Home | History | Annotate | Line # | Download | only in kern
uipc_socket2.c revision 1.61
      1 /*	$NetBSD: uipc_socket2.c,v 1.61 2004/04/18 21:47:11 matt Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1988, 1990, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the University nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  *
     31  *	@(#)uipc_socket2.c	8.2 (Berkeley) 2/14/95
     32  */
     33 
     34 #include <sys/cdefs.h>
     35 __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.61 2004/04/18 21:47:11 matt Exp $");
     36 
     37 #include "opt_mbuftrace.h"
     38 #include "opt_sb_max.h"
     39 
     40 #include <sys/param.h>
     41 #include <sys/systm.h>
     42 #include <sys/proc.h>
     43 #include <sys/file.h>
     44 #include <sys/buf.h>
     45 #include <sys/malloc.h>
     46 #include <sys/mbuf.h>
     47 #include <sys/protosw.h>
     48 #include <sys/poll.h>
     49 #include <sys/socket.h>
     50 #include <sys/socketvar.h>
     51 #include <sys/signalvar.h>
     52 
     53 /*
     54  * Primitive routines for operating on sockets and socket buffers
     55  */
     56 
     57 /* strings for sleep message: */
     58 const char	netcon[] = "netcon";
     59 const char	netcls[] = "netcls";
     60 const char	netio[] = "netio";
     61 const char	netlck[] = "netlck";
     62 
     63 u_long	sb_max = SB_MAX;	/* maximum socket buffer size */
     64 static u_long sb_max_adj;	/* adjusted sb_max */
     65 
     66 /*
     67  * Procedures to manipulate state flags of socket
     68  * and do appropriate wakeups.  Normal sequence from the
     69  * active (originating) side is that soisconnecting() is
     70  * called during processing of connect() call,
     71  * resulting in an eventual call to soisconnected() if/when the
     72  * connection is established.  When the connection is torn down
     73  * soisdisconnecting() is called during processing of disconnect() call,
     74  * and soisdisconnected() is called when the connection to the peer
     75  * is totally severed.  The semantics of these routines are such that
     76  * connectionless protocols can call soisconnected() and soisdisconnected()
     77  * only, bypassing the in-progress calls when setting up a ``connection''
     78  * takes no time.
     79  *
     80  * From the passive side, a socket is created with
     81  * two queues of sockets: so_q0 for connections in progress
     82  * and so_q for connections already made and awaiting user acceptance.
     83  * As a protocol is preparing incoming connections, it creates a socket
     84  * structure queued on so_q0 by calling sonewconn().  When the connection
     85  * is established, soisconnected() is called, and transfers the
     86  * socket structure to so_q, making it available to accept().
     87  *
     88  * If a socket is closed with sockets on either
     89  * so_q0 or so_q, these sockets are dropped.
     90  *
     91  * If higher level protocols are implemented in
     92  * the kernel, the wakeups done here will sometimes
     93  * cause software-interrupt process scheduling.
     94  */
     95 
     96 void
     97 soisconnecting(struct socket *so)
     98 {
     99 
    100 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
    101 	so->so_state |= SS_ISCONNECTING;
    102 }
    103 
    104 void
    105 soisconnected(struct socket *so)
    106 {
    107 	struct socket	*head;
    108 
    109 	head = so->so_head;
    110 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
    111 	so->so_state |= SS_ISCONNECTED;
    112 	if (head && soqremque(so, 0)) {
    113 		soqinsque(head, so, 1);
    114 		sorwakeup(head);
    115 		wakeup((caddr_t)&head->so_timeo);
    116 	} else {
    117 		wakeup((caddr_t)&so->so_timeo);
    118 		sorwakeup(so);
    119 		sowwakeup(so);
    120 	}
    121 }
    122 
    123 void
    124 soisdisconnecting(struct socket *so)
    125 {
    126 
    127 	so->so_state &= ~SS_ISCONNECTING;
    128 	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
    129 	wakeup((caddr_t)&so->so_timeo);
    130 	sowwakeup(so);
    131 	sorwakeup(so);
    132 }
    133 
    134 void
    135 soisdisconnected(struct socket *so)
    136 {
    137 
    138 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
    139 	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
    140 	wakeup((caddr_t)&so->so_timeo);
    141 	sowwakeup(so);
    142 	sorwakeup(so);
    143 }
    144 
    145 /*
    146  * When an attempt at a new connection is noted on a socket
    147  * which accepts connections, sonewconn is called.  If the
    148  * connection is possible (subject to space constraints, etc.)
