
711 register struct mbuf *m, *mn;
712 struct mbuf *next;
713
714 next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
715 while (len > 0) {
716 if (m == 0) {
717 if (next == 0)
718 panic("sbdrop");
719 m = next;
720 next = m->m_nextpkt;
721 continue;
722 }
723 if (m->m_len > len) {
724 m->m_len -= len;
725 m->m_data += len;
726 sb->sb_cc -= len;
727 break;
728 }
729 len -= m->m_len;
730 sbfree(sb, m);
731 MFREE(m, mn);
732 m = mn;
733 }
734 while (m && m->m_len == 0) {
735 sbfree(sb, m);
736 MFREE(m, mn);
737 m = mn;
738 }
739 if (m) {
740 sb->sb_mb = m;
741 m->m_nextpkt = next;
742 } else
743 sb->sb_mb = next;
744 }
745
746 /*
747 * Drop a record off the front of a sockbuf
748 * and move the next record to the front.
749 */
750 sbdroprecord(sb)
751 register struct sockbuf *sb;
752 {
753 register struct mbuf *m, *mn;
754
755 m = sb->sb_mb;
756 if (m) {
757 sb->sb_mb = m->m_nextpkt;
758 do {
759 sbfree(sb, m);
760 MFREE(m, mn);
761 } while (m = mn);
762 }
763 }
764