    149  * then we allocate a new structure, propoerly linked into the
    150  * data structure of the original socket, and return this.
    151  * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
    152  *
    153  * Currently, sonewconn() is defined as sonewconn1() in socketvar.h
    154  * to catch calls that are missing the (new) second parameter.
    155  */
    156 struct socket *
    157 sonewconn1(struct socket *head, int connstatus)
    158 {
    159 	struct socket	*so;
    160 	int		soqueue;
    161 
    162 	soqueue = connstatus ? 1 : 0;
    163 	if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
    164 		return ((struct socket *)0);
    165 	so = pool_get(&socket_pool, PR_NOWAIT);
    166 	if (so == NULL)
    167 		return (NULL);
    168 	memset((caddr_t)so, 0, sizeof(*so));
    169 	so->so_type = head->so_type;
    170 	so->so_options = head->so_options &~ SO_ACCEPTCONN;
    171 	so->so_linger = head->so_linger;
    172 	so->so_state = head->so_state | SS_NOFDREF;
    173 	so->so_proto = head->so_proto;
    174 	so->so_timeo = head->so_timeo;
    175 	so->so_pgid = head->so_pgid;
    176 	so->so_send = head->so_send;
    177 	so->so_receive = head->so_receive;
    178 	so->so_uid = head->so_uid;
    179 #ifdef MBUFTRACE
    180 	so->so_mowner = head->so_mowner;
    181 	so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
    182 	so->so_snd.sb_mowner = head->so_snd.sb_mowner;
    183 #endif
    184 	(void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
    185 	soqinsque(head, so, soqueue);
    186 	if ((*so->so_proto->pr_usrreq)(so, PRU_ATTACH,
    187 	    (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
    188 	    (struct proc *)0)) {
    189 		(void) soqremque(so, soqueue);
    190 		pool_put(&socket_pool, so);
    191 		return (NULL);
    192 	}
    193 	if (connstatus) {
    194 		sorwakeup(head);
    195 		wakeup((caddr_t)&head->so_timeo);
    196 		so->so_state |= connstatus;
    197 	}
    198 	return (so);
    199 }
    200 
    201 void
    202 soqinsque(struct socket *head, struct socket *so, int q)
    203 {
    204 
    205 #ifdef DIAGNOSTIC
    206 	if (so->so_onq != NULL)
    207 		panic("soqinsque");
    208 #endif
    209 
    210 	so->so_head = head;
    211 	if (q == 0) {
    212 		head->so_q0len++;
    213 		so->so_onq = &head->so_q0;
    214 	} else {
    215 		head->so_qlen++;
    216 		so->so_onq = &head->so_q;
    217 	}
    218 	TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
    219 }
    220 
    221 int
    222 soqremque(struct socket *so, int q)
    223 {
    224 	struct socket	*head;
    225 
    226 	head = so->so_head;
    227 	if (q == 0) {
    228 		if (so->so_onq != &head->so_q0)
    229 			return (0);
    230 		head->so_q0len--;
    231 	} else {
    232 		if (so->so_onq != &head->so_q)
    233 			return (0);
    234 		head->so_qlen--;
    235 	}
    236 	TAILQ_REMOVE(so->so_onq, so, so_qe);
    237 	so->so_onq = NULL;
    238 	so->so_head = NULL;
    239 	return (1);
    240 }
    241 
    242 /*
    243  * Socantsendmore indicates that no more data will be sent on the
    244  * socket; it would normally be applied to a socket when the user
    245  * informs the system that no more data is to be sent, by the protocol
    246  * code (in case PRU_SHUTDOWN).  Socantrcvmore indicates that no more data
    247  * will be received, and will normally be applied to the socket by a
    248  * protocol when it detects that the peer will send no more data.
    249  * Data queued for reading in the socket may yet be read.
    250  */
    251 
    252 void
    253 socantsendmore(struct socket *so)
    254 {
    255 
    256 	so->so_state |= SS_CANTSENDMORE;
    257 	sowwakeup(so);
    258 }
    259 
    260 void
    261 socantrcvmore(struct socket *so)
    262 {
    263 
    264 	so->so_state |= SS_CANTRCVMORE;
    265 	sorwakeup(so);
    266 }
    267 
    268 /*
    269  * Wait for data to arrive at/drain from a socket buffer.
    270  */
    271 int
    272 sbwait(struct sockbuf *sb)
    273 {
    274 
    275 	sb->sb_flags |= SB_WAIT;
    276 	return (tsleep((caddr_t)&sb->sb_cc,
    277 	    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, netio,
    278 	    sb->sb_timeo));
    279 }
    280 
    281 /*
    282  * Lock a sockbuf already known to be locked;
    283  * return any error returned from sleep (EINTR).
    284  */
    285 int
    286 sb_lock(struct sockbuf *sb)
    287 {
    288 	int	error;
    289 
    290 	while (sb->sb_flags & SB_LOCK) {
    291 		sb->sb_flags |= SB_WANT;
    292 		error = tsleep((caddr_t)&sb->sb_flags,
    293 		    (sb->sb_flags & SB_NOINTR) ?  PSOCK : PSOCK|PCATCH,
    294 		    netlck, 0);
    295 		if (error)
    296 			return (error);
    297 	}
    298 	sb->sb_flags |= SB_LOCK;
    299 	return (0);
    300 }
    301 
    302 /*
    303  * Wakeup processes waiting on a socket buffer.
    304  * Do asynchronous notification via SIGIO
    305  * if the socket buffer has the SB_ASYNC flag set.
    306  */
    307 void
    308 sowakeup(struct socket *so, struct sockbuf *sb, int code)
    309 {
    310 	selnotify(&sb->sb_sel, 0);
    311 	sb->sb_flags &= ~SB_SEL;
    312 	if (sb->sb_flags & SB_WAIT) {
    313 		sb->sb_flags &= ~SB_WAIT;
    314 		wakeup((caddr_t)&sb->sb_cc);
    315 	}
    316 	if (sb->sb_flags & SB_ASYNC) {
    317 		int band;
    318 		if (code == POLL_IN)
    319 			band = POLLIN|POLLRDNORM;
    320 		else
    321 			band = POLLOUT|POLLWRNORM;
    322 		fownsignal(so->so_pgid, SIGIO, code, band, so);
    323 	}
    324 	if (sb->sb_flags & SB_UPCALL)
    325 		(*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT);
    326 }
    327 
    328 /*
    329  * Socket buffer (struct sockbuf) utility routines.
    330  *
    331  * Each socket contains two socket buffers: one for sending data and
    332  * one for receiving data.  Each buffer contains a queue of mbufs,
    333  * information about the number of mbufs and amount of data in the
    334  * queue, and other fields allowing poll() statements and notification
    335  * on data availability to be implemented.
    336  *
    337  * Data stored in a socket buffer is maintained as a list of records.
    338  * Each record is a list of mbufs chained together with the m_next
    339  * field.  Records are chained together with the m_nextpkt field. The upper
    340  * level routine soreceive() expects the following conventions to be
    341  * observed when placing information in the receive buffer:
    342  *
    343  * 1. If the protocol requires each message be preceded by the sender's
    344  *    name, then a record containing that name must be present before
    345  *    any associated data (mbuf's must be of type MT_SONAME).
    346  * 2. If the protocol supports the exchange of ``access rights'' (really
    347  *    just additional data associated with the message), and there are
    348  *    ``rights'' to be received, then a record containing this data
    349  *    should be present (mbuf's must be of type MT_CONTROL).
    350  * 3. If a name or rights record exists, then it must be followed by
    351  *    a data record, perhaps of zero length.
    352  *
    353  * Before using a new socket structure it is first necessary to reserve
    354  * buffer space to the socket, by calling sbreserve().  This should commit
    355  * some of the available buffer space in the system buffer pool for the
    356  * socket (currently, it does nothing but enforce limits).  The space
    357  * should be released by calling sbrelease() when the socket is destroyed.
    358  */
    359 
    360 int
    361 sb_max_set(u_long new_sbmax)
    362 {
    363 	int s;
    364 
    365 	if (new_sbmax < (16 * 1024))
    366 		return (EINVAL);
    367 
    368 	s = splsoftnet();
    369 	sb_max = new_sbmax;
    370 	sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
    371 	splx(s);
    372 
    373 	return (0);
    374 }
    375 
    376 int
    377 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
    378 {
    379 
    380 	if (sbreserve(&so->so_snd, sndcc, so) == 0)
    381 		goto bad;
    382 	if (sbreserve(&so->so_rcv, rcvcc, so) == 0)
    383 		goto bad2;
    384 	if (so->so_rcv.sb_lowat == 0)
    385 		so->so_rcv.sb_lowat = 1;
    386 	if (so->so_snd.sb_lowat == 0)
    387 		so->so_snd.sb_lowat = MCLBYTES;
    388 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
    389 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
    390 	return (0);
    391  bad2:
    392 	sbrelease(&so->so_snd, so);
    393  bad:
    394 	return (ENOBUFS);
    395 }
    396 
    397 /*
    398  * Allot mbufs to a sockbuf.
    399  * Attempt to scale mbmax so that mbcnt doesn't become limiting
    400  * if buffering efficiency is near the normal case.
    401  */
    402 int
    403 sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
    404 {
    405 	struct proc *p = curproc; /* XXX */
    406 
    407 	KDASSERT(sb_max_adj != 0);
    408 	if (cc == 0 || cc > sb_max_adj)
    409 		return (0);
    410 	if (so) {
    411 		rlim_t maxcc;
    412 		if (p && p->p_ucred->cr_uid == so->so_uid)
    413 			maxcc = p->p_rlimit[RLIMIT_SBSIZE].rlim_cur;
    414 		else
    415 			maxcc = RLIM_INFINITY;
    416 		if (!chgsbsize(so->so_uid, &sb->sb_hiwat, cc, maxcc))
    417 			return 0;
    418 	}
    419 	sb->sb_mbmax = min(cc * 2, sb_max);
    420 	if (sb->sb_lowat > sb->sb_hiwat)
    421 		sb->sb_lowat = sb->sb_hiwat;
    422 	return (1);
    423 }
    424 
    425 /*
    426  * Free mbufs held by a socket, and reserved mbuf space.
    427  */
    428 void
    429 sbrelease(struct sockbuf *sb, struct socket *so)
    430 {
    431 
    432 	sbflush(sb);
    433 	(void)chgsbsize(so->so_uid, &sb->sb_hiwat, 0,
    434 	    RLIM_INFINITY);
    435 	sb->sb_mbmax = 0;
    436 }
    437 
    438 /*
    439  * Routines to add and remove
    440  * data from an mbuf queue.
    441  *
    442  * The routines sbappend() or sbappendrecord() are normally called to
    443  * append new mbufs to a socket buffer, after checking that adequate
    444  * space is available, comparing the function sbspace() with the amount
    445  * of data to be added.  sbappendrecord() differs from sbappend() in
    446  * that data supplied is treated as the beginning of a new record.
    447  * To place a sender's address, optional access rights, and data in a
    448  * socket receive buffer, sbappendaddr() should be used.  To place
    449  * access rights and data in a socket receive buffer, sbappendrights()
    450  * should be used.  In either case, the new data begins a new record.
    451  * Note that unlike sbappend() and sbappendrecord(), these routines check
    452  * for the caller that there will be enough space to store the data.
    453  * Each fails if there is not enough space, or if it cannot find mbufs
    454  * to store additional information in.
    455  *
    456  * Reliable protocols may use the socket send buffer to hold data
    457  * awaiting acknowledgement.  Data is normally copied from a socket
    458  * send buffer in a protocol with m_copy for output to a peer,
    459  * and then removing the data from the socket buffer with sbdrop()
    460  * or sbdroprecord() when the data is acknowledged by the peer.
    461  */
    462 
    463 #ifdef SOCKBUF_DEBUG
    464 void
    465 sblastrecordchk(struct sockbuf *sb, const char *where)
    466 {
    467 	struct mbuf *m = sb->sb_mb;
    468 
    469 	while (m && m->m_nextpkt)
    470 		m = m->m_nextpkt;
    471 
    472 	if (m != sb->sb_lastrecord) {
    473 		printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
    474 		    sb->sb_mb, sb->sb_lastrecord, m);
    475 		printf("packet chain:\n");
    476 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
    477 			printf("\t%p\n", m);
    478 		panic("sblastrecordchk from %s", where);
    479 	}
    480 }
    481 
    482 void
    483 sblastmbufchk(struct sockbuf *sb, const char *where)
    484 {
    485 	struct mbuf *m = sb->sb_mb;
    486 	struct mbuf *n;
    487 
    488 	while (m && m->m_nextpkt)
    489 		m = m->m_nextpkt;
    490 
    491 	while (m && m->m_next)
    492 		m = m->m_next;
    493 
    494 	if (m != sb->sb_mbtail) {
    495 		printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
    496 		    sb->sb_mb, sb->sb_mbtail, m);
    497 		printf("packet tree:\n");
    498 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
    499 			printf("\t");
    500 			for (n = m; n != NULL; n = n->m_next)
    501 				printf("%p ", n);
    502 			printf("\n");
    503 		}
    504 		panic("sblastmbufchk from %s", where);
    505 	}
    506 }
    507 #endif /* SOCKBUF_DEBUG */
    508 
    509 #define	SBLINKRECORD(sb, m0)						\
    510 do {									\
    511 	if ((sb)->sb_lastrecord != NULL)				\
    512 		(sb)->sb_lastrecord->m_nextpkt = (m0);			\
    513 	else								\
    514 		(sb)->sb_mb = (m0);					\
    515 	(sb)->sb_lastrecord = (m0);					\
    516 } while (/*CONSTCOND*/0)
    517 
    518 /*
    519  * Append mbuf chain m to the last record in the
    520  * socket buffer sb.  The additional space associated
    521  * the mbuf chain is recorded in sb.  Empty mbufs are
    522  * discarded and mbufs are compacted where possible.
    523  */
    524 void
    525 sbappend(struct sockbuf *sb, struct mbuf *m)
    526 {
    527 	struct mbuf	*n;
    528 
    529 	if (m == 0)
    530 		return;
    531 
    532 #ifdef MBUFTRACE
    533 	m_claim(m, sb->sb_mowner);
    534 #endif
    535 
    536 	SBLASTRECORDCHK(sb, "sbappend 1");
    537 
    538 	if ((n = sb->sb_lastrecord) != NULL) {
    539 		/*
    540 		 * XXX Would like to simply use sb_mbtail here, but
    541 		 * XXX I need to verify that I won't miss an EOR that
    542 		 * XXX way.
    543 		 */
    544 		do {
    545 			if (n->m_flags & M_EOR) {
    546 				sbappendrecord(sb, m); /* XXXXXX!!!! */
    547 				return;
    548 			}
    549 		} while (n->m_next && (n = n->m_next));
    550 	} else {
    551 		/*
    552 		 * If this is the first record in the socket buffer, it's
    553 		 * also the last record.
    554 		 */
    555 		sb->sb_lastrecord = m;
    556 	}
    557 	sbcompress(sb, m, n);
    558 	SBLASTRECORDCHK(sb, "sbappend 2");
    559 }
    560 
    561 /*
    562  * This version of sbappend() should only be used when the caller
    563  * absolutely knows that there will never be more than one record
    564  * in the socket buffer, that is, a stream protocol (such as TCP).
    565  */
    566 void
    567 sbappendstream(struct sockbuf *sb, struct mbuf *m)
    568 {
    569 
    570 	KDASSERT(m->m_nextpkt == NULL);
    571 	KASSERT(sb->sb_mb == sb->sb_lastrecord);
    572 
    573 	SBLASTMBUFCHK(sb, __func__);
    574 
    575 #ifdef MBUFTRACE
    576 	m_claim(m, sb->sb_mowner);
    577 #endif
    578 
    579 	sbcompress(sb, m, sb->sb_mbtail);
    580 
    581 	sb->sb_lastrecord = sb->sb_mb;
    582 	SBLASTRECORDCHK(sb, __func__);
    583 }
    584 
    585 #ifdef SOCKBUF_DEBUG
    586 void
    587 sbcheck(struct sockbuf *sb)
    588 {
    589 	struct mbuf	*m;
    590 	u_long		len, mbcnt;
    591 
    592 	len = 0;
    593 	mbcnt = 0;
    594 	for (m = sb->sb_mb; m; m = m->m_next) {
    595 		len += m->m_len;
    596 		mbcnt += MSIZE;
    597 		if (m->m_flags & M_EXT)
    598 			mbcnt += m->m_ext.ext_size;
    599 		if (m->m_nextpkt)
    600 			panic("sbcheck nextpkt");
    601 	}
    602 	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
    603 		printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
    604 		    mbcnt, sb->sb_mbcnt);
    605 		panic("sbcheck");
    606 	}
    607 }
    608 #endif
    609 
    610 /*
    611  * As above, except the mbuf chain
    612  * begins a new record.
    613  */
    614 void
    615 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
    616 {
    617 	struct mbuf	*m;
    618 
    619 	if (m0 == 0)
    620 		return;
    621 
    622 #ifdef MBUFTRACE
    623 	m_claim(m0, sb->sb_mowner);
    624 #endif
    625 	/*
    626 	 * Put the first mbuf on the queue.
    627 	 * Note this permits zero length records.
    628 	 */
    629 	sballoc(sb, m0);
    630 	SBLASTRECORDCHK(sb, "sbappendrecord 1");
    631 	SBLINKRECORD(sb, m0);
    632 	m = m0->m_next;
    633 	m0->m_next = 0;
    634 	if (m && (m0->m_flags & M_EOR)) {
    635 		m0->m_flags &= ~M_EOR;
    636 		m->m_flags |= M_EOR;
    637 	}
    638 	sbcompress(sb, m, m0);
    639 	SBLASTRECORDCHK(sb, "sbappendrecord 2");
    640 }
    641 
    642 /*
    643  * As above except that OOB data
    644  * is inserted at the beginning of the sockbuf,
    645  * but after any other OOB data.
    646  */
    647 void
    648 sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
    649 {
    650 	struct mbuf	*m, **mp;
    651 
    652 	if (m0 == 0)
    653 		return;
    654 
    655 	SBLASTRECORDCHK(sb, "sbinsertoob 1");
    656 
    657 	for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
    658 	    again:
    659 		switch (m->m_type) {
    660 
    661 		case MT_OOBDATA:
    662 			continue;		/* WANT next train */
    663 
    664 		case MT_CONTROL:
    665 			if ((m = m->m_next) != NULL)
    666 				goto again;	/* inspect THIS train further */
    667 		}
    668 		break;
    669 	}
    670 	/*
    671 	 * Put the first mbuf on the queue.
    672 	 * Note this permits zero length records.
    673 	 */
    674 	sballoc(sb, m0);
    675 	m0->m_nextpkt = *mp;
    676 	if (*mp == NULL) {
    677 		/* m0 is actually the new tail */
    678 		sb->sb_lastrecord = m0;
    679 	}
    680 	*mp = m0;
    681 	m = m0->m_next;
    682 	m0->m_next = 0;
    683 	if (m && (m0->m_flags & M_EOR)) {
    684 		m0->m_flags &= ~M_EOR;
    685 		m->m_flags |= M_EOR;
    686 	}
    687 	sbcompress(sb, m, m0);
    688 	SBLASTRECORDCHK(sb, "sbinsertoob 2");
    689 }
    690 
    691 /*
    692  * Append address and data, and optionally, control (ancillary) data
    693  * to the receive queue of a socket.  If present,
    694  * m0 must include a packet header with total length.
    695  * Returns 0 if no space in sockbuf or insufficient mbufs.
    696  */
    697 int
    698 sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0,
    699 	struct mbuf *control)
    700 {
    701 	struct mbuf	*m, *n, *nlast;
    702 	int		space, len;
    703 
    704 	space = asa->sa_len;
    705 
    706 	if (m0 != NULL) {
    707 		if ((m0->m_flags & M_PKTHDR) == 0)
    708 			panic("sbappendaddr");
    709 		space += m0->m_pkthdr.len;
    710 #ifdef MBUFTRACE
    711 		m_claim(m0, sb->sb_mowner);
    712 #endif
    713 	}
    714 	for (n = control; n; n = n->m_next) {
    715 		space += n->m_len;
    716 		MCLAIM(n, sb->sb_mowner);
    717 		if (n->m_next == 0)	/* keep pointer to last control buf */
    718 			break;
    719 	}
    720 	if (space > sbspace(sb))
    721 		return (0);
    722 	MGET(m, M_DONTWAIT, MT_SONAME);
    723 	if (m == 0)
    724 		return (0);
    725 	MCLAIM(m, sb->sb_mowner);
    726 	/*
    727 	 * XXX avoid 'comparison always true' warning which isn't easily
    728 	 * avoided.
    729 	 */
    730 	len = asa->sa_len;
    731 	if (len > MLEN) {
    732 		MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
    733 		if ((m->m_flags & M_EXT) == 0) {
    734 			m_free(m);
    735 			return (0);
    736 		}
    737 	}
    738 	m->m_len = asa->sa_len;
    739 	memcpy(mtod(m, caddr_t), (caddr_t)asa, asa->sa_len);
    740 	if (n)
    741 		n->m_next = m0;		/* concatenate data to control */
    742 	else
    743 		control = m0;
    744 	m->m_next = control;
    745 
    746 	SBLASTRECORDCHK(sb, "sbappendaddr 1");
    747 
    748 	for (n = m; n->m_next != NULL; n = n->m_next)
    749 		sballoc(sb, n);
    750 	sballoc(sb, n);
    751 	nlast = n;
    752 	SBLINKRECORD(sb, m);
    753 
    754 	sb->sb_mbtail = nlast;
    755 	SBLASTMBUFCHK(sb, "sbappendaddr");
    756 
    757 	SBLASTRECORDCHK(sb, "sbappendaddr 2");
    758 
    759 	return (1);
    760 }
    761 
    762 int
    763 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
    764 {
    765 	struct mbuf	*m, *mlast, *n;
    766 	int		space;
    767 
    768 	space = 0;
    769 	if (control == 0)
    770 		panic("sbappendcontrol");
    771 	for (m = control; ; m = m->m_next) {
    772 		space += m->m_len;
    773 		MCLAIM(m, sb->sb_mowner);
    774 		if (m->m_next == 0)
    775 			break;
    776 	}
    777 	n = m;			/* save pointer to last control buffer */
    778 	for (m = m0; m; m = m->m_next) {
    779 		MCLAIM(m, sb->sb_mowner);
    780 		space += m->m_len;
    781 	}
    782 	if (space > sbspace(sb))
    783 		return (0);
    784 	n->m_next = m0;			/* concatenate data to control */
    785 
    786 	SBLASTRECORDCHK(sb, "sbappendcontrol 1");
    787 
    788 	for (m = control; m->m_next != NULL; m = m->m_next)
    789 		sballoc(sb, m);
    790 	sballoc(sb, m);
    791 	mlast = m;
    792 	SBLINKRECORD(sb, control);
    793 
    794 	sb->sb_mbtail = mlast;
    795 	SBLASTMBUFCHK(sb, "sbappendcontrol");
    796 
    797 	SBLASTRECORDCHK(sb, "sbappendcontrol 2");
    798 
    799 	return (1);
    800 }
    801 
    802 /*
    803  * Compress mbuf chain m into the socket
    804  * buffer sb following mbuf n.  If n
    805  * is null, the buffer is presumed empty.
    806  */
    807 void
    808 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
    809 {
    810 	int		eor;
    811 	struct mbuf	*o;
    812 
    813 	eor = 0;
    814 	while (m) {
    815 		eor |= m->m_flags & M_EOR;
    816 		if (m->m_len == 0 &&
    817 		    (eor == 0 ||
    818 		     (((o = m->m_next) || (o = n)) &&
    819 		      o->m_type == m->m_type))) {
    820 			if (sb->sb_lastrecord == m)
    821 				sb->sb_lastrecord = m->m_next;
    822 			m = m_free(m);
    823 			continue;
    824 		}
    825 		if (n && (n->m_flags & M_EOR) == 0 &&
    826 		    /* M_TRAILINGSPACE() checks buffer writeability */
    827 		    m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
    828 		    m->m_len <= M_TRAILINGSPACE(n) &&
    829 		    n->m_type == m->m_type) {
    830 			memcpy(mtod(n, caddr_t) + n->m_len, mtod(m, caddr_t),
    831 			    (unsigned)m->m_len);
    832 			n->m_len += m->m_len;
    833 			sb->sb_cc += m->m_len;
    834 			m = m_free(m);
    835 			continue;
    836 		}
    837 		if (n)
    838 			n->m_next = m;
    839 		else
    840 			sb->sb_mb = m;
    841 		sb->sb_mbtail = m;
    842 		sballoc(sb, m);
    843 		n = m;
    844 		m->m_flags &= ~M_EOR;
    845 		m = m->m_next;
    846 		n->m_next = 0;
    847 	}
    848 	if (eor) {
    849 		if (n)
    850 			n->m_flags |= eor;
    851 		else
    852 			printf("semi-panic: sbcompress\n");
    853 	}
    854 	SBLASTMBUFCHK(sb, __func__);
    855 }
    856 
    857 /*
    858  * Free all mbufs in a sockbuf.
    859  * Check that all resources are reclaimed.
    860  */
    861 void
    862 sbflush(struct sockbuf *sb)
    863 {
    864 
    865 	KASSERT((sb->sb_flags & SB_LOCK) == 0);
    866 
    867 	while (sb->sb_mbcnt)
    868 		sbdrop(sb, (int)sb->sb_cc);
    869 
    870 	KASSERT(sb->sb_cc == 0);
    871 	KASSERT(sb->sb_mb == NULL);
    872 	KASSERT(sb->sb_mbtail == NULL);
    873 	KASSERT(sb->sb_lastrecord == NULL);
    874 }
    875 
    876 /*
    877  * Drop data from (the front of) a sockbuf.
    878  */
    879 void
    880 sbdrop(struct sockbuf *sb, int len)
    881 {
    882 	struct mbuf	*m, *mn, *next;
    883 
    884 	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
    885 	while (len > 0) {
    886 		if (m == 0) {
    887 			if (next == 0)
    888 				panic("sbdrop");
    889 			m = next;
    890 			next = m->m_nextpkt;
    891 			continue;
    892 		}
    893 		if (m->m_len > len) {
    894 			m->m_len -= len;
    895 			m->m_data += len;
    896 			sb->sb_cc -= len;
    897 			break;
    898 		}
    899 		len -= m->m_len;
    900 		sbfree(sb, m);
    901 		MFREE(m, mn);
    902 		m = mn;
    903 	}
    904 	while (m && m->m_len == 0) {
    905 		sbfree(sb, m);
    906 		MFREE(m, mn);
    907 		m = mn;
    908 	}
    909 	if (m) {
    910 		sb->sb_mb = m;
    911 		m->m_nextpkt = next;
    912 	} else
    913 		sb->sb_mb = next;
    914 	/*
    915 	 * First part is an inline SB_EMPTY_FIXUP().  Second part
    916 	 * makes sure sb_lastrecord is up-to-date if we dropped
    917 	 * part of the last record.
    918 	 */
    919 	m = sb->sb_mb;
    920 	if (m == NULL) {
    921 		sb->sb_mbtail = NULL;
    922 		sb->sb_lastrecord = NULL;
    923 	} else if (m->m_nextpkt == NULL)
    924 		sb->sb_lastrecord = m;
    925 }
    926 
    927 /*
    928  * Drop a record off the front of a sockbuf
    929  * and move the next record to the front.
    930  */
    931 void
    932 sbdroprecord(struct sockbuf *sb)
    933 {
    934 	struct mbuf	*m, *mn;
    935 
    936 	m = sb->sb_mb;
    937 	if (m) {
    938 		sb->sb_mb = m->m_nextpkt;
    939 		do {
    940 			sbfree(sb, m);
    941 			MFREE(m, mn);
    942 		} while ((m = mn) != NULL);
    943 	}
    944 	SB_EMPTY_FIXUP(sb);
    945 }
    946 
    947 /*
    948  * Create a "control" mbuf containing the specified data
    949  * with the specified type for presentation on a socket buffer.
    950  */
    951 struct mbuf *
    952 sbcreatecontrol(caddr_t p, int size, int type, int level)
    953 {
    954 	struct cmsghdr	*cp;
    955 	struct mbuf	*m;
    956 
    957 	if (CMSG_SPACE(size) > MCLBYTES) {
    958 		printf("sbcreatecontrol: message too large %d\n", size);
    959 		return NULL;
    960 	}
    961 
    962 	if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
    963 		return ((struct mbuf *) NULL);
    964 	if (CMSG_SPACE(size) > MLEN) {
    965 		MCLGET(m, M_DONTWAIT);
    966 		if ((m->m_flags & M_EXT) == 0) {
    967 			m_free(m);
    968 			return NULL;
    969 		}
    970 	}
    971 	cp = mtod(m, struct cmsghdr *);
    972 	memcpy(CMSG_DATA(cp), p, size);
    973 	m->m_len = CMSG_SPACE(size);
    974 	cp->cmsg_len = CMSG_LEN(size);
    975 	cp->cmsg_level = level;
    976 	cp->cmsg_type = type;
    977 	return (m);
    978 }
    